Министерство образования Российской Федерации Владимирский государственный университет

А.В. КАЛЕБИН Р.С. КСЕНОФОНТОВ

МАТЕМАТИКА

Пособие для поступающих в ВлГУ

Рецензенты

Кандидат педагогических наук, доцент Владимирского государственного педагогического университета *И.Т. Ткачёв* Кандидат физико-математических наук, доцент Владимирского государственного университета *В.П. Собакин*

Печатается по решению редакционно-издательского совета Владимирского государственного университета

Калебин А.В., Ксенофонтов Р.С.

Математика. Пособие для поступающих в ВлГУ / Владим. гос. ун-т; Владимир, 2003. 172 с.

ISBN 5-89368-386-2

Содержится справочный материал по основным разделам курса и решение типичных задач. Все задачи взяты из централизованных тестов и тестов вступительных экзаменов ВлГУ за 2000–2002 гг., а также из билетов устных экзаменов за 1996–2001 гг. Кроме того, использовано «Пособие по математике для поступающих в ВлГУ» А.Г. Сорокиной и В.А. Скляренко.

Предназначено для абитуриентов, поступающих в вуз. ISBN 5-89368-386-2

УДК 51(07)

ISBN 5-89368-386-2

© Владимирский государственный университет, 2003

АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

Теорема Безу. Если x_1 является корнем некоторого многочлена, то этот многочлен делится на $x-x_1$.

<u>Пример 1.</u> Решить уравнение $x^3 - 4x^2 - 27x + 90 = 0$

Решение. Подставляя в данное уравнение числа ± 1 , ± 2 , ± 3 , ..., найдём первый корень уравнения $x_1 = 3$. По теореме Безу левая часть уравнения делится на x-3. Процесс деления показан ниже.

$$\begin{array}{c|cccc}
 & x^3 - 4x^2 - 27x + 90 & x - 3 \\
 & x^3 - 3x^2 & x^2 - x - 30 \\
 & -x^2 - 27x + 90 \\
 & -x^2 + 3x & \\
 & -30x + 90 & \\
 & & -30x + 90 & \\
 & & 0
\end{array}$$

Приравниваем к нулю то, что получилось в результате деления: x^2 –x–30=0 и находим остальные корни $x_2 = -5$, $x_3 = 6$. *Ответ*: 3; -5; 6.

<u>Пример 2.</u> Решить уравнение $x^4 - 4x^3 - 19x^2 + 106x - 120 = 0$.

Решение. С помощью перебора найдём первый корень $x_1=2$. Многочлен $x^4-4x^3-19x^2+106x-120$ разделим на x-2 . Получим уравнение $x^3-2x^2-23x+60=0$. С помощью перебора найдём второй корень $x_2=3$. Многочлен $x^3-2x^2-23x+60$ разделим на x-3 . Получим уравнение $x^2+x-20=0$. Его корни: $x_3=4$, $x_4=-5$. *Ответ*: 2 ; 3 ; 4 ; -5 .

<u>Пример 3.</u> Решить уравнение $x^3 - 12x + 16 = 0$.

Решение. С помощью перебора найдём первый корень $x_1=2$. Многочлен $x^3+0x^2-12x+16$ разделим на x-2 . Получим уравнение $x^2+2x-8=0$. Его корни: $x_2=2$, $x_3=-4$. *Ответ:* 2 ; -4 .

Пример 4. Решить уравнение
$$\frac{x^2 - 2x - 3}{x - 3} = x^2 + 3x - 14$$
.

Решение. Область допустимых значений (*ОДЗ*): x–3≠0 , т.е. x≠3 . Заметим, что значение x=3 является корнем числителя x^2 –2x–3 . По теореме Безу числитель делится на x–3 . Разделив числитель на x–3 , получим x+1 . Следовательно, уравнение примет вид x+1= x^2 +3x-14 . Корни этого уравнения x_1 = 3 \notin *ОДЗ* , x_2 = −5 \in *ОДЗ* . *Ответ*: −5 .

<u>Пример 5.</u> Найти все целые значения k , при которых дробь $\frac{15k^2-11k+29}{5k-2}$ является также целым числом.

Решение. Разделим числитель на знаменатель с остатком.

$$-\frac{15k^{2}-11k+29}{15k^{2}-6k} \frac{|5k-2|}{|3k-1|}$$

$$-\frac{-5k+29}{-5k+2}$$

$$-\frac{27}{27}$$

Данная дробь равна частному плюс остаток, делённый на знаменатель, т.е. $\frac{15k^2-11k+29}{5k-2}=3k-1+\frac{27}{5k-2}$. Следовательно, достаточно выяснить, при каких целых значениях k дробь $\frac{27}{5k-2}$ является целым числом. Числитель этой дроби 27 делится на числа ± 1 , ± 3 , ± 9 , ± 27 . Приравниваем 5k-2 к каждому из этих чисел и решаем уравнения $5k-2=\pm 1$; $5k-2=\pm 3$; $5k-2=\pm 9$; $5k-2=\pm 27$. Множество корней всех этих уравнений $\left\{\frac{3}{5};\frac{1}{5};1;-\frac{1}{5};\frac{11}{5};-\frac{7}{5};\frac{29}{5};-5\right\}$. *Ответ:* 1;-5.

<u>Пример 6.</u> Найти среднее арифметическое всех корней уравнения $\frac{1}{x(x+1)} - \frac{1}{\left(x+\frac{1}{2}\right)^2} = \frac{1}{4} \ .$

Решение. После раскрытия скобок получим $\frac{1}{x^2+x}-\frac{1}{x^2+x+\frac{1}{4}}=\frac{1}{4}$. Обозначим

 $a=x^2+x$. Тогда уравнение примет вид $\frac{1}{a}-\frac{1}{a+\frac{1}{4}}=\frac{1}{4}$. Дальнейший ход решения :

$$\dfrac{\dfrac{1}{4}}{a^2+\dfrac{1}{4}a}=\dfrac{1}{4}$$
 ; $\dfrac{1}{4a^2+a}=\dfrac{1}{4}$; $4a^2+a-4=0$; $a_{1,2}=\dfrac{-1\pm\sqrt{65}}{8}$. Сделав обратную

замену, получим два уравнения: 1) $x^2 + x = \frac{-1 + \sqrt{65}}{8}$ и 2) $x^2 + x = \frac{-1 - \sqrt{65}}{8}$.

Второе уравнение не имеет решений, так как его дискриминант отрицателен.

Первое уравнение имеет два корня $x_{1,2} = \frac{-1 \pm \sqrt{\frac{1 + \sqrt{65}}{2}}}{2}$. Среднее арифметическое этих корней равно $\frac{x_1 + x_2}{2} = -\frac{1}{2}$. Ответ: $-\frac{1}{2}$.

<u>Пример 7.</u> Найти целые корни уравнения $\frac{3x^2+6x}{x^2-x+1}-\frac{x^2-x+1}{x^2+2x}=2$. Решение. $3\cdot\frac{x^2+2x}{x^2-x+1}-\frac{x^2-x+1}{x^2+2x}=2$. Обозначим $a=\frac{x^2+2x}{x^2-x+1}$. Получим уравнение $3a-\frac{1}{a}=2$. Его корнями являются числа $a_1=1$, $a_2=-\frac{1}{3}$. После обратной замены получим два уравнения: 1) $\frac{x^2+2x}{x^2-x+1}=1$ и 2) $\frac{x^2+2x}{x^2-x+1}=-\frac{1}{3}$. Корни этих уравнений: $x_1=\frac{1}{3}$, $x_2=-1$, $x_3=-\frac{1}{4}$. *Ответ*: -1 .

<u>Пример 8.</u> Найти рациональные корни уравнения $x+\frac{1}{x}+2\left(x^2+\frac{1}{x^2}\right)=6$. Решение. Пусть $a=x+\frac{1}{x}$. Тогда $a^2=x^2+2+\frac{1}{x^2}$, т.е. $x^2+\frac{1}{x^2}=a^2-2$. После замены переменной получим уравнение $a+2(a^2-2)=6$, корнями которого являются числа $a_1=2$, $a_2=-\frac{5}{2}$. После обратной замены получим два уравнения: 1) $x+\frac{1}{x}=2$ и 2) $x+\frac{1}{x}=-\frac{5}{2}$. Корни этих уравнений $x_1=1$, $x_2=-2$, $x_3=-\frac{1}{2}$ рациональны. Ответ: 1; -2; $-\frac{1}{2}$.

Пример 9. Решить уравнение $\sqrt{4x-3} = \sqrt{15x+4} - \sqrt{5x+1}$. Решение. Радикал, перед которым стоит «минус», перенесём в другую часть уравнения. Получим $\sqrt{4x-3} + \sqrt{5x+1} = \sqrt{15x+4}$. *ОДЗ* определяется условиями: $4x-3 \ge 0$, $15x+4 \ge 0$, $5x+1 \ge 0$. Возведём уравнение $4x-3+2\cdot\sqrt{4x-3}\cdot\sqrt{5x+1}+5x+1=15x+4$. После преобразований получим $2 \cdot \sqrt{20x^2 - 11x - 3} = 6x + 6$; $\sqrt{20x^2 - 11x - 3} = 3x + 3$. Tak kak последнего уравнения неотрицательна, то и правая часть должна быть неотрицательной. Отсюда возникает дополнительное условие $(\mathcal{I}Y)$: $3x+3 \ge 0$. После повторного возведения квадрат получим $20x^2 - 11x - 3 = 9x^2 + 18x + 9$ корнями являются которого числа $x_1 = 3$, $x_2 = -\frac{4}{11}$. Первый корень удовлетворяет всем условиям, определяющим ОДЗ и ДУ, второй корень ∉ОДЗ. Ответ: 3.

<u>Пример 10.</u> Найти количество различных корней уравнения $\sqrt{\sqrt{11x^2+1}-2x}=x-1$.

Решение. ОДЗ: $\sqrt{11x^2+1}-2x\geq 0$. ДУ: $x-1\geq 0$. Возведём уравнение в квадрат. Получим $\sqrt{11x^2+1}-2x=x^2-2x+1$; $\sqrt{11x^2+1}=x^2+1$. Ещё раз возведём в квадрат . Получим $11x^2+1=x^4+2x^2+1$; $x^4-9x^2=0$; $x^2(x^2-9)=0$. Последнее уравнение имеет три корня 0 , 3 , -3 , из которых лишь x=3 удовлетворяет OДЗ и ДУ. Ответ: 1 .

Пример 11. Решить уравнение
$$\sqrt{\frac{16x}{x-1}} + \sqrt{\frac{x-1}{16x}} = 2,5$$
.

Решение. Сделаем замену переменной $a=\sqrt{\frac{16x}{x-1}}$. $\mathcal{Д} Y$: a>0 . Получим уравнение $a+\frac{1}{a}=2,5$, корнями которого являются числа $a_1=2$, $a_2=\frac{1}{2}$. Оба значения удовлетворяют $\mathcal{Д} Y$. После обратной замены получим два уравнения $\sqrt{\frac{16x}{x-1}}=2$ и $\sqrt{\frac{16x}{x-1}}=\frac{1}{2}$, корнями которых являются числа $x_1=-\frac{1}{3}$ и $x_2=-\frac{1}{63}$. Ответ: $-\frac{1}{3}$; $-\frac{1}{63}$.

<u>Пример 12.</u> Решить уравнение $\sqrt{2x^2+5x+1}=5-2x^2-5x$. Решение. С помощью замены $a=2x^2+5x$ приведём уравнение к виду $\sqrt{a+1}=5-a$. *ОДЗ*: $a+1\geq 0$. ДУ: $5-a\geq 0$. Возведём уравнение в квадрат. $a+1=25-10a+a^2$; $a^2-11a+24=0$; $a_1=8$ (не удовлетворяет ДУ) ; $a_2=3$ (удовлетворяет *ОДЗ* и ДУ). После обратной замены получим: $2x^2+5x=3$, откуда

$$x_1 = -3$$
 , $x_2 = \frac{1}{2}$. *Ombem*: -3 ; $\frac{1}{2}$.

В примерах 13 и 14 рекомендуем делать проверку, подставляя найденные корни в данное уравнение.

<u>Пример 13.</u> Решить уравнение $\sqrt{5x+3-2x^2}=(3x+1)\cdot\sqrt{3-x}$. Решение. Приравняем к нулю выражение $5x+3-2x^2$, найдём его корни и разложим на множители. Получим $5x+3-2x^2=-2(x-3)\left(x+\frac{1}{2}\right)=(3-x)(2x+1)$. Опуская детали, мы приводим главные моменты процесса решения. $\sqrt{(3-x)(2x+1)}-(3x+1)\cdot\sqrt{3-x}=0$; $\sqrt{3-x}\cdot\left(\sqrt{2x+1}-3x-1\right)=0$; $\sqrt{3-x}=0$ или $\sqrt{2x+1}-3x-1=0$. Корни этих уравнений $x_1=3$, $x_2=0$. *Ответ:* 0 ; 3 .

<u>Пример 14.</u> Решить уравнение $\sqrt{3x-3}-\sqrt{x-3}=\frac{x}{2}$. Решение. Умножив обе части уравнения на сумму соответствующих корней, получим $(\sqrt{3x-3}-\sqrt{x-3})(\sqrt{3x-3}+\sqrt{x-3})=\frac{x}{2}(\sqrt{3x-3}+\sqrt{x-3})$. После упрощений получим $2x=\frac{x}{2}(\sqrt{3x-3}+\sqrt{x-3})$; $4x-x(\sqrt{3x-3}+\sqrt{x-3})=0$; $x(4-\sqrt{3x-3}-\sqrt{x-3})=0$. Дальнейший ход решения очевиден. *Ответ*: 4.

Пример 15. Найти целый корень уравнения
$$\sqrt{2x-11} + \sqrt{8-x} = \frac{\sqrt{x-4}+1}{x-6}$$
.

Решение. ОДЗ:
$$\begin{cases} 2x-11 \geq 0 \\ 8-x \geq 0 \\ x-4 \geq 0 \\ x-6 \neq 0 \end{cases}$$
. Отсюда следует, что $x \in [5,5;6] \cup (6;8]$.

Пример 16. Решить уравнение
$$\sqrt[3]{5x+7} - \sqrt[3]{5x-12} = 1$$
.

Решение. Один из радикалов перенесём в правую часть уравнения, затем обе части полученного уравнения возведём в куб. При этом используются формулы:

$$(\sqrt[3]{a})^3 = a$$
; $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$.

Итак:
$$\sqrt[3]{5x+7} = 1 + \sqrt[3]{5x-12}$$
 ; $5x+7=1+3\cdot\sqrt[3]{5x-12}+3\cdot\left(\sqrt[3]{5x-12}\right)^2+5x-12$; $3\cdot\left(\sqrt[3]{5x-12}\right)^2+3\cdot\sqrt[3]{5x-12}-18=0$. После замены переменной $a=\sqrt[3]{5x-12}$ получим уравнение: $3a^2+3a-18=0$. Его корни: $a_1=2$; $a_2=-3$.

Обратная замена: 1)
$$\sqrt[3]{5x-12} = 2$$
 ; $5x-12 = 8$; $x = 4$;

2)
$$\sqrt[3]{5x-12} = -3$$
; $5x-12 = -27$; $x = -3$. Ombem: 4; -3.

Пример 17. Решить уравнение
$$\sqrt[4]{x+8} + \sqrt[4]{9-x} = 3$$
.

Решение. Один из радикалов перенесём в правую часть уравнения, затем обе части полученного уравнения возведём в четвёртую степень. При этом используются формулы: $(\sqrt[4]{a})^4 = a$; $(a \pm b)^4 = a^4 \pm 4a^3b + 6a^2b^2 \pm 4ab^3 + b^4$.

Итак:
$$\sqrt[4]{x+8} = 3 - \sqrt[4]{9-x}$$
 ;

$$x + 8 = 81 - 4 \cdot 27 \cdot \sqrt[4]{9 - x} + 6 \cdot 9 \cdot \left(\sqrt[4]{9 - x}\right)^2 - 4 \cdot 3 \cdot \left(\sqrt[4]{9 - x}\right)^3 + 9 - x \quad ;$$

$$2x + 12 \cdot \left(\sqrt[4]{9 - x}\right)^3 - 54 \cdot \left(\sqrt[4]{9 - x}\right)^2 + 108 \cdot \sqrt[4]{9 - x} - 82 = 0 \quad .$$

Замена переменной: $a=\sqrt[4]{9-x}\geq 0$. Отсюда следует, что $a^4=9-x$, $x=9-a^4$. Уравнение принимает вид $2\cdot \left(9-a^4\right)+12a^3-54a^2+108a-82=0$; $-2a^4+12a^3-54a^2+108a-64=0$.

С помощью теоремы Безу нетрудно выяснить, что полученное уравнение имеет два корня: $a_1=1$, $a_2=2$. Отсюда $x_1=9-1^4=8$, $x_2=9-2^4=-7$. Проверка показывает, что x_1 и x_2 удовлетворяют данному уравнению. *Ответ*: 8; –7.

Пример 18. Решить уравнение
$$\frac{x \cdot \sqrt[5]{x} - 1}{\sqrt[5]{x^3} - 1} + \frac{\sqrt[5]{x^3} - 1}{\sqrt[5]{x} - 1} = 16$$
.

Решение. Замена: $a=\sqrt[5]{x}$. Отсюда следует, что $x=a^5$. Уравнение принимает вид $\frac{a^6-1}{a^3-1}+\frac{a^3-1}{a-1}=16$. ОДЗ : $a\neq 1$. Числители дробей разложим на множители: $a^6-1=\left(a^3\right)^2-1^2=\left(a^3-1\right)\!\!\left(a^3+1\right)$; $a^3-1=\left(a-1\right)\!\!\left(a^2+a+1\right)$.

Получим
$$\frac{\left(a^3-1\right)\!\left(a^3+1\right)}{a^3-1}+\frac{\left(a-1\right)\!\left(a^2+a+1\right)}{a-1}=16$$
 ; $a^3+1+a^2+a+1=16$; $a^3+a^2+a-14=0$. Это уравнение имеет единственный корень $a=2$. То

 $a^3 + a^2 + a - 14 = 0$. Это уравнение имеет единственный корень a = 2 . Тогда $x = 2^5 = 32$. *Omeem*: 32.

Задачи для самостоятельного решения

- 1. Решить уравнение $x^3 x^2 13x 14 = 0$.
- 2. Найти среднее арифметическое всех корней уравнения x^3 –19x–30=0.
- 3. Решить уравнение $\frac{x^2 + 3x + 2}{x + 1} = x^2 5x 5$.
- 4. Найти все целые значения k , при которых дробь $\frac{6k^2+k+48}{3k-1}$ является также целым числом.
- 5. Найти целые корни уравнения $\frac{2}{2x^2+x-4} + \frac{54}{2x^2+x+3} = 7$.
- 6. Найти среднее арифметическое всех корней уравнения $\frac{1}{x(x+3)} - \frac{1}{(x+15)^2} = -4\frac{1}{2}$.
- 7. Найти натуральные корни уравнения $\frac{x^2 + x 3}{x 1} + \frac{6x 6}{x^2 + x 3} = 5$.
- 8. Найти рациональные корни уравнения $7\left(x+\frac{1}{x}\right)-2\left(x^2+\frac{1}{x^2}\right)=9$.
- 9. Найти наибольший корень уравнения $\sqrt{3x+6}-\sqrt{x+1}=\sqrt{3}$. 10. Найти число различных корней уравнения $\sqrt{\sqrt{34x^2+81}-6x}=3-x$.
- 11. Решить уравнение $\sqrt{\frac{5-x}{x+3}} 2 \cdot \sqrt{\frac{x+3}{5-x}} = 1$.
- 12. Найти сумму всех корней уравнения $x^2 + 4x 3 \cdot \sqrt{x^2 + 4x + 15} = 3$.

8

- 13. Решить уравнение $\sqrt{x^2 + 5x + 6} + 2x \cdot \sqrt{x + 2} = 0$.
- 14. Решить уравнение $\sqrt{8-x} \sqrt{x+2} = \frac{3-x}{2}$.
- 15. Найти целый корень уравнения $\sqrt{4x-23} + \sqrt{9-x} = \frac{4}{x-7}$.
- 16. Решить уравнение $\sqrt[3]{12-\sqrt{x}}-\sqrt[3]{3-\sqrt{x}}=3$.
- 17. Решить уравнение $\sqrt[4]{x+8} \sqrt[4]{x-8} = 2$.
- 18. Решить уравнение $\frac{x-1}{\sqrt[4]{x^3}-1} \frac{\sqrt[4]{x^3}+1}{\sqrt[4]{x}-\sqrt[4]{x}+1} = -\frac{6}{7}$.

УРАВНЕНИЯ С МОДУЛЕМ

Модуль действительного числа определяется так: $|z| = \begin{cases} z \text{ , } ecnu \text{ } z \geq 0 \\ -z \text{ , } ecnu \text{ } z \leq 0 \end{cases}$.

<u>Пример 1.</u> Найти корень уравнения |15-|5x+3||=11, принадлежащий промежутку (-6;-2].

Решение. Напомним, что если $a-\kappa$ *онкретное число*, то уравнение |z|=a не имеет решений при a<0, имеет два решения $z=\pm a$ при $a\geq 0$. Ход решения данной задачи:

$$|5x+3| = 11 ; |5x+3| = -11 ; |5x+3| = -11 ; |5x+3| = 26 ; |5x+3| = \pm 4 ; |5x+3| = \pm 26 ; |x_1 = \frac{1}{5} ; x_2 = -\frac{7}{5} . |x_3 = \frac{23}{5} ; x_4 = -\frac{29}{5} .$$

Ответ: $-\frac{29}{5}$.

<u>Пример 2.</u> Найти наименьший корень уравнения $1+x+\left|x^2-x-3\right|=0$. *Решение*. Рассмотрим два случая.

- 1) Пусть $x^2-x-3\geq 0$, тогда $|x^2-x-3|=x^2-x-3$, и уравнение примет вид $1+x+x^2-x-3=0$, откуда $x_1=\sqrt{2}$ (не удовлетворяет условию 1)) , $x_2=-\sqrt{2}$ (это значение удовлетворяет условию 1) и является решением данного уравнения).
- 2) Пусть $x^2 x 3 \le 0$, тогда $|x^2 x 3| = -x^2 + x + 3$, и уравнение примет вид $1 + x x^2 + x + 3 = 0$, откуда $x_1 = 1 \sqrt{5}$ (удовлетворяет условию 2) и является решением данного уравнения), $x_2 = 1 + \sqrt{5}$ (не удовлетворяет условию 2)). Выбираем наименьшее из двух чисел $-\sqrt{2}$ и $1 \sqrt{5}$. *Ответ*: $-\sqrt{2}$.

<u>Пример 3.</u> Найти корень уравнения |7x-2|-|8+4x|=-7-3x, принадлежащий промежутку $\left(-1 \;\; ; \;\; \frac{1}{3}\right)$.

Решение. Найдём точки, принадлежащие данному промежутку, в которых имеющиеся модули равны нулю: $7x-2=0 \Rightarrow x=\frac{2}{7} \in \left(-1 \ ; \ \frac{1}{3}\right)$;

 $8 + 4x = 0 \Rightarrow x = -2 \not\in \left(-1 \ ; \ \frac{1}{3}\right)$. Следовательно, данный промежуток можно представить в виде объединения двух промежутков . Рассмотрим два случая.

1) Пусть $x \in \left(-1 \ ; \ \frac{2}{7}\right]$. Тогда $\left| \ 7x - 2 \ \right| = -7x + 2$, $\left| \ 8 + 4x \ \right| = 8 + 4x$, и уравнение примет вид $-7x + 2 - \left(8 + 4x\right) = -7 - 3x$, откуда $x = \frac{1}{8} \in \left(-1 \ ; \ \frac{2}{7}\right]$ является решением данного уравнения.

2) Пусть $x \in \left[\frac{2}{7} \ ; \ \frac{1}{3}\right)$. Тогда |7x-2| = 7x-2 , |8+4x| = 8+4x , и уравнение примет вид 7x-2-(8+4x)=-7-3x , откуда $x=\frac{1}{2} \notin \left[\frac{2}{7} \ ; \ \frac{1}{3}\right)$ не является решением данного уравнения.

Ответ: $\frac{1}{8}$.

<u>Пример 4.</u> Решить уравнение |3x+12|+|x+1|=3x+14.

Решение. На числовой оси отметим точки -4 и -1, т.е. такие точки, в которых имеющиеся модули равны нулю. Так как числовая ось представляет собой объединение трёх промежутков $(-\infty; -4] \cup [-4; -1] \cup [-1; +\infty)$, то мы рассмотрим три случая.

- 1) Пусть $x \in (-\infty; -4]$. Тогда |3x+12| = -3x-12 , |x+1| = -x-1 . Следовательно, -3x-12-x-1=3x+14 , откуда $x = -\frac{27}{7} \notin (-\infty; -4]$.
- 2) Пусть $x \in [-4;-1]$. Тогда |3x+12| = 3x+12 , |x+1| = -x-1 . Следовательно, 3x+12-x-1=3x+14 , откуда $x=-3\in [-4;-1]$.
- 3) Пусть $x \in [-1; +\infty)$. Тогда |3x+12| = 3x+12 , |x+1| = x+1 . Следовательно, 3x+12+x+1=3x+14 , откуда $x=1 \in [-1; +\infty)$. Ответ: -3; 1.

Замечание. Допустим, что после раскрытия модулей все «иксы» сократились. Если при этом получается неверное числовое равенство (типа 0=5), то на рассматриваемом промежутке решений нет. Если при этом получается верное числовое равенство (типа 5=5), то весь рассматриваемый промежуток следует включить в ответ.

<u>Пример 5.</u> Решить уравнение |3x-8|-|3x-2|=6.

Pешение. Точки, в которых имеющиеся модули равны нулю: $\frac{2}{3}$ и $\frac{8}{3}$.

1) Если $x \in \left(-\infty; \frac{2}{3}\right]$, то получим уравнение (-3x+8)-(-3x+2)=6; 6=6.

Это — верное числовое равенство . Поэтому весь промежуток $\left(-\infty;\frac{2}{3}\right]$ следует включить в ответ.

2) Если $x \in \left[\frac{2}{3}; \frac{8}{3}\right]$, то получим уравнение (-3x+8)-(3x-2)=6; -6x+10=6; $x=\frac{2}{3}\in \left[\frac{2}{3}; \frac{8}{3}\right]$. Значение $x=\frac{2}{3}$ следует включить в ответ.

3) Если
$$x \in \left[\frac{8}{3}; +\infty\right]$$
, то получим уравнение $(3x-8)-(3x-2)=6$; $-6=6$.

Это — неверное числовое равенство . Поэтому на промежутке $\left[\frac{8}{3}\,;+\infty\right]$ решений нет.

Omeem: $\left(-\infty; \frac{2}{3}\right]$.

<u>Пример 6.</u> Решить уравнение $\sqrt{2x^2 - 4x - 21} - 2 = |3x - 16|$.

Решение. Рассмотрим два случая: $3x-16 \ge 0$ и $3x-16 \le 0$.

- 1) Пусть $3x-16 \ge 0$ (*) . Тогда |3x-16|=3x-16 , и уравнение примет вид $\sqrt{2x^2-4x-21}-2=3x-16$; $\sqrt{2x^2-4x-21}=3x-14$. Выпишем *ОДЗ* и *ДУ*. *ОДЗ* : $2x^2-4x-21 \ge 0$. Дополнительное условие ($\mathcal{L}Y$) : $3x-14 \ge 0$. После возведения в квадрат получим $2x^2-4x-21=9x^2-84x+196$. Корни этого уравнения: $x_1=7$ (удовлетворяет условию (*) , а также *ОДЗ* и $\mathcal{L}Y$) , $x_2=\frac{31}{7}$ (не удовлетворяет условию (*)) .
- 2) Пусть $3x-16 \le 0$ (**) . Тогда $\begin{vmatrix} 3x-16 \end{vmatrix} = -3x+16$, и уравнение примет вид $\sqrt{2x^2-4x-21}-2=-3x+16$; $\sqrt{2x^2-4x-21}=-3x+18$. Выпишем *ОДЗ* и *ДУ*. *ОДЗ* : $2x^2-4x-21\ge 0$. Дополнительное условие ($\mathcal{A}\mathcal{Y}$) : $-3x+18\ge 0$. После возведения в квадрат получим $2x^2-4x-21=9x^2-108x+324$. Корни этого уравнения: $x_1=5$ (удовлетворяет условию (**) , а также *ОДЗ* и $\mathcal{A}\mathcal{Y}$) , $x_2=\frac{69}{7}$ (не удовлетворяет условию (**) .

Ответ: 7;5.

Пример 7. Решить уравнение
$$\sqrt{x+6+2\cdot\sqrt{x+5}}+\sqrt{x-\sqrt{x+5}}=5$$
.

Решение. Замена переменной: $a=\sqrt{x+5}\geq 0$ (*). Тогда $a^2=x+5$; $x=a^2-5$. Подставив всё это в данное уравнение, получим: $\sqrt{a^2-5+6+2a}+\sqrt{a^2-5-a}=5$; $\sqrt{(a+1)^2}+\sqrt{a^2-a-5}=5$; $|a+1|+\sqrt{a^2-a-5}=5$. Так как $a\geq 0$, то a+1>0 ; следовательно, |a+1|=a+1 . Получим уравнение $a+1+\sqrt{a^2-a-5}=5$; $\sqrt{a^2-a-5}=4-a$. Это уравнение имеет единственный корень a=3 (удовлетворяет условию (*)). Следовательно, $x=3^2-5=4$. Ответ: 4.

Пример 8. Решить уравнение
$$\sqrt{x+2\cdot\sqrt{x-1}}+\sqrt{x-2\cdot\sqrt{x-1}}=x-1$$
.

Решение. Замена переменной: $a=\sqrt{x-1}\geq 0$ (*). Тогда $a^2=x-1$; $x=a^2+1$. Подставив всё это в данное уравнение, получим: $\sqrt{a^2+1+2a}+\sqrt{a^2+1-2a}=a^2$; $\sqrt{(a+1)^2}+\sqrt{(a-1)^2}=a^2$; $|a+1|+|a-1|=a^2$. Так как $a\geq 0$, то a+1>0 ; следовательно, |a+1|=a+1 . Получим уравнение $a+1+|a-1|=a^2$.

- 1) Если $a-1\geq 0$ (**), т.е. $a\geq 1$, то |a-1|=a-1, и уравнение принимает вид $a+1+a-1=a^2$. Отсюда $a_1=0$ (не удовлетворяет условию (**)), $a_2=2$ (удовлетворяет условиям (**) и (*)). Следовательно, $x=2^2+1=5$.
- 2) Если $a-1 \le 0$ (***), т.е. $a \le 1$, то |a-1| = -a+1, и уравнение принимает вид $a+1-a+1=a^2$. Отсюда $a_1=\sqrt{2}$ (не удовлетворяет условию (***)), $a_2=-\sqrt{2}$ (не удовлетворяет условию (*)). Ответ: 5.

Задачи для самостоятельного решения

- 1. Найти все корни уравнения $\left| \left| 6x + 5 \right| 11 \right| = 6$, принадлежащие промежутку $\left[-\frac{7}{3}; -1 \right)$.
- 2. Найти наибольший корень уравнения $2 \cdot |x^2 + 2x 5| = x 1$.
- 3. Найти все корни уравнения |4-3x|-|2x+3|=2-4x , принадлежащие промежутку $\left(-\frac{1}{2};2\right]$.
- 4. Решить уравнение $|7x+2|-2\cdot |2x-5|=7-x$.
- 5. Решить уравнение |5x-13|+|6-5x|=7.
- 6. Решить уравнение $\sqrt{2x^2 + 3x 10} + 7 = 3 \cdot |x + 1|$.
- 7. Решить уравнение $\sqrt{2x+7+2\cdot\sqrt{2x+6}}+\sqrt{2x-\sqrt{2x+6}}=4$.
- 8. Решить уравнение $\sqrt{3x+2\cdot\sqrt{3x-1}} + \sqrt{3x-2\cdot\sqrt{3x-1}} = 3x-1$.

СИСТЕМЫ УРАВНЕНИЙ

Пример 1. Решить систему уравнений $\begin{cases} 4x-3y=5\\ x^2-xy+y^2-2x=15 \end{cases}.$ *Решение.* Из первого уравнения выразим $x=\frac{3y+5}{4}$ и подставим это значение во второе уравнение. Тогда $\frac{(3y+5)^2}{16}-\frac{3y+5}{4}\cdot y+y^2-2\cdot \frac{3y+5}{4}=15 \quad .$ После преобразований получим квадратное уравнение $13y^2-14y-255=0$, имеющее корни $y_1=5$, $y_2=-\frac{51}{13}$. Подставим эти значения в выражение для x . Тогда $x_1=5$, $x_2=-\frac{22}{13}$. *Ответ:* (5;5) ; $\left(-\frac{22}{13};-\frac{51}{13}\right)$.

<u>Пример 2.</u> Решить систему уравнений $\begin{cases} 2 \cdot \sqrt{\frac{7x + 2y}{y - 2x}} - 9 \cdot \sqrt{\frac{y - 2x}{7x + 2y}} = 3 \\ 5 \cdot \sqrt{x} + 5 \cdot \sqrt{7y} = 3 \cdot \sqrt{7} \end{cases}$

Решение. Обозначим $a=\sqrt{\frac{7x+2y}{y-2x}}$. Дополнительное условие (ДУ): a>0 . Тогда первое уравнение примет вид $2a-\frac{9}{a}=3$. Последнее уравнение имеет два корня: $a_1=3$ (удовлетворяет ДУ) , $a_2=-1,5$ (не удовлетворяет ДУ) . Обратная замена делается только в первом случае: $\sqrt{\frac{7x+2y}{y-2x}}=3$; $\frac{7x+2y}{y-2x}=9$; 7x+2y=9y-18x ; 25x=7y . Отсюда $x=\frac{7y}{25}$. Подставив это значение во второе уравнение данной системы, получим $5\cdot\sqrt{\frac{7y}{25}}+5\cdot\sqrt{7y}=3\cdot\sqrt{7}$; $\sqrt{7y}+5\cdot\sqrt{7y}=3\cdot\sqrt{7}$; $6\cdot\sqrt{7}\cdot\sqrt{y}=3\cdot\sqrt{7}$. Отсюда $\sqrt{y}=\frac{1}{2}$; $y=\frac{1}{4}$; $x=\frac{7}{25}\cdot\frac{1}{4}=\frac{7}{100}$. Отвем: $\left(\frac{7}{100};\frac{1}{4}\right)$.

и
$$\begin{cases} a_2 = -\frac{3}{2} \\ b_2 = \frac{4}{3} \end{cases}$$
 (не удовлетворяет условию $a \ge 0$). Обратную замену делаем только

в первом случае.
$$\begin{cases} \sqrt{2x-y+3}=2\\ x-y=-1 \end{cases}$$
; $\begin{cases} 2x-y+3=4\\ x=y-1 \end{cases}$. Отсюда $\begin{cases} x=2\\ y=3 \end{cases}$.

<u>Пример 4.</u> Решить систему уравнений $\begin{cases} \sqrt{x} + 3 \cdot \sqrt{y} = 7 \\ 3y - 4 \cdot \sqrt{xy} - 2x = 2 \end{cases}$

Решение. После замены переменных
$$\begin{cases} a = \sqrt{x} \ge 0 \\ b = \sqrt{y} \ge 0 \end{cases}$$
 получим систему уравнений
$$\begin{cases} a+3b=7 \\ 3b^2-4ab-2a^2=2 \end{cases}$$
 Её решения:
$$\begin{cases} a_1=1 \\ b_1=2 \end{cases}$$
 (удовлетворяет условиям
$$a \ge 0 \ , \ b \ge 0 \)$$
 и
$$\begin{cases} a_2=-43 \\ b_2=50/3 \end{cases}$$
 (не удовлетворяет условию $a \ge 0$). Следовательно,
$$\begin{cases} x=a^2=1 \end{cases}$$

$$\begin{cases} x = a_1^2 = 1 \\ y = b_1^2 = 4 \end{cases}$$
. *Omsem*: (1;4).

<u>Пример 5.</u> Найти произведение абсцисс точек пересечения прямой 2x - y = 1 и окружности $x^2 + y^2 = 4$.

Решение. Нужно решить систему уравнений $\begin{cases} 2x - y = 1 \\ x^2 + y^2 = 4 \end{cases}$. Решениями этой

системы являются пары чисел $\begin{cases} x_1 = \frac{2 - \sqrt{19}}{5} \\ y_1 = \frac{-1 - 2 \cdot \sqrt{19}}{5} \end{cases}; \begin{cases} x_2 = \frac{2 + \sqrt{19}}{5} \\ y_2 = \frac{-1 + 2 \cdot \sqrt{19}}{5} \end{cases}$

$$x_1 x_2 = \frac{2 - \sqrt{19}}{5} \cdot \frac{2 + \sqrt{19}}{5} = -\frac{3}{5}$$
. Ombem: $-\frac{3}{5}$.

<u>Пример 6.</u> Найти точки пересечения графиков функций y = 13x + 10 и $v = 2x^3 - 3x^2 + x + 3 .$

Решение. Нужно решить систему $\begin{cases} y = 13x + 10 \\ v = 2x^3 - 3x^2 + x + 3 \end{cases}$. Отсюда следует, что

 $13x+10=2x^3-3x^2+x+3$; $2x^3-3x^2-12x-7=0$. Это уравнение решается с помощью теоремы Безу. Его корни: $x_1 = -1$; $x_2 = 3.5$. Тогда $y_1 = -3$; $y_2 = 55.5$. *Ответ*: $\left(-1; -3\right)$; $\left(3.5; 55.5\right)$.

Гогда
$$y_1 = -3$$
; $y_2 = 55.5$. Ответ: $(-1; -3)$; $(3.5; 55.5)$

Пример 7. Решить систему уравнений
$$\begin{cases} x^2 + xy + 2y^2 = 37 \\ 2x^2 + 2xy + y^2 = 26 \end{cases}.$$

Решение. Данные уравнения перемножим «крест-накрест» :

 $26(x^2 + xy + 2y^2) = 37(2x^2 + 2xy + y^2)$. После раскрытия скобок, переноса и приведения подобных получим $0 = 48x^2 + 48xy - 15y^2$ (*).

Допустим, что y=0. Тогда из полученного уравнения (*) следует, что x=0. Но это невозможно, так как пара (0;0) не является решением данной системы. Отсюда вытекает, что $y\neq 0$, поэтому уравнение (*) можно разделить на y^2 .

Имеем: $48 \cdot \frac{x^2}{y^2} + 48 \cdot \frac{x}{y} - 15 = 0$. После замены $a = \frac{x}{y}$ получим уравнение

 $48a^2+48a-15=0$, корнями которого являются числа $a_1=\frac{1}{4}$, $a_2=-\frac{5}{4}$. Затем, выполнив обратную замену, получим две системы:

$$\begin{cases} \frac{x}{y} = \frac{1}{4} \\ x^2 + xy + 2y^2 = 37 \end{cases}$$
 или
$$\begin{cases} \frac{x}{y} = -\frac{5}{4} \\ x^2 + xy + 2y^2 = 37 \end{cases}$$
.

Первая система имеет решения (1;4) и (-1;-4) , вторая система имеет решения (-5;4) и (5;-4) . *Ответ*: (1;4) ; (-1;-4) ; (-5;4) ; (5;-4) .

Пример 8. Решить систему уравнений
$$\begin{cases} x^2y + xy^2 = 20 \\ x^3 + y^3 = 65 \end{cases}.$$

 Решение.
 Левые части обоих уравнений разложим на множители:

 $\{xy(x+y)=20$ Разделим первое уравнение на второе:

 $(x+y)(x^2-xy+y^2)=65$ $\frac{xy(x+y)}{(x+y)(x^2-xy+y^2)}=\frac{20}{65}$; $\frac{xy}{x^2-xy+y^2}=\frac{4}{13}$; $13xy=4x^2-4xy+4y^2$; $4x^2-17xy+4y^2=0$. Полученное уравнение разделим на y^2 . Имеем:

 $4 \cdot \frac{x^2}{y^2} - 17 \cdot \frac{x}{y} + 4 = 0$. После замены $a = \frac{x}{y}$ получим уравнение $4a^2 - 17a + 4 = 0$,

корнями которого являются числа 4 и $\frac{1}{4}$. . Затем, выполнив обратную замену,

получим две системы: $\begin{cases} \frac{x}{y} = 4 \\ x^3 + y^3 = 65 \end{cases}$ или $\begin{cases} \frac{x}{y} = \frac{1}{4} \\ x^3 + y^3 = 65 \end{cases}$.

Первая система имеет решение (4;1), вторая система имеет решение (1;4). *Ответ*: (1;4); (4;1).

Пример 9. Решить систему уравнений
$$\begin{cases} \sqrt{x} + \sqrt{y+1} = 1\\ \sqrt{x+1} + \sqrt{y} = 1 \end{cases}.$$

Решение. ОДЗ: $x \ge 0$, $y \ge 0$. Перенесём радикалы, содержащие букву x, в правые части уравнений, затем каждое уравнение возведём в квадрат. Получим:

$$\begin{cases} \sqrt{y+1} = 1 - \sqrt{x} \\ \sqrt{y} = 1 - \sqrt{x+1} \end{cases} ; \quad \begin{cases} y+1 = 1 - 2 \cdot \sqrt{x} + x \\ y = 1 - 2 \cdot \sqrt{x+1} + x + 1 \end{cases} ; \quad \begin{cases} y = -2 \cdot \sqrt{x} + x \\ y = 2 - 2 \cdot \sqrt{x+1} + x \end{cases} . \text{ Отсюда} \end{cases}$$

следует, что $-2 \cdot \sqrt{x} + x = 2 - 2 \cdot \sqrt{x+1} + x$. Это уравнение имеет единственный корень x=0 . Тогда $y=-2\cdot\sqrt{0}+0=0$. Проверка показывает, что пара (0;0) является решением данной системы. Ответ: (0;0).

Задачи для самостоятельного решения

9. Решить систему уравнений
$$\begin{cases} 2x+3y+7=0\\ 2y^2-3x^2-5xy-18x-2y-18=0 \end{cases}.$$

10. Решить систему уравнений
$$\begin{cases} xy = 24 \\ 8 \cdot \frac{3x + 2y}{x + 4y} - 6 \cdot \frac{x + 4y}{3x + 2y} = 13 \end{cases}$$

11. Решить систему уравнений
$$\begin{cases} 2 \cdot \sqrt{\frac{4x - 16y}{x + 2y}} - 4 \cdot \sqrt{\frac{x + 2y}{4x - 16y}} = 7 \\ x^2 + xy - 3y^2 = 1 \end{cases}.$$

12. Решить систему уравнений
$$\begin{cases} 2 \cdot \sqrt{x} - \sqrt{y} = 1 \\ 6x + y - 3 \cdot \sqrt{xy} = 15 \end{cases}$$
13. Решить систему уравнений
$$\begin{cases} 3 \cdot \sqrt{5x - y + 7} + 3x - 2y = 5 \\ (2y - 3x) \cdot \sqrt{5x - y + 7} = -2 \end{cases}$$

13. Решить систему уравнений
$$\begin{cases} 3 \cdot \sqrt{5x - y + 7} + 3x - 2y = 5 \\ (2y - 3x) \cdot \sqrt{5x - y + 7} = -2 \end{cases}$$

14. Найти произведение ординат точек пересечения прямой 15x + 2y = 2гиперболы $y = \frac{4}{15x + 7}$.

функций y = -12x - 1115. Найти точки пересечения графиков $v = 2x^3 + 3x^2 - 12x - 12$.

16. Решить систему уравнений
$$\begin{cases} 3x^2 - 5xy - 14y^2 = 2\\ 2x^2 - 3xy - 10y^2 = 1 \end{cases}$$

17. Решить систему уравнений
$$\begin{cases} x^4 - y^4 = 15 \\ x^3 y - x y^3 = 6 \end{cases}$$

17. Решить систему уравнений
$$\begin{cases} x^4 - y^4 = 15 \\ x^3 y - x y^3 = 6 \end{cases}$$
18. Решить систему уравнений
$$\begin{cases} \sqrt{x+1} + \sqrt{2y+3} = 2 \\ \sqrt{x+4} + \sqrt{2y+2} = 2 \end{cases}$$

УПРОЩЕНИЕ ВЫРАЖЕНИЙ

Пример 1. Вычислить
$$A = \sqrt{(\sqrt{6} + 1)^3 + 1 - \sqrt{6}} \cdot (\sqrt{2} - \sqrt{3})$$
.

Решение. Сначала упростим подкоренное выражение.

$$\left(\sqrt{6}+1\right)^3+1-\sqrt{6}=\left(\sqrt{6}\right)^3+3\cdot\left(\sqrt{6}\right)^2+3\cdot\sqrt{6}+1+1-\sqrt{6}=6\cdot\sqrt{6}+18+3\cdot\sqrt{6}+2-\sqrt{6}=8\cdot\sqrt{6}+20 \ .$$

Итак, $A = \sqrt{8 \cdot \sqrt{6} + 20} \cdot \left(\sqrt{2} - \sqrt{3}\right)$. Напомним, что формула типа $\sqrt{a} \cdot b = \sqrt{ab^2}$ справедлива лишь при $b \ge 0$. Если b < 0, то следует предварительно вынести за скобку знак «минус». Следовательно

$$A = -\sqrt{8 \cdot \sqrt{6} + 20} \cdot \left(\sqrt{3} - \sqrt{2}\right) = -\sqrt{\left(8 \cdot \sqrt{6} + 20\right) \cdot \left(\sqrt{3} - \sqrt{2}\right)^2} =$$

$$= -\sqrt{\left(8 \cdot \sqrt{6} + 20\right) \cdot \left(3 - 2 \cdot \sqrt{6} + 2\right)} = \begin{cases} nocne \ nepeмножения \ u \\ npuведения \ nodoбных \end{cases} = -\sqrt{4} = -2 \ .$$

Ответ: -2.

Пример 2. Вычислить
$$A = \frac{10}{1-\sqrt{6}} + \frac{2}{\sqrt{6}-2} - \frac{3}{\sqrt{6}-3}$$
.

Решение. Числители и знаменатели всех дробей домножим на «сопряжённые выражения». Получим

$$A = \frac{10 \cdot (1 + \sqrt{6})}{(1 - \sqrt{6}) \cdot (1 + \sqrt{6})} + \frac{2 \cdot (\sqrt{6} + 2)}{(\sqrt{6} - 2) \cdot (\sqrt{6} + 2)} - \frac{3 \cdot (\sqrt{6} + 3)}{(\sqrt{6} - 3) \cdot (\sqrt{6} + 3)} =$$

$$= \frac{10 \cdot (1 + \sqrt{6})}{1 - 6} + \frac{2 \cdot (\sqrt{6} + 2)}{6 - 4} - \frac{3 \cdot (\sqrt{6} + 3)}{6 - 9} = -2 \cdot (1 + \sqrt{6}) + (\sqrt{6} + 2) + (\sqrt{6} + 3) = 3.$$

Ответ: 3.

Пример 3. Упростить выражение
$$A = \frac{x^2 + 4x - 5}{x^2 - 4x + 3} + \frac{x^2 - 18x - 40}{x^2 - x - 6} + \frac{x^3 + 27}{x^2 - 9}$$
.

Решение. Числители и знаменатели всех дробей разложим на множители и сократим каждую дробь. Напомним, что если x_1 и x_2 – корни уравнения $ax^2 + bx + c = 0$, то $ax^2 + bx + c = a(x - x_1)(x - x_2)$. Кроме того, потребуются формулы: $a^2 - b^2 = (a - b)(a + b)$ и $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$. Следовательно $A = \frac{(x - 1)(x + 5)}{(x - 1)(x - 3)} + \frac{(x + 2)(x - 20)}{(x + 2)(x - 3)} + \frac{(x + 3)(x^2 - 3x + 9)}{(x - 3)(x + 3)} = \frac{x + 5}{x - 3} + \frac{x - 20}{x - 3} + \frac{x^2 - 3x + 9}{x - 3} = \frac{x^2 - x - 6}{x - 3} = \frac{(x + 2)(x - 3)}{x - 3} = x + 2$. *Ответ:* x + 2 .

Пример 4. Сократить дробь
$$A = \frac{4x^2 - 9y^2}{4x^2 - 36xy + 45y^2}$$
.

Решение. Понятно, что $4x^2 - 9y^2 = (2x - 3y)(2x + 3y)$. Для того, чтобы разложить на множители знаменатель, решим квадратное (относительно переменной x) уравнение $4x^2 - 36y \cdot x + 45y^2 = 0$.

Дискриминант
$$D = (-36y)^2 - 4 \cdot 4 \cdot 45y^2 = 576y^2 = (24y)^2$$
.
Тогда $x_1 = \frac{36y - 24y}{8} = \frac{3y}{2}$, $x_2 = \frac{36y + 24y}{8} = \frac{15y}{2}$. Следовательно $4x^2 - 36xy + 45y^2 = 4 \cdot (x - x_1) \cdot (x - x_2) = 4 \cdot \left(x - \frac{3y}{2}\right) \cdot \left(x - \frac{15y}{2}\right) = (2x - 3y)(2x - 15y)$
Итак, $A = \frac{(2x - 3y)(2x + 3y)}{(2x - 3y)(2x - 15y)} = \frac{2x + 3y}{2x - 15y}$. *Ответ:* $\frac{2x + 3y}{2x - 15y}$.

<u>Пример 5</u>. Упростить выражение $A = \frac{9x - 6 \cdot \sqrt{x} + 1}{3x + 5 \cdot \sqrt{x} + 2} : \frac{9x - 1}{2 + \sqrt{x}}$.

 $y = \sqrt{x}$. Тогда $x = y^2$. Искомое выражение равно $A = \frac{9y^2 - 6y + 1}{3y^2 + 5y - 2} \cdot \frac{2 + y}{9y^2 - 1} = \frac{(3y - 1)^2}{(y + 2) \cdot (3y - 1)} \cdot \frac{y + 2}{(3y - 1) \cdot (3y + 1)} = \frac{1}{(3y + 1)} = \frac{1}{3y - 1}.$

<u>Пример 6</u>. Дано: $\sqrt{8-t} - \sqrt{3-t} = 2$. Вычислить $\sqrt{8-t} + \sqrt{3-t}$

Решение. Обе части данного уравнения умножим на сопряжённое выражение. Получим $(\sqrt{8-t}-\sqrt{3-t})\cdot(\sqrt{8-t}+\sqrt{3-t})=2\cdot(\sqrt{8-t}+\sqrt{3-t})$;

$$(8-t)-(3-t)=2\cdot\left(\sqrt{8-t}+\sqrt{3-t}\right)$$
 . Отсюда $\sqrt{8-t}+\sqrt{3-t}=\frac{5}{2}$. Ответ: $\frac{5}{2}$

<u>Пример 7</u>. Дано: $f(x) = \frac{3x+2}{x-5}$. Упростить выражение f(x+2) - f(x+8). Решение.

$$f(x+2) - f(x+8) = \frac{3 \cdot (x+2) + 2}{(x+2) - 5} - \frac{3 \cdot (x+8) + 2}{(x+8) - 5} = \frac{3x+8}{x-3} - \frac{3x+26}{x+3} = \frac{102}{x^2 - 9}$$

<u>Пример 8.</u> Упростить выражение $A = \sqrt{\left(\frac{1}{\sqrt{a}} + \sqrt{a}\right)^2 - 4 - \sqrt{\left(\frac{1}{\sqrt{a}} - \sqrt{a}\right)^2 + 4}}$, если a > 1.

$$\sqrt{\left(\frac{1}{\sqrt{a}}+\sqrt{a}\right)^2-4}=\sqrt{\frac{1}{a}+2\cdot\frac{1}{\sqrt{a}}\cdot\sqrt{a}+a-4}=\sqrt{\frac{1}{a}-2+a}=\sqrt{\left(\frac{1}{\sqrt{a}}-\sqrt{a}\right)^2}=$$

$$=\left|\frac{1}{\sqrt{a}}-\sqrt{a}\right|=\left|\frac{1-a}{\sqrt{a}}\right|=\left\{\begin{array}{c} Ta\kappa\ \kappa a\kappa & a>1\ , mo\ \frac{1-a}{\sqrt{a}}<0\end{array}\right\}=\frac{-1+a}{\sqrt{a}}\ .$$
Аналогично, $\sqrt{\left(\frac{1}{\sqrt{a}}-\sqrt{a}\right)^2+4}=\frac{1+a}{\sqrt{a}}$. Следовательно, $A=\frac{-1+a}{\sqrt{a}}-\frac{1+a}{\sqrt{a}}=\frac{-2}{\sqrt{a}}$. Омвет: $\frac{-2}{\sqrt{a}}$.

Задачи для самостоятельного решения

1. Вычислить
$$\sqrt{(\sqrt{3}+1)^3+2} \cdot (1-\sqrt{3})$$
.

2. Вычислить
$$\frac{2}{\sqrt{5}-1} + \frac{1}{2 \cdot \sqrt{5}-4} - \frac{2}{\sqrt{5}+3}$$
.

3. Упростить выражение
$$\frac{x}{3x-18} - \frac{2}{x^2-5x-6} \cdot \left(1 + \frac{3x+x^2}{3+x}\right)$$
.

4. Упростить выражение
$$x - \frac{\left(\sqrt{x+y} + \sqrt{x}\right)^2 + \left(\sqrt{x^2 + xy} - 1\right)^2}{x+y+1}$$
.

5. Сократить дробь
$$\frac{x^2 + xy - 6y^2}{x^2 - xy - 2y^2}$$
.

6. Упростить выражение
$$\left(\frac{1}{\sqrt{a}-2} - \frac{1}{\sqrt{a}+2}\right) \cdot \left(\frac{a \cdot \sqrt{a}-8}{a+2 \cdot \sqrt{a}+4}\right)$$
.

7. Дано:
$$\sqrt{14-t} - \sqrt{3-t} = 3$$
 . Вычислить $\sqrt{14-t} + \sqrt{3-t}$.

8. Дано:
$$f(x) = \frac{2x-3}{x-4}$$
. Упростить выражение $f(x^2) - f(x+2)$.

9. Упростить выражение
$$\sqrt{a^2 + a \cdot \sqrt{8} + 2} + \sqrt{a^2 - a \cdot \sqrt{8} + 2}$$
 при $a < -2$.

ПРОГРЕССИИ

<u>Определение.</u> Последовательность чисел a_1 , a_2 , ..., a_n , ... называется арифметической прогрессией, если существует такая константа d, что для всех натуральных n выполнено равенство $a_{n+1}-a_n=d$. При этом d называется разностью прогрессии.

Формула общего члена: $a_n = a_1 + (n-1)d$.

Сумма первых
$$n$$
 членов: $S_n = \frac{a_1 + a_n}{2} \cdot n$ или $S_n = \frac{2a_1 + (n-1)d}{2} \cdot n$.

<u>Пример 1.</u> В арифметической прогрессии сумма первых трёх членов равна 24, а четвёртый член прогрессии на 12 меньше её восьмого члена. Найти произведение третьего и седьмого членов этой прогрессии.

Решение. Запишем систему уравнений $\begin{cases} a_1+a_2+a_3=24\\ a_4+12=a_8 \end{cases}$. Из формулы общего члена следует: $a_2=a_1+d$, $a_3=a_1+2d$, $a_4=a_1+3d$, $a_8=a_1+7d$. Тогда $\begin{cases} a_1+a_1+d+a_1+2d=24\\ a_1+3d+12=a_1+7d \end{cases}$. Эта система имеет решение $\begin{cases} a_1=5\\ d=3 \end{cases}$. Следовательно $a_3\cdot a_7=(a_1+2d)\cdot(a_1+6d)=(5+2\cdot3)\cdot(5+6\cdot3)=253$. Ответ: 253 .

<u>Пример 2.</u> В арифметической прогрессии сумма пятого и девятого членов равна 36 . Найти сумму первых тринадцати членов прогрессии. Решение. Имеем: $a_5+a_9=a_1+4d+a_1+8d=2a_1+12d=2\cdot (a_1+6d)=36$. Отсюда $a_1+6d=18$. Следовательно $S_{13}=\frac{2a_1+12d}{2}\cdot 13=(a_1+6d)\cdot 13=18\cdot 13=234$. Ответ: 234 .

<u>Пример 3.</u> В арифметической прогрессии сумма первых шести членов равна 12, разность прогрессии равна -2, последний член равен -19. Найти количество членов прогрессии.

Pешение. По условию, d=-2 , а также $S_6=\frac{2a_1+5d}{2}\cdot 6=\left(2a_1+5\cdot \left(-2\right)\right)\cdot 3=12$. Следовательно $a_1=7$. Затем используем формулу общего члена

 $a_n = a_1 + (n-1)d = 7 + (n-1) \cdot (-2) = -19$. Отсюда n=14 . Ответ: 14.

<u>Пример 4.</u> Сумма первых n членов некоторой последовательности задана формулой $S_n = \frac{3n^2-11n}{4}$. Найти четвёртый член этой последовательности.

Решение.

По определению
$$S_4=a_1+a_2+a_3+a_4=\left(a_1+a_2+a_3\right)+a_4=S_3+a_4$$
 . Следовательно $a_4=S_4-S_3=\frac{3\cdot 4^2-11\cdot 4}{4}-\frac{3\cdot 3^2-11\cdot 3}{4}=2,5$. Ответ: 2,5 .

<u>Определение.</u> Последовательность чисел a_1 , a_2 , ..., a_n , ... называется геометрической прогрессией, если существует такая константа $q \neq 0$, что для всех натуральных n выполнено равенство $\frac{a_{n+1}}{a_n} = q$. При этом q называется знаменателем прогрессии.

Формула общего члена: $a_n = a_1 q^{n-1}$

Сумма первых *n* членов: $S_n = a_1 \cdot \frac{q^n - 1}{q - 1}$.

Геометрическая прогрессия возрастает, если $a_1>0$, q>1 или $a_1<0$, 0< q<1. Геометрическая прогрессия убывает, если $a_1>0$, 0< q<1 или $a_1<0$, q>1.

<u>Пример 5.</u> Найти знаменатель возрастающей геометрической прогрессии, если произведение её первого, третьего и пятого членов равно 8, а сумма второго и четвёртого членов равна $\frac{13}{3}$.

Pешение. Запишем систему уравнений $\begin{cases} a_1 a_3 a_5 = 8 \\ a_2 + a_4 = \frac{13}{3} \end{cases}$. Из формулы общего члена

следует: $a_3=a_1q^2$, $a_5=a_1q^4$, $a_2=a_1q$, $a_4=a_1q^3$. Подставив всё это в $\begin{cases} a_1\cdot a_1q^2\cdot a_1q^4=8\\ a_1q+a_1q^3=\frac{13}{3} \end{cases}$; $\begin{cases} a_1^3q^6=8\\ a_1q(1+q^2)=\frac{13}{3} \end{cases}$. Из обеих частей

первого уравнения извлекаем кубический корень. Тогда $a_1q^2=2$. Следовательно

$$a_1 = \frac{2}{q^2}$$
 ; $\frac{2}{q^2} \cdot q(1+q^2) = \frac{13}{3}$. Отсюда $\begin{cases} q = \frac{2}{3} \\ a_1 = \frac{9}{2} \end{cases}$ или $\begin{cases} q = \frac{3}{2} \\ a_1 = \frac{8}{9} \end{cases}$. Так как прогрессия

возрастает, то подходит лишь вторая пара значений. *Ответ*: $\frac{3}{2}$.

<u>Пример 6.</u> В геометрической прогрессии, все члены которой отрицательны, произведение первого и седьмого членов равно 81. Найти $A=a_4^2+a_4+12$. Решение. $a_1\cdot a_7=a_1\cdot a_1q^6=a_1^2q^6=\left(a_1q^3\right)^2=a_4^2=81$. Отсюда $a_4=\pm\sqrt{81}=\pm9$. Условию задачи удовлетворяет $a_4=-9$. Следовательно $A=\left(-9\right)^2-9+12=84$. Ответ: 84.

Задачи для самостоятельного решения

- 10. Сумма второго и пятого членов арифметической прогрессии равна 9, а сумма первого и седьмого членов равна 3. Найти восьмой член прогрессии.
- 11. Найти сумму первых одиннадцати членов арифметической прогрессии, если сумма её третьего, пятого и десятого членов равна 18.
- 12. В арифметической прогрессии пятый член равен 4, сумма второго и шестого членов равна 9, последний член равен -1. Найти количество членов прогрессии.
- 13. Сумма первых n членов некоторой последовательности задана формулой $S_n = \frac{2^n 3^n}{3 \cdot 2^{n+1}} \ .$ Найти третий член этой последовательности.
- 14. Найти знаменатель убывающей геометрической прогрессии, если произведение её первого и четвёртого членов равно 12, а сумма второго и третьего членов равна 8.
- 15. Сумма первых пяти членов геометрической прогрессии равна 15,5, а знаменатель прогрессии равен 2. Найти второй член этой прогрессии.
- 16. В геометрической прогрессии с положительными членами сумма первого и второго членов равна 20, сумма третьего и четвёртого членов равна 180, а n-ый член равен 405. Найти n.

АРИФМЕТИКА

<u>Пример 1.</u> На сколько процентов изменится произведение двух чисел, если одно из них увеличить на 10%, а другое уменьшить на 20%?

Решение. Напомним, что $\% = \frac{1}{100} = 0{,}01$. Процент изменения любой величины вычисляется по формуле $\frac{\left(\kappa o h e v h o e^{-3} + a v e h u e^{-3} + a v e^{-3} + a v e h u e^{-3} + a v e^{-3}$

Если результат получился положительным, то величина увеличилась.

Если результат получился отрицательным, то величина уменьшилась.

Пусть x и y — первоначально данные числа. Их произведение равно $\Pi_{{}_{ha^{q}}}=xy$. После изменения данных величин:

первое число примет значение $x + 10\% \cdot x = x + 0.10x = 1.1x$,

второе число примет значение $y - 20\% \cdot y = y - 0.20y = 0.8y$,

произведение примет значение $\Pi_{\kappa o \mu} = 1.1x \cdot 0.8y = 0.88xy$. Процент изменения

произведения равен
$$\frac{\Pi_{\kappa on} - \Pi_{naч}}{\Pi_{naч}} \cdot 100\% = \frac{0,88xy - xy}{xy} \cdot 100\% = -12\% \ .$$

Ответ: произведение уменьшилось на 12%.

<u>Пример 2.</u> Два числа относятся как 4:3 . Первое увеличили на 5% , второе уменьшили на 2% . На сколько процентов изменилась их сумма ?

Процент изменения суммы равен $\frac{\sum_{\kappa on} - \sum_{na^{\prime}}}{\sum_{na^{\prime}}} \cdot 100\% = \frac{7,14x - 7x}{7x} = 2\%$.

Ответ: сумма увеличилась на 2%.

<u>Пример 3.</u> Числитель дроби уменьшили на 1% , а знаменатель — на 12%. На сколько процентов изменилась дробь ?

Решение. Пусть данная дробь равна $D_{{}_{hav}} = \frac{x}{y}$. После изменения числителя и

знаменателя дробь стала равняться $D_{\kappa on} = \frac{x-1\% \cdot x}{y-12\% \cdot y} = \frac{0.99x}{0.88y} = 1,125 \cdot \frac{x}{y}$. Процент

изменения дроби равен $\frac{D_{\scriptscriptstyle KOH}-D_{\scriptscriptstyle Ha4}}{D_{\scriptscriptstyle Ha4}}\cdot 100\% = \frac{1{,}125\cdot\frac{x}{y}-\frac{x}{y}}{\frac{x}{y}}\cdot 100\% = 12{,}5\% \ .$

Ответ: дробь увеличилась на 12,5%.

<u>Пример 4.</u> Найти число, 90% которого равны числу $A = \sqrt{\left(9 - 2 \cdot \sqrt{23}\right)^2} + \sqrt{\left(9 + 2 \cdot \sqrt{23}\right)^2} \ .$

Решение. Используя формулу
$$\sqrt{x^2} = |x| = \begin{cases} x &, ecnu \ x \ge 0 \\ -x &, ecnu \ x \le 0 \end{cases}$$
, получим $A = \left|9 - 2 \cdot \sqrt{23}\right| + \left|9 + 2 \cdot \sqrt{23}\right| = -\left(9 - 2 \cdot \sqrt{23}\right) + \left(9 + 2 \cdot \sqrt{23}\right) = 4 \cdot \sqrt{23}$. Искомое число равно $\frac{A}{90\%} = \frac{4 \cdot \sqrt{23}}{\frac{90}{20}} = \frac{40}{9} \cdot \sqrt{23}$. Ответ: $\frac{40}{9} \cdot \sqrt{23}$.

<u>Пример 5.</u> Найти частное от деления наименьшего общего кратного на наибольший общий делитель чисел 540 и 504.

Решение. Сначала мы напомним некоторую информацию общего характера.

- 1) Натуральное число, отличное от единицы, называется простым, если оно делится только на само себя и на единицу и не делится ни на какие другие числа. Например, числа 2, 3, 5, 7, 11, 13, 17, 19, ... являются простыми.
- 2) Если натуральное число можно разложить в произведение других, меньших чисел, то такое число называется составным. Например, число 75 является составным, так как $75 = 3 \cdot 25 = 3^1 \cdot 5^2 = 2^0 \cdot 3^1 \cdot 5^2$.
- 3) Любое натуральное число N можно разложить в произведение степеней простых чисел: $N=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_k^{\alpha_k}$, где p_1 , p_2 ,..., p_k простые числа, α_1 , α_2 ,..., α_k какие-либо неотрицательные целые числа.
- 4) Для разложения конкретного числа в произведение степеней простых чисел требуется знание признаков делимости, некоторые из которых мы приводим:
 - а) число делится на 2, если оно оканчивается цифрой 2, 4, 6, 8, 0;
 - б) число делится на 5, если оно оканчивается цифрой 5, 0;
 - в) число делится на 10, 100, 1000, ..., если оно оканчивается цифрами 0, 00, 000, ...;
 - г) число делится на 3, если сумма цифр этого числа делится на 3 (например, 794 не делится на 3, так как 7+9+4=20 не делится на 3; 795 делится на 3, так как 7+9+5=21 делится на 3);
 - д) число делится на 9, если сумма цифр этого числа делится на 9 (например, 794 не делится на 9, так как 7+9+4=20 не делится на 9; 792 делится на 9, так как 7+9+2=18 делится на 9).
- 5) Пусть два числа A и B разложены в произведение степеней простых чисел: $A=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot\ldots\cdot p_k^{\alpha_k}$, $B=p_1^{\beta_1}\cdot p_2^{\beta_2}\cdot\ldots\cdot p_k^{\beta_k}$. Обозначим: $m_1=\min\left\{\alpha_1\;;\beta_1\right\}\;\;;\;\;m_2=\min\left\{\alpha_2\;;\beta_2\right\}\;\;;\;\;\ldots\;\;;\;\;m_k=\min\left\{\alpha_k\;;\beta_k\right\}\;;\;\;M_1=\max\left\{\alpha_1\;;\beta_1\right\}\;\;;\;\;M_2=\max\left\{\alpha_2\;;\beta_2\right\}\;\;;\;\;\ldots\;\;;\;\;M_k=\max\left\{\alpha_k\;;\beta_k\right\}\;.$ Тогда:

наибольший общий делитель $HOJ(A,B) = p_1^{m_1} \cdot p_2^{m_2} \cdot \ldots \cdot p_k^{m_k}$; наименьшее общее кратное $HOK(A,B) = p_1^{M_1} \cdot p_2^{M_2} \cdot \ldots \cdot p_k^{M_k}$.

Вернёмся к решению задачи.

$$540 = 10 \cdot 54 = (2 \cdot 5) \cdot (2 \cdot 27) = 2 \cdot 5 \cdot 2 \cdot 3^{3} = 2^{2} \cdot 3^{3} \cdot 5^{1} = 2^{2} \cdot 3^{3} \cdot 5^{1} \cdot 7^{0} ;$$

$$504 = 9 \cdot 56 = 9 \cdot (7 \cdot 8) = 3^{2} \cdot 7^{1} \cdot 2^{3} = 2^{3} \cdot 3^{2} \cdot 5^{0} \cdot 7^{1} .$$

Согласно вышесказанному,

$$HOД(540;504) = 2^2 \cdot 3^2 \cdot 5^0 \cdot 7^0 = 36$$
; $HOK(540;504) = 2^3 \cdot 3^3 \cdot 5^1 \cdot 7^1 = 7560$.

Следовательно,
$$\frac{HOK}{HOJ} = \frac{7560}{36} = 210$$
 . *Ответ:* 210 .

<u>Пример 6.</u> Числители трёх дробей пропорциональны числам 1, 3, 2, а знаменатели пропорциональны соответственно числам 1, 5, 3. Среднее арифметическое этих дробей равно $\frac{34}{135}$. Найти наименьшую из дробей.

Решение. Дроби, о которых идёт речь, можно записать так: $a = \frac{1x}{1y}$; $b = \frac{3x}{5y}$; $c = \frac{2x}{3y}$. После приведения к общему знаменателю: $a = \frac{15x}{15y}$; $b = \frac{9x}{15y}$; $c = \frac{10x}{15y}$. Ясно, что наименьшей дробью является b . Среднее арифметическое всех дробей равно $\frac{a+b+c}{3} = \frac{34x}{45y} = \frac{34}{135}$. Отсюда $\frac{x}{y} = \frac{1}{3}$. Следовательно, $b = \frac{3x}{5y} = \frac{3}{5} \cdot \frac{x}{y} = \frac{3}{5} \cdot \frac{1}{3} = \frac{1}{5}$. Отверия: $\frac{1}{5}$.

<u>Пример 7.</u> Пусть сумма первых трёх членов пропорции равна 28. Второй член составляет $\frac{1}{2}$, а третий $\frac{2}{3}$ первого члена. Найти четвёртый член пропорции.

Решение. Пропорцией называется запись вида a:b=c:d или $\frac{a}{b}=\frac{c}{d}$. При этом a называется первым членом пропорции, b — вторым членом пропорции, c — третьим членом пропорции, d — четвёртым членом пропорции. По условию, $b=\frac{1}{2}a$, $c=\frac{2}{3}a$. Тогда $d=\frac{bc}{a}=\frac{\frac{1}{2}a\cdot\frac{2}{3}a}{a}=\frac{1}{3}a$. Сумма первых трёх членов пропорции равна $a+b+c=a+\frac{1}{2}a+\frac{2}{3}a=\frac{13}{6}a=28$. Отсюда $a=\frac{168}{13}$. Следовательно, $d=\frac{1}{3}\cdot\frac{168}{13}=\frac{56}{13}$. Отверия .

<u>Пример 8.</u> Найти сумму первых двадцати натуральных чётных чисел , которые при делении на 7 дают в остатке 6 .

Решение. Выпишем натуральные числа, которые при делении на 7 дают в остатке 6 , выделим чётные и зачеркнём нечётные числа: **6** ; 13 ; **20** ; 27 ; **34** ; 41 ; **48** ; Выделенные числа образуют арифметическую прогрессию, у которой: первый член $a_1 = 6$; разность d = 14 (разность между двумя соседними выделенными членами есть одно и то же число, именно: 20 - 6 = 34 - 20 = 48 - 34 = ... = 14). Требуется найти сумму первых n = 20 членов этой прогрессии, т.е. S_{20} .

Так как
$$S_n = \frac{2a_1 + (n-1)d}{2} \cdot n$$
 , то $S_{20} = \frac{2 \cdot 6 + 19 \cdot 14}{2} \cdot 20 = 2780$. Ответ: 2780 .

<u>Пример 9.</u> Найти сумму всех натуральных двузначных чисел , которые при делении на 6 дают в остатке 4 .

Пример 10. Указать все номера рациональных чисел данного множества:

1)
$$\sqrt{10-4\cdot\sqrt{6}}-\sqrt{6}$$
; 2) $27^{\frac{5}{3}}$; 3) $27^{\frac{5}{2}}$; 4) 2,14(12); 5) $5^{\log_4 2}$.

Решение. Упростим все числа данного множества.

1)
$$\sqrt{10-4\cdot\sqrt{6}}-\sqrt{6}=\sqrt{4-4\cdot\sqrt{6}+6}-\sqrt{6}=\sqrt{2^2-2\cdot2\cdot\sqrt{6}+\left(\sqrt{6}\right)^2}-\sqrt{6}=$$
 $=\sqrt{\left(2-\sqrt{6}\right)^2}-\sqrt{6}=\left|\ 2-\sqrt{6}\ \right|-\sqrt{6}=-2+\sqrt{6}-\sqrt{6}=-2$. Это – рациональное число.

- 2) $27^{\frac{5}{3}} = (3^3)^{\frac{5}{3}} = 3^5 = 243$. Это рациональное число.
- 3) $27^{\frac{5}{2}} = (3^3)^{\frac{5}{2}} = 3^{\frac{15}{2}} = 3^7 \cdot 3^{\frac{1}{2}} = 2187 \cdot \sqrt{3}$. Это число «не считается» в точном виде, поэтому оно иррационально.
- 5) $5^{\log_4 2} = 5^{\frac{1}{2}} = \sqrt{5}$. Это число «не считается» в точном виде, поэтому оно иррационально. *Ответ*: 1,2,4.

<u>Пример 11.</u> Найти сумму всех чётных чисел k , каждое из которых делится без остатка на 7 и удовлетворяет условию $-140 \le k < 295$.

Решение. Чётные числа, делящиеся на 7 – это числа, делящиеся на 14. Перечень чисел, делящихся на 14 и удовлетворяющих условию задачи: 0; ± 14 ; ± 28 ; ± 42 ; ± 56 ; ± 70 ; ± 84 ; ± 98 ; ± 112 ; ± 126 ; ± 140 ; ± 154 ; ± 168 ; ± 182 ; ± 196 ; ± 210 ; ± 224 ; ± 238 ; ± 252 ; ± 266 ; ± 280 ; ± 294 . Сумма чисел со знаками « \pm » равна нулю. Следовательно, требуемая сумма равна ± 154 + ± 168 + ± 182 + ± 196 + ± 210 + ± 224 + ± 238 + ± 252 + ± 266 + ± 280 + ± 294 = ± 2464 . *Ответ:* ± 2464 .

Задачи для самостоятельного решения

- 1. На сколько процентов изменится произведение двух чисел, если одно из них увеличить на 15%, а другое уменьшить на 12%?
- 2. Два числа относятся как 2:7. Первое увеличили на 9%, второе уменьшили на 18%. На сколько процентов изменилась их сумма?
- 3. Числитель дроби увеличили на 8%, а знаменатель на 44%. На сколько процентов изменилась дробь?
- 4. Найти число, 60% которого равны числу $\sqrt{\left(5-3\cdot\sqrt{3}\right)^2}+\sqrt{\left(5+3\cdot\sqrt{3}\right)^2}$.
- 5. Найти частное от деления наименьшего общего кратного на наибольший общий делитель чисел 6300 и 990.
- 6. Числители трёх дробей пропорциональны числам 1, 7, 3, а знаменатели пропорциональны соответственно числам 1, 9, 5. Среднее арифметическое этих дробей равно $\frac{214}{405}$. Найти наименьшую из дробей.
- 7. Пусть сумма первых трёх членов пропорции равна 33 . Второй член составляет $\frac{1}{5}$, а третий $\frac{2}{9}$ первого члена. Найти четвёртый член пропорции.
- 8. Найти сумму первых двадцати натуральных нечетных чисел, которые при делении на 9 дают в остатке 5.
- 9. Найти сумму всех натуральных двузначных чисел, которые при делении на 8 дают в остатке 3.
- 10. Указать все номера рациональных чисел данного множества 1) $\sqrt{2\cdot\sqrt[3]{2}}\cdot2^{\frac{1}{3}}$; 2) $2^{\log_{625}5}$; 3) $\sqrt{3-2\cdot\sqrt{2}}-\sqrt{2}$; 4) $(\sqrt{5})^0$; 5) $\frac{1-\sqrt{3}}{1+\sqrt{3}}$.
- 11. Найти сумму всех целых чисел k, каждое из которых делится без остатка на 26 и удовлетворяет условию -339 < k < 443.

ТЕОРЕМА ВИЕТА

При решении задач на теорему Виета могут использоваться формулы: $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$ и $x_1^3 + x_2^3 = (x_1 + x_2)^3 - 3x_1x_2(x_1 + x_2)$.

<u>Пример 1.</u> Пусть x_1 и x_2 – корни уравнения $2x^2-x-4=0$. Найти $\frac{x_1}{x_2}+\frac{x_2}{x_1}$.

Решение. По теореме Виета $x_1 + x_2 = \frac{1}{2}$, $x_1 x_2 = -2$. Следовательно $\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 x_2} = \frac{(x_1 + x_2)^2 - 2x_1 x_2}{x_1 x_2} = \frac{\left(\frac{1}{2}\right)^2 - 2 \cdot \left(-2\right)}{-2} = -\frac{17}{8}$. Ответ: $-\frac{17}{8}$.

 $\frac{\textit{Пример 2.}}{2-x_1} \, \text{Пусть} \quad x_1 \quad \text{и} \quad x_2 \quad - \text{корни уравнения} \quad 2x^2 + 6x - 3 = 0 \quad . \ \text{Найти}$ $\frac{1}{2-x_1} - \frac{1}{x_2 - 2} \quad .$

Решение. По теореме Виета $x_1+x_2=-3$, $x_1x_2=-\frac{3}{2}$. Следовательно $\frac{1}{2-x_1}-\frac{1}{x_2-2}=\frac{x_2-2-2+x_1}{(2-x_1)(x_2-2)}=\frac{(x_1+x_2)-4}{2x_2-x_1x_2-4+2x_1}=\frac{(x_1+x_2)-4}{2(x_1+x_2)-x_1x_2-4}=$ $=\frac{-3-4}{2\cdot(-3)-(-\frac{3}{2})-4}=\frac{14}{17}$. Ответ: $\frac{14}{17}$.

<u>Пример 3.</u> Найти все значения b , при которых корни уравнения $x^2 - 3x + 2b + 3 = 0$ удовлетворяют условию $5x_1 + 3x_2 = 23$.

Так как уравнение имеет корни, то дискриминант должен быть неотрицательным, т.е. $D=(-3)^2-4\cdot 1\cdot (2b+3)=-8b-3\geq 0$. По теореме Виета $x_1+x_2=3$, $x_1x_2=2b+3$. Из системы уравнений $\begin{cases} 5x_1+3x_3=23\\ x_1+x_2=3 \end{cases}$ следует $\begin{cases} x_1=7\\ x_2=-4 \end{cases}$. Тогда

 $2b+3=7\cdot \left(-4\right)$, откуда b=-15,5 . Легко проверить, что при найденном значении b условие $D\geq 0$ выполнено. *Ответ:* -15,5 .

<u>Пример 4.</u> Составить квадратное уравнение с целыми коэффициентами, корнем которого является число $4-2\cdot\sqrt{3}$.

Решение. Обозначим $x_1=4-2\cdot\sqrt{3}$. Вторым корнем искомого уравнения является сопряжённое число $x_2=4+2\cdot\sqrt{3}$. Заметим, что $x_1+x_2=8$, $x_1x_2=4$. Искомое уравнение: $(x-x_1)(x-x_2)=0$; $x^2-x_1x-xx_2+x_1x_2=0$; $x^2-(x_1+x_2)x+x_1x_2=0$; $x^2-8x+4=0$. Ответ: $x^2-8x+4=0$.

<u>Пример 5.</u> Пусть x_1 u x_2 – корни уравнения $x^2 - x - 3 = 0$. Составить квадратное уравнение, имеющее корни $\frac{1}{x_1 x_2^2}$ u $\frac{1}{x_1^2 x_2}$.

Решение. По теореме Виета $x_1+x_2=1$, $x_1x_2=-3$. Искомое уравнение: $\left(x-\frac{1}{x_1x_2^2}\right)\left(x-\frac{1}{x_1^2x_2}\right)=0 \; ; \; \frac{xx_1x_2^2-1}{x_1x_2^2}\cdot\frac{xx_1^2x_2-1}{x_1^2x_2}=0 \; ; \; x^2x_1^3x_2^3-xx_1^2x_2-xx_1x_2^2+1=0 \; ; \\ (x_1x_2)^3x^2-x(x_1x_2)(x_1+x_2)+1=0 \; ; \; (-3)^3x^2-x\cdot(-3)\cdot 1+1=0 \; ; \; -27x^2+3x+1=0 \; .$ Ответ: $-27x^2+3x+1=0$.

Задачи для самостоятельного решения

- 1. Пусть x_1 и x_2 корни уравнения $3x^2-x-4=0$. Найти $\frac{x_1^3+x_2^3}{x_1+x_2+1}$.
- 2. Пусть x_1 и x_2 корни уравнения $2x^2 + 2x 11 = 0$. Найти $\frac{1}{x_1 1} + \frac{1}{x_2 1}$.
- 3. Найти все значения q , при которых корни уравнения $x^2 4x + q = 0$ удовлетворяют условию $3x_1 + 5x_2 = 2$.
- 4. Составить квадратное уравнение с целыми коэффициентами, корнем которого является число $-5-3\cdot\sqrt{2}$.
- 5. Пусть x_1 и x_2 корни уравнения $5x^2 7x 34 = 0$. Составить квадратное уравнение, корни которого обратны корням данного уравнения.

HEPABEHCTBA

Решение. Числитель и знаменатель умножим на -1 . Получим $\frac{x^2 + x - 12}{x^3 + 2x^2 - 15x} \ge 0$.

Затем числитель и знаменатель разложим на множители: $\frac{(x-3)(x+4)}{x(x-3)(x+5)} \ge 0$.

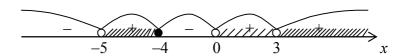
Дробь можно сократить, но при этом следует отметить, что $x \neq 3$. Следовательно, $\frac{x+4}{x(x+5)} \geq 0$. Решим это неравенство методом интервалов.

На числовой оси отметим точки, в которых:

- 1) числитель равен нулю (в данном примере это -4); такие точки отмечаются незакрашенными в случае строгого неравенства (> или <) или закрашенными в случае нестрогого неравенства (\geq или \leq);
- 2) знаменатель равен нулю (в данном примере это 0 и -5); такие точки отмечаются *незакрашенными* независимо от того, является ли неравенство строгим или нет.
- 3) Кроме того, отметим "выколотую" точку 3.

Отметим знаки функции $f(x) = \frac{x+4}{x(x+5)}$ на получившихся промежутках и

заштрихуем нужные промежутки (в данном примере промежутки, отмеченные знаком "+", так как наша функция ≥ 0).



Все решения данного неравенства: $x \in (-5; -4] \cup (0; 3) \cup (3; +\infty)$. Целые решения, принадлежащие промежутку [-13; 4]: -4; 1; 2; 4. Количество этих целых решений равно 4. *Ответ*: 4.

 $\underline{3aмечаниe}$ по поводу расстановки знаков функции f(x) при решении рациональных неравенств. Сначала определяем знак функции f(x) в крайнем правом промежутке, подсчитывая значение функции в любой внутренней точке этого промежутка. Затем пользуемся правилом чередования знаков. Это правило применимо только к рациональным неравенствам.

Правило чередования знаков (только для рациональных неравенств).

Если сомножитель $x-x_0$ стоит в нечётной степени (напр., в 1-ой, в 3-ей, в 5-ой), то при переходе через точку x_0 знаки чередуются.

Если сомножитель $x-x_0$ стоит в чётной степени (напр., в 0-ой, во 2-ой, в 4-ой), то при переходе через точку x_0 знаки не чередуются.

30

Проиллюстрируем сказанное на неравенстве из примера 1. Формально можно записать $f(x) = \frac{(x+4)^l}{x^l(x-3)^0(x+5)^l}$. Так как $f(4) = \frac{2}{9} > 0$, то над

промежутком (3; $+\infty$) ставим знак "плюс". Затем расставляем знаки функции, исходя из правила чередования знаков: при переходе через точку 3 знаки не чередуются, при переходе через остальные точки знаки чередуются.

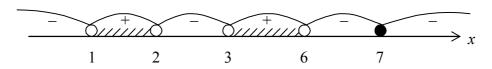
Пример 2. Решить неравенство
$$\frac{5x-31}{(x^2-7x+6)(x^2-5x+6)} \ge \frac{1}{x^2-3x+2}$$

Решение. Всё перенесём в левую часть неравенства и разложим на множители имеющиеся знаменатели. Получим $\frac{5x-31}{(x-1)(x-6)\cdot(x-2)(x-3)} - \frac{1}{(x-1)(x-2)} \ge 0 \ .$

Затем приведём к общему знаменателю и произведём дальнейшие упрощения:

$$\frac{5x-31-(x-6)(x-3)}{(x-1)(x-6)(x-2)(x-3)} \ge 0 \qquad ; \qquad \frac{-x^2+14x-49}{(x-1)(x-6)(x-2)(x-3)} \ge 0 \qquad ;$$

$$\frac{-(x-7)^2}{(x-1)(x-6)(x-2)(x-3)} \ge 0 \quad .$$
 Выполним рисунок.

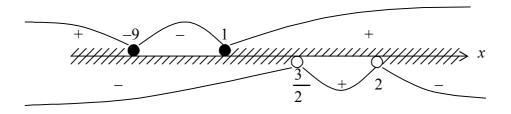


Обращаем внимание на то, что в ответ включаются не только два заштрихованных промежутка, но и изолированная закрашенная точка 7. Ответ: $(1;2) \cup (3;6) \cup \{7\}$.

Пример 3. Решить систему неравенств
$$\begin{cases} x^2 + 8x - 9 \ge 0 \\ \frac{x+1}{2x-3} \le 3 \end{cases}.$$

Решение. Левую часть первого неравенства разложим на множители. Во втором неравенстве тройку перенесём налево и сделаем приведение к общему знаменателю.

Получим систему $\begin{cases} (x-1)(x+9) \ge 0 \\ \frac{10-5x}{2x-3} \le 0 \end{cases}$. Выполним рисунок.



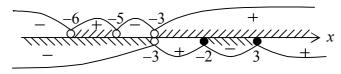
На верхней части рисунка решено первое неравенство, на нижней – второе. В ответ записываем пересечение получившихся множеств решений, т.е. те промежутки, на которых присутствуют обе штриховки.

Ombem:
$$\left(-\infty;-9\right] \cup \left[1;\frac{3}{2}\right] \cup \left(2;+\infty\right)$$
.

Пример 4. Решить двойное неравенство
$$-1 < \frac{x^2 + 10x + 27}{x + 3} \le 11$$
.

После переноса констант в левые части соответствующих неравенств, приведения к общему знаменателю и разложения числителей на множители получим систему

$$\begin{cases} \frac{(x+5)(x+6)}{x+3} > 0\\ \frac{(x+2)(x-3)}{x+3} \le 0 \end{cases}$$
. Выполним рисунок.



Ответ: $(-6; -5) \cup [-2; 3]$.

Пример 5. Найти сумму целых решений системы
$$\begin{cases} \mid x \mid \geq 4 \\ \mid x-1 \mid < 6 \end{cases}.$$

Решение. Так как левые и правые части обоих неравенств неотрицательны, то оба неравенства можно возвести в квадрат. При этом используется формула $|z|^2 = z^2$.

Данная система равносильна системе $\begin{cases} x^2 \ge 16 \\ (x-1)^2 < 36 \end{cases} \quad \text{или} \quad \begin{cases} (x-4)(x+4) \ge 0 \\ (x-7)(x+5) < 0 \end{cases}.$ Множество всех решений этой системы: $(-5;-4] \cup [4;7)$. Целые решения: -4;4;5;6. *Ответ*: 11.

Пример 6. Найти количество целых решений неравенства
$$\sqrt{\frac{x^2-3}{x}} < 1$$
.

Решение. ОДЗ: подкоренное выражение ≥0. Кроме того, поскольку левая и правая части данного неравенства неотрицательны, неравенство можно возвести в

квадрат. Следовательно, нужно решить систему $\begin{cases} \frac{x^2-3}{x} \ge 0 \\ \frac{x^2-3}{x} < 1 \end{cases}$. Множество

решений этой системы:
$$\left[-\sqrt{3} \; ; \frac{1-\sqrt{13}}{2} \; \right] \cup \left[\; \sqrt{3} \; ; \frac{1-\sqrt{13}}{2} \; \right]$$
 . Целое решение: 2 . *Ответ:* 1 .

Большинство неравенств, содержащих модули и радикалы, мы рекомендуем решать методом интервалов. Этот метод будет проиллюстрирован в примерах 7-9.

Пример 7. Решить неравенство
$$|x-7| \ge \frac{9}{x-1}$$
.

Решение. Из правой части неравенства всё перенесём в левую часть и введём функцию $f(x) = |x-7| - \frac{9}{x-1} \ge 0$. Затем выполним три стандартных пункта.

- 1) *Находим ОДЗ:* $x-1\neq 0$, т.е. $x\neq 1$.
- 2) Приравняем к нулю функцию f(x) . Другими словами, мы решаем уравнение $\begin{vmatrix} x-7 & -\frac{9}{x-1} = 0 \\ x_1 & 4 \end{vmatrix}$; $x_2 = 4 + \sqrt{18} \approx 8,2$.
- 3) Pисунок. На верхней части рисунка изобразим ОДЗ. На нижней части рисунка отметим точки, в которых f(x)=0. Точки отмечаются "закрашенными", если неравенство нестрогое, и "незакрашенными", если неравенство строгое. Затем нарисуем дуги и расставим знаки функции f(x) в каждом промежутке, входящем в ОДЗ. Если промежуток не входит в ОДЗ, то соответствующая дуга не изображается. В случае произвольных неравенств не существует каких-либо правил чередования знаков. Поэтому следует подсчитывать значения функции f(x) в каждом промежутке, входящем в ОДЗ.

В нашем случае

$$f(0) = 16 > 0$$
; $f(2) = -4 < 0$; $f(5) = -0.25 < 0$; $f(10) = 2 > 0$.

Omsem: $(-\infty; 1) \cup \{4\} \cup [4+\sqrt{18}; +\infty)$.

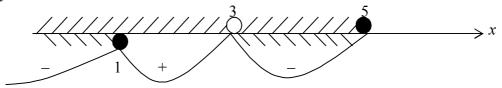
Пример 8. Решить неравенство
$$\frac{\sqrt{5-x}}{3-x} \le 1$$
.

Решение. Выполним те же стандартные пункты, что и в примере 12.

$$f(x) = \frac{\sqrt{5-x}}{3-x} - 1 \le 0$$
1) *ОДЗ*:
$$\begin{cases} 5 - x \ge 0 \\ 3 - x \ne 0 \end{cases}$$
, т.е. $x \in (-\infty; 3) \cup (3; 5]$.

2)
$$f(x)=0$$
, т.е. $\frac{\sqrt{5-x}}{3-x}=1$. Корнем этого уравнения является $x=1$.

3) Рисунок.



Omeem: $(-\infty;1] \cup (3;5]$.

<u>Пример 9.</u> Решить неравенство $x^2 + 6x + 2 \cdot \sqrt{x^2 + 6x - 7} < 22$.

Решение. Перенесём всё в левую часть неравенства и введём функцию $f(x) = x^2 + 6x + 2 \cdot \sqrt{x^2 + 6x - 7} - 22 < 0$.

- 1) $O \angle 3: x^2 + 6x 7 \ge 0$; $(x-1)(x+7) \ge 0$; $x \in (-\infty; -7] \cup [1; \infty)$.
- 2) Решим уравнение f(x) = 0, т.е. $x^2 + 6x + 2 \cdot \sqrt{x^2 + 6x 7} 22 = 0$.

Замена: $a = x^2 + 6x$. Получим: $a + 2 \cdot \sqrt{a - 7} - 22 = 0$; $2 \cdot \sqrt{a - 7} = 22 - a$.

Запишем $O\!\mathcal{J}3$: $a-7\geq 0$ и $\mathcal{J}Y$: $22-a\geq 0$. После возведения в квадрат получим: $4(a-7)=(22-a)^2$. Отсюда $a_1=16$ (удовлетворяет $O\!\mathcal{J}3$ и $\mathcal{J}Y$) ; $a_2=32$ (не удовлетворяет $\mathcal{J}Y$) .

Обратная замена: $x^2 + 6x = 16$. Отсюда $x_1 = -8$; $x_2 = 2$.

3) Рисунок.

Ответ: $(-8; -7] \cup [1; 2)$.

Задачи для самостоятельного решения

- 6. Найти количество всех целых решений неравенства $\frac{30-x-x^2}{35x-2x^2-x^3} \ge 0 \ ,$ принадлежащих промежутку $\left[-15\ ; 6\ \right)$.
- 7. Решить неравенство $\frac{1}{x^2 + 5x + 4} \le \frac{8x + 27}{\left(x^2 + 8x + 16\right)\left(x^2 + 7x + 6\right)}.$
- 8. Найти количество всех целых решений неравенства $\left(\frac{x}{x-2}\right)^2 \frac{2}{x+2} \le \frac{8x}{(x-2)^2(x+2)} \ .$
- 9. Решить систему неравенств $\begin{cases} x^2 < 25 \\ x^2 5x + 6 \ge 0 \end{cases}$.
- 10. Решить двойное неравенство $-\frac{1}{2} \le \frac{3x+1}{x-2} < 2$.
- 11. Найти сумму целых решений системы неравенств $\left\{ \begin{array}{l} x-6 \mid \geq 3 \\ \mid x-5,5 \mid <4,5 \end{array} \right. .$
- 12. Решить неравенство $\sqrt{\frac{x^2-1}{x}} \ge 2$.
- 13. Решить неравенство $\frac{2}{3-2x} < \frac{3}{|x+5|}$.
- 14. Решить неравенство $\sqrt{x+5} > x-1$.
- 15. Решить неравенство $\frac{\sqrt{x+2}}{x-4} \le 1$.
- 16. Решить неравенство $\sqrt{\frac{2x-1}{x+2}} \sqrt{\frac{x+2}{2x-1}} \ge \frac{7}{12}$.

ВЕКТОРЫ

Общие сведения.

1. Даны векторы в пространстве: $\mathbf{a} = \{a_1 \; ; \; a_2 \; ; \; a_3 \}$ и $\mathbf{b} = \{b_1 \; ; \; b_2 \; ; \; b_3 \}$.

Скалярное произведение этих векторов равно $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$.

Длина (или модуль) вектора $|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

Замечание. Если векторы находятся не в пространстве, а на плоскости (т.е. имеют две координаты), то «третьи слагаемые» в двух вышеприведённых формулах отсутствуют.

Косинус угла между векторами a и b равен $\cos(a;b) = \frac{a \cdot b}{|a| \cdot |b|}$.

Угол между векторами a и b острый, если $a \cdot b > 0$.

Угол между векторами \boldsymbol{a} и \boldsymbol{b} прямой, или $\boldsymbol{a} \perp \boldsymbol{b}$, если $\boldsymbol{a} \cdot \boldsymbol{b} = 0$.

Угол между векторами \boldsymbol{a} и \boldsymbol{b} тупой, если $\boldsymbol{a} \cdot \boldsymbol{b} < 0$.

Векторы \boldsymbol{a} и \boldsymbol{b} коллинеарны (или параллельны) , если $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$.

Векторы \pmb{a} и \pmb{b} коллинеарны, если существует такое число k ($k\!\!>\!\!0$ в случае сонаправленных векторов, и $k\!\!<\!\!0$ в случае противонаправленных векторов), при котором $\pmb{b}\!\!=\!\!k\pmb{a}$.

2. Даны точки: $\mathit{A}(a_{\scriptscriptstyle 1}\,;\,a_{\scriptscriptstyle 2}\,;\,a_{\scriptscriptstyle 3})$ и $\mathit{B}(b_{\scriptscriptstyle 1}\,;\,b_{\scriptscriptstyle 2}\,;\,b_{\scriptscriptstyle 3})$.

В целях упрощения записей и сокращения хода решения задач (это важно при тестовых испытаниях, когда время ограничено, а задач много) используются определённые формулы, и этим формулам мы придаём в точности тот смысл, который указан, а не какой-либо иной. Например:

AB=B-A (координаты вектора AB равны координатам точки B минус соответствующие координаты точки A);

B=A+AB (координаты точки B равны координатам точки A плюс соответствующие координаты вектора AB).

Если точка $\,C\,$ является серединой отрезка $\,AB\,$, то $\,C=\frac{1}{2}\big(A+B\big)\,$, т.е.

координаты точки $\ C$ равны полусумме соответствующих координат точек $\ A$ и $\ B$.

Если точка $\,C\,$ делит отрезок $\,AB\,$ в отношении $\,m{:}n\,$, считая от точки $\,A\,$, то

$$AC = \frac{m}{m+n} \cdot AB$$
, следовательно, $C = A + \frac{m}{m+n} \cdot AB$.

<u>Пример 1.</u> Даны векторы $a=\{3;-2;1\}$ и $b=\{-2;4-3\}$. Найти длину вектора c=2a+3b, скалярное произведение векторов b и c и косинус угла между векторами a и b.

Решение.
$$c=2\cdot\{3;-2;1\}+3\cdot\{-2;4-3\}=\{6;-4;2\}+\{-6;12;-9\}=\{0;8;-7\}.$$
 $|c|=\sqrt{0^2+8^2+(-7)^2}=\sqrt{113}$; $b\cdot c=(-2)\cdot 0+4\cdot 8+(-3)\cdot (-7)=53$; $\cos(a;b)=\frac{a\cdot b}{|a|\cdot|b|}=\frac{3\cdot (-2)+(-2)\cdot 4+1\cdot (-3)}{\sqrt{3^2+(-2)^2+1^2}\cdot \sqrt{(-2)^2+4^2+(-3)^2}}=-\frac{17}{\sqrt{406}}$.

Omeem:
$$|c| = \sqrt{113}$$
; $b \cdot c = 53$; $\cos(a; b) = -\frac{17}{\sqrt{406}}$.

<u>Пример 2.</u> При каких значениях m длина вектора $a = \{ -7 ; 2m ; 4 \}$ не превосходит длины вектора $b = \{ 3m ; 6 ; -3 \}$?

Решение. Сначала подсчитаем длины данных векторов: $|\pmb{a}| = \sqrt{49 + 4m^2 + 16} = \sqrt{4m^2 + 65} \; ; \; |\pmb{b}| = \sqrt{9m^2 + 36 + 9} = \sqrt{9m^2 + 45} \; . \; \text{По условию,}$ $|\pmb{a}| \leq |\pmb{b}| \; . \; \text{Следовательно,} \quad \sqrt{4m^2 + 65} \leq \sqrt{9m^2 + 45} \quad ; \quad 4m^2 + 65 \leq 9m^2 + 45 \; ;$ $5m^2 - 20 \geq 0 \; . \; \text{Решениями этого неравенства являются} \quad m \in (-\infty; -2] \cup [2; +\infty) \; .$ $Omsem: \; (-\infty; -2] \cup [2; +\infty) \; .$

<u>Пример 3.</u> При каких значениях m угол между векторами $a = \{ m; -3; 5 \}$ и $b = \{ 3; 2m; 3 \}$ не превосходит 90° ?

Решение. Так как угол между векторами \pmb{a} и \pmb{b} острый или прямой, то скалярное произведение этих векторов $\pmb{a} \cdot \pmb{b} \ge 0$, т.е. $\pmb{a} \cdot \pmb{b} = 3m - 6m + 15 = -3m + 15 \ge 0$. Отсюда следует, что $m \le 5$. Ответ: (−∞ ; 5] .

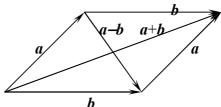
<u>Пример 4.</u> Даны векторы $AB=\{\ \alpha\ ;\ 6\ ;\ \beta\ \}$ и $BC=\{\ 2\ ;\ -3\ ;\ 5\ \}$. Точки $A\ ,B$ и C лежат на одной прямой. Найти $\alpha+\beta$.

Решение. Из условия следует, что векторы AB и BC коллинеарны. Следовательно, их координаты пропорциональны, т.е. $\frac{\alpha}{2} = \frac{6}{-3} = \frac{\beta}{5}$. Отсюда $\alpha = -4$; $\beta = -10$; $\alpha + \beta = -14$. *Отвем:* $\alpha = -14$.

<u>Пример 5</u>. Вектор **p** одинаково направлен с вектором **q**={ -5 ; 3 ; -2 } и $|\mathbf{p}| = 4 \cdot \sqrt{38}$. Найти сумму координат вектора **p** .

Решение. Из условия следует, что векторы p и q коллинеарны. Тогда $p = k \cdot q = \{-5k ; 3k ; -2k \}$. Так как вектор p одинаково направлен с вектором q, то k>0. $|p| = \sqrt{25k^2 + 9k^2 + 4k^2} = \sqrt{38k^2} = |k| \cdot \sqrt{38} = k \cdot \sqrt{38} = 4 \cdot \sqrt{38}$. Отсюда k=4; $p=\{-20; 12; -8\}$; сумма координат вектора p равна -16. Ответ: -16.

<u>Пример 6</u>. Дано: \pmb{a} и \pmb{b} – векторы на плоскости ; $|\pmb{b}|$ =7 ; $|\pmb{a}$ + $\pmb{b}|$ =12 ; $|\pmb{a}$ - $\pmb{b}|$ =14 . Найти $|\pmb{a}|$.



Решение. Известно, что сумма квадратов длин всех сторон параллелограмма равна сумме квадратов длин его диагоналей. Отсюда следует, что

 $2 \cdot |\boldsymbol{a}|^2 + 2 \cdot |\boldsymbol{b}|^2 = |\boldsymbol{a} + \boldsymbol{b}|^2 + |\boldsymbol{a} - \boldsymbol{b}|^2$. Подставив в это равенство данные, получим: $2 \cdot |\boldsymbol{a}|^2 + 2 \cdot 7^2 = 12^2 + 14^2$. Отсюда $|\boldsymbol{a}| = 11$. *Ответ:* 11.

<u>Пример 7.</u> Даны точки A(1;-2) , B(-6;-3) , C(-2;9) . Найти расстояние от точки A до середины отрезка BC . Решение. Обозначим середину отрезка BC через D . Тогда $D=\frac{1}{2}\cdot (B+C)=(-4;3)$; $AD=D-A=\left\{-5;5\right\}$. Расстояние от точки A до точки D – это длина вектора AD , т.е. $|AD|=\sqrt{25+25}=5\cdot\sqrt{2}$. Ответ: $5\cdot\sqrt{2}$.

<u>Пример 8</u>. Найти координаты точки M , лежащей на оси Oy и равноудалённой от точек $A(\ 3\ ;\ 3\)$ и $B(\ 2\ ;\ 8\)$.

Решение. Пусть (x ; y) — координаты точки M . Поскольку M∈Oy , то x=0 . Следовательно, M(0; y). Дальнейший ход решения:

$$AM=\{-3\;;y-3\;\}\;;\;|AM|=\sqrt{(-3)^2+(y-3)^2}=\sqrt{y^2-6y+18}\;;$$
 $BM=\{-2\;;y-8\;\}\;;\;|BM|=\sqrt{(-2)^2+(y-8)^2}=\sqrt{y^2-16y+68}\;.$ Так как точка M равноудалена от точек A и B , то $|AM|=|BM|$, т.е. $\sqrt{y^2-6y+18}=\sqrt{y^2-16y+68}$, отсюда $y=5$. $Omsem:$ $(0\;;5)$.

<u>Пример 9</u>. Составить уравнение окружности, диаметром которой является отрезок AB, где A(4;1), B(-2;9).

Решение. Центром окружности является точка O — середина отрезка AB , т.е. точка $O=\frac{1}{2}\cdot (A+B)=(\ 1\ ;5\)$. Радиусом окружности является, например, длина вектора OA , т.е. $|OA|=|\ \{3\ ;-4\ \}|=\sqrt{3^2+4^2}=5$. Напомним, что уравнение окружности радиуса R с центром в точке $O(\ x_0\ ;y_0)$ имеет вид $(x-x_0)^2+(y-y_0)^2=R^2$. Следовательно, уравнение искомой окружности $(x-1)^2+(y-5)^2=5^2$. Ответ: $(x-1)^2+(y-5)^2=25$.

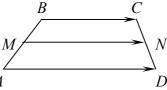
<u>Пример 10.</u> Найти координаты точки C, которая делит отрезок AB в отношении 2:3, считая от точки A, если A(12;-2), B(7;8).

Pешение.
$$A$$
 (2) C (3) B

С одной стороны, $AC = \frac{2}{5} \cdot AB = \frac{2}{5} \cdot \{-5; 10\} = \{-2; 4\}$. С другой стороны, AC = C - A. Следовательно, $C = A + AC = (12; -2) + \{-2; 4\} = (10; 2)$. Ответ: (10; 2).

<u>Пример 11.</u> В трапеции ABCD: A(5;-2) , B(4;0) , C(-2;8) , $A\textbf{\textit{D}}=2\cdot \textbf{\textit{BC}}$. Найти координаты вершины D и длину средней линии трапеции.

Решение.



С одной стороны, $AD=2\cdot BC=2\cdot \{-6; 8\}=\{-12; 16\}$. С другой стороны, AD=D-A. Следовательно, $D=A+AD=(5;-2)+\{-12; 16\}=(-7; 14)$.

Пусть MN – средняя линии трапеции. Поскольку длина средней линии трапеции равна полусумме длин её оснований, то

$$|MN| = \frac{|AD| + |BC|}{2} = \frac{|2 \cdot BC| + |BC|}{2} = \frac{2 \cdot |BC| + |BC|}{2} = \frac{3}{2} \cdot |BC| = \frac{3}{2} \cdot |\{-6; 8\}| = \frac{3}{2} \cdot \sqrt{(-6)^2 + 8^2} = 15 \cdot Omsem : D(-7; 14) ; |MN| = 15 .$$

<u>Пример 12.</u> При каких значениях p вектор $\mathbf{c} = \{3 - p; p^2 + 6p\}$ равен вектору $\mathbf{a} - 2\mathbf{b}$, где $\mathbf{a} = \{2; 1\}$, $\mathbf{b} = \{-1; 3\}$?

Решение. Нужно координаты вектора c приравнять к соответствующим координатам вектора $a-2b=\{\ 4\ ;\ -5\ \}$ и решить систему $\begin{cases} 3-p=4\\ p^2+6p=-5 \end{cases}$. Эта система имеет единственное решение p=-1 . *Ответ*: -1 .

<u>Пример 13</u>. Найти координаты вектора на плоскости, перпендикулярного вектору $a = \{3; 1\}$, в два раза длиннее a и имеющего положительную первую координату.

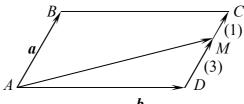
Решение. Пусть искомый вектор $\boldsymbol{b} = \{ x ; y \}$. Так как $\boldsymbol{a} \perp \boldsymbol{b}$, то скалярное произведение $\boldsymbol{a} \cdot \boldsymbol{b} = 3x + y = 0$. Так как $\mid \boldsymbol{b} \mid = 2 \cdot \mid \boldsymbol{a} \mid$, то $\sqrt{x^2 + y^2} = 2 \cdot \sqrt{3^2 + 1^2}$.

Система
$$\begin{cases} 3x + y = 0 \\ \sqrt{x^2 + y^2} = 2 \cdot \sqrt{10} \end{cases}$$
 имеет два решения
$$\begin{cases} x_1 = 2 \\ y_1 = -6 \end{cases}$$
 и
$$\begin{cases} x_2 = -2 \\ y_2 = 6 \end{cases}$$
.

Поскольку x-координата должна быть положительной, то условию задачи удовлетворяет лишь первое решение. *Ответ*: $\{2; -6\}$.

<u>Пример 14.</u> Точка M делит сторону CD параллелограмма ABCD в отношении 1:3 , считая от точки C . Выразить вектор AM через векторы a=AB и b=AD .

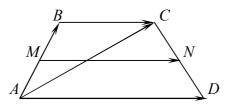
Решение.



$$DM = \frac{3}{4} \cdot DC = \frac{3}{4} \cdot a$$
; $AM = AD + DM = b + \frac{3}{4} \cdot a$. Omsem: $b + \frac{3}{4} \cdot a$.

<u>Пример 15</u>. Дано: ABCD – трапеция, BC и AD – её основания, точки M и N – середины сторон AB и CD соответственно, $AB = \{ -7 ; 4 ; 5 \}$, $AC = \{ -3 ; 2 ; -1 \}$, $AD = \{ 6 ; -3 ; -9 \}$. Найти сумму координат вектора MN.

Решение.



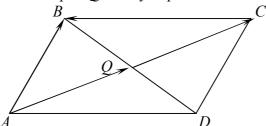
AB+BC=AC. Следовательно, $BC=AC-AB=\{-3;2;-1\}-\{-7;4;5\}=\{4;-2;-6\}$. По свойству средней линии трапеции

$$MN = \frac{1}{2} \cdot (AD + BC) = \frac{1}{2} \cdot (\{6; -3; -9\} + \{4; -2; -6\}) = \{5; -\frac{5}{2}; -\frac{15}{2}\}.$$

Сумма координат вектора MN равна -5. *Ответ:* -5.

<u>Пример 16</u>. В параллелограмме *ABCD* заданы **AB** = $\{-5; -1; 2\}$, **CB** = $\{-3; -3; 4\}$, A(2; 8; -2). Найти сумму координат точки пересечения диагоналей параллелограмма.

Pешение. Обозначим через Q точку пересечения диагоналей параллелограмма.



 $AC = AB + BC = AB - CB = \{-5; -1; 2\} - \{-3; -3; 4\} = \{-2; 2; -2\}$

Так как диагонали параллелограмма делятся пополам в точке их пересечения, то

$$m{AQ} = \frac{1}{2} \cdot m{AC} = \frac{1}{2} \cdot ig\{ -2 \; ; 2 \; ; -2 \; ig\} = ig\{ -1 \; ; 1 \; ; -1 \; ig\}$$
 . С другой стороны, $m{AQ} = m{Q} - m{A}$.

Следовательно, $Q=A+A{\bf Q}=(\ 2\ ; 8\ ; -2\)+\{\ -1\ ; 1\ ; -1\ \}=(\ 1\ ; 9\ ; -3\)$. Сумма координат точки Q равна 7 . *Ответ*: 7 .

<u>Пример 17</u>. Составить уравнение окружности, описанной около треугольника с вершинами в точках A(2;1), B(1;-2), C(9;2).

Решение. Уравнение окружности радиуса R с центром в точке $O(x_0; y_0)$ имеет вид $(x-x_0)^2+(y-y_0)^2=R^2$. Подставив в это уравнение координаты данных точек вместо (x;y), получим систему уравнений

$$\begin{cases} (2-x_0)^2 + (1-y_0)^2 = R^2 \\ (1-x_0)^2 + (-2-y_0)^2 = R^2 \end{cases}$$
 или
$$\begin{cases} 4-4x_0 + x_0^2 + 1 - 2y_0 + y_0^2 = R^2 \\ 1-2x_0 + x_0^2 + 4 + 4y_0 + y_0^2 = R^2 \end{cases}$$
 .
$$81-18x_0 + x_0^2 + 4 - 4y_0 + y_0^2 = R^2 \end{cases}$$
 .

Из второго уравнения вычтем первое уравнение, а также из третьего уравнения вычтем первое. Получим: $\begin{cases} 2x_0+6y_0=0\\ -14x_0-2y_0+80=0 \end{cases}$. Отсюда следует, что $\begin{cases} x_0=6\\ y_0=-2 \end{cases}$ а также $R^2=(2-x_0)^2+(1-y_0)^2=(2-6)^2+(1+2)^2=25 \quad \text{.}$ Следовательно, уравнение окружности имеет вид $(x-6)^2+(y+2)^2=25 \quad .$ Отсюда следует, что $\begin{cases} x_0=6\\ y_0=-2 \end{cases}$, отсюда следует, что $\begin{cases} x_0=6\\ y_0=-2 \end{cases}$. Отсюда следуе

Задачи для самостоятельного решения

- 1. Даны векторы $a = \{2; 4; -1\}$ и $b = \{3; 5 3\}$. Найти длину вектора c = 2a b, скалярное произведение векторов a и c, косинус угла между векторами a и b.
- 2. При каких значениях m длина вектора $a = \{\sqrt{3}; m+1; m+2\}$ не превосходит 8?
- 3. При каких значениях m угол между векторами $\mathbf{a} = \{ 2 ; m ; -4 \}$ и $\mathbf{b} = \{ m ; 1 ; 6 \}$ тупой ?
- 4. Даны векторы $AB=\{2;6;1\}$ и $BC=\{-4;m;n\}$. Точки A, B и C лежат на одной прямой. Найти $m\cdot n$.
- 5. Вектор p противонаправлен вектору $q = \{4; -6; 2\}$ и $|p| = \sqrt{14}$. Найти произведение координат вектора p.
- 6. Дано: a и b векторы на плоскости; |a|=10; |a+b|=31; |b|=21. Найти |a-b|.
- 7. Даны точки A(6;2) , B(3;-5) , C(-9;3) . Найти расстояние от точки A до середины отрезка BC .
- 8. Найти координаты точки M, лежащей на оси Ox и равноудалённой от точек A(-2;1) и B(8;11).
- 9. Составить уравнение окружности, диаметром которой является отрезок AB, где A(-2;-4), B(4;10).
- 10. Найти координаты точки C , которая делит отрезок AB в отношении 3:4 , считая от точки A , если A(2;5) , B(-5;19) .
- 11. В трапеции ABCD: A(0;8), B(-2;3), C(6;1), $AD=4\cdot BC$. Найти координаты вершины D и длину средней линии трапеции.
- 12. При каких значениях p вектор $c = \{p^2 1; 2p + 1\}$ равен вектору 2a + b, где $a = \{2; 1\}$, $b = \{-1; 3\}$?
- 13. Найти координаты вектора на плоскости, перпендикулярного вектору $a = \{1; 2\}$, в три раза длиннее a и имеющего отрицательную вторую координату.
- 14. Точка M делит сторону BC параллелограмма ABCD в отношении 3:2, считая от точки B. Выразить вектор AM через векторы a = AB и b = AD.
- 15. Дано: ABCD трапеция, AB и CD её основания, точки M и N середины сторон AD и BC соответственно, MN = { -2 ; 2 ; -4 } , CD = { 3 ; -3 ; 6 } . Найти сумму координат вектора AB .
- 16. В параллелограмме ABCD заданы координаты двух вершин A (4 ; -2 ; 4) и B (5 ; -1 ; -8) и координаты точки пересечения диагоналей Q (7 ; -1 ; 4) . Найти координаты вектора AD .
- 17. Составить уравнение окружности, описанной около треугольника с вершинами в точках A(1;1), B(3;3), C(-6;0).

ТРИГОНОМЕТРИЯ

1. Определения тригонометрических функций.

Пусть из начала координат исходит вектор единичной длины (радиус-вектор), наклонённый к положительному направлению оси Ox под углом α .

 $\sin \alpha$ – это проекция радиус-вектора на ось Oy .

 $\cos \alpha$ – это проекция радиус-вектора на ось Ox .

$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} . \quad ctg \alpha = \frac{\cos \alpha}{\sin \alpha} . \quad sec \alpha = \frac{1}{\cos \alpha} . \quad cosec \alpha = \frac{1}{\sin \alpha} .$$

2. Области определения и области значений.

 $\sin \alpha$ и $\cos \alpha$ определены при всех $\alpha \in (-\infty; +\infty)$.

tg α не определён в точках $\frac{\pi}{2} + \pi n$. ctg α не определён в точках πn .

(Здесь и в дальнейшем $n \in \mathbb{Z}$, т.е. n = 0; ± 1 ; ± 2 ; ± 3 ; ...)

 $\sin \alpha$ и $\cos \alpha$ принимают все значения только из отрезка [-1 ; 1] .

tg α и ctg α принимают любые значения из числовой оси $(-\infty; +\infty)$.

3. Знаки тригонометрических функций.

 $\sin \alpha > 0$ при $\alpha \in I$ или II четверти ; $\sin \alpha < 0$ при $\alpha \in III$ или IV четверти.

 $\cos \alpha > 0$ при $\alpha \in I$ или IV четверти ; $\cos \alpha < 0$ при $\alpha \in II$ или III четверти.

tg $\alpha > 0$ при $\alpha \in I$ или III четверти ; tg $\alpha < 0$ при $\alpha \in II$ или IV четверти.

 $ctg \ \alpha > 0$ при $\alpha \in I$ или III четверти ; $ctg \ \alpha < 0$ при $\alpha \in II$ или IV четверти.

4. Стандартные значения тригонометрических функций.

Угол	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π
	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	0	1
tg	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	не сущ.	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	не сущ.	0
ctg	не сущ.	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	не сущ.	0	не сущ.

5. Чётность и нечётность.

 $\sin \alpha$, tg α и ctg α – нечётные функции:

$$\sin(-\alpha) = -\sin \alpha$$
 ; $tg(-\alpha) = -tg\alpha$; $ctg(-\alpha) = -ctg\alpha$.

 $\cos \alpha$ – чётная функция: $\cos(-\alpha) = \cos \alpha$.

6. Периодичность.

 $\sin \alpha$ и $\cos \alpha$ имеют период 2π : $\sin \alpha = \sin(\alpha \pm 2\pi)$; $\cos \alpha = \cos(\alpha \pm 2\pi)$. $tg \alpha$ и $ctg \alpha$ имеют период π : $tg \alpha = tg(\alpha \pm \pi)$; $ctg \alpha = ctg(\alpha \pm \pi)$.

7. Формулы приведения.

$$\begin{split} &\sin\!\left(\frac{\pi}{2}\!\pm\!\alpha\right)\!=\!\cos\!\alpha\ ;\ \sin\!\left(\pi\!\pm\!\alpha\right)\!=\!\mp\!\sin\!\alpha\ ;\ \sin\!\left(\frac{3\pi}{2}\!\pm\!\alpha\right)\!=\!-\!\cos\!\alpha\ ;\ \sin\!\left(2\pi\!\pm\!\alpha\right)\!=\!\pm\!\sin\!\alpha\ .\\ &\cos\!\left(\frac{\pi}{2}\!\pm\!\alpha\right)\!=\!\mp\!\sin\!\alpha\ ;\ \cos\!\left(\pi\!\pm\!\alpha\right)\!=\!-\!\cos\!\alpha\ ;\ \cos\!\left(\frac{3\pi}{2}\!\pm\!\alpha\right)\!=\!\pm\!\sin\!\alpha\ ;\ \cos\!\left(2\pi\!\pm\!\alpha\right)\!=\!\cos\!\alpha\ .\\ &tg\!\left(\frac{\pi}{2}\!\pm\!\alpha\right)\!=\!\mp\!\cot\!\alpha\ ;\ tg\!\left(\pi\!\pm\!\alpha\right)\!=\!\pm\!tg\alpha\ ;\ tg\!\left(\frac{3\pi}{2}\!\pm\!\alpha\right)\!=\!\mp\!\cot\!\alpha\ ;\ tg\!\left(2\pi\!\pm\!\alpha\right)\!=\!\pm\!tg\alpha\ .\\ &\cot\!\left(\frac{\pi}{2}\!\pm\!\alpha\right)\!=\!\mp\!tg\alpha\ ;\ ctg\!\left(\pi\!\pm\!\alpha\right)\!=\!\pm\!tg\alpha\ .\end{split}$$

8. Зависимости между функциями одного и того же аргумента.

Основное тригонометрическое тождество: $\sin^2 \alpha + \cos^2 \alpha = 1$.

$$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha} \quad ; \quad 1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha} \quad ; \quad tg \alpha = \frac{1}{ctg \alpha} \quad ; \quad ctg \alpha = \frac{1}{tg \alpha} \quad .$$

9. Формулы сложения.

$$\begin{split} \sin(\alpha+\beta) &= \sin\alpha\cos\beta + \sin\beta\cos\alpha \quad ; \quad \sin(\alpha-\beta) = \sin\alpha\cos\beta - \sin\beta\cos\alpha \ . \\ \cos(\alpha+\beta) &= \cos\alpha\cos\beta - \sin\alpha\sin\beta \quad ; \quad \cos(\alpha-\beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta \ . \\ tg(\alpha+\beta) &= \frac{tg\,\alpha + tg\,\beta}{1 - tg\,\alpha\,tg\,\beta} \quad ; \quad tg(\alpha-\beta) &= \frac{tg\,\alpha - tg\,\beta}{1 + tg\,\alpha\,tg\,\beta} \ . \end{split}$$

10. Функции двойного и тройного аргумента.

$$\sin 2\alpha = 2\sin \alpha \cos \alpha \quad ; \quad \sin \alpha \cos \alpha = \frac{1}{2}\sin 2\alpha \quad ; \quad \sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha \ .$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha \quad ; \quad \cos 3\alpha = 4\cos^3 \alpha - 3\cos \alpha \ .$$

$$tg 2\alpha = \frac{2tg \alpha}{1 - tg^2 \alpha} \quad ; \quad tg 3\alpha = \frac{3tg \alpha - tg^3 \alpha}{1 - 3tg^2 \alpha} \ .$$

43

11. Формулы понижения степени.

$$\sin^2 \alpha = \frac{1}{2} - \frac{1}{2} \cdot \cos 2\alpha$$
 ; $\cos^2 \alpha = \frac{1}{2} + \frac{1}{2} \cdot \cos 2\alpha$.

12. Функции половинного аргумента.

$$\sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \quad ; \quad \cos \alpha = \cos^2 \frac{\alpha}{2} - \sin^2 \frac{\alpha}{2} = 2 \cos^2 \frac{\alpha}{2} - 1 = 1 - 2 \sin^2 \frac{\alpha}{2} \quad ;$$

$$\sin \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} \quad ; \quad \cos \alpha = \frac{1 - \operatorname{tg}^2 \frac{\alpha}{2}}{1 + \operatorname{tg}^2 \frac{\alpha}{2}} \quad ; \quad \operatorname{tg} \alpha = \frac{2 \operatorname{tg} \frac{\alpha}{2}}{1 - \operatorname{tg}^2 \frac{\alpha}{2}} \quad ;$$

$$1 - \cos \alpha = 2 \sin^2 \frac{\alpha}{2} \quad ; \quad 1 + \cos \alpha = 2 \cos^2 \frac{\alpha}{2} \quad .$$

13. Разложение произведений в суммы.

$$\sin \alpha \sin \beta = \frac{1}{2} \cos(\alpha - \beta) - \frac{1}{2} \cos(\alpha + \beta) ;$$

$$\sin \alpha \cos \beta = \frac{1}{2} \sin(\alpha + \beta) + \frac{1}{2} \sin(\alpha - \beta) ;$$

$$\cos \alpha \cos \beta = \frac{1}{2} \cos(\alpha + \beta) + \frac{1}{2} \cos(\alpha - \beta).$$

14. Разложение сумм в произведения.

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \quad ; \quad \sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2} \quad ;$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \quad ; \quad \cos \alpha - \cos \beta = 2 \sin \frac{\alpha + \beta}{2} \sin \frac{\beta - \alpha}{2} \quad .$$

- 15. Определения обратных тригонометрических функций.
 - а) Пусть $|a| \le 1$. Тогда $\arcsin a$ это число или угол, $\in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, синус которого равен числу a.
 - б) Пусть $|a| \le 1$. Тогда $\arccos a \Im$ число или угол, $\in [0; \pi]$, косинус которого равен числу a.
 - в) Пусть a любое число. Тогда $\arctan a$ это число или угол, $\in \left(-\frac{\pi}{2}; \frac{\pi}{2}\right)$, тангенс которого равен числу a.
 - г) Пусть a любое число. Тогда a это число или угол, \in (0 ; π) , котангенс которого равен числу a .

3амечание. Если a>0 , то все углы $\arcsin a$, $\arccos a$, $\arctg\ a$, $\arctg\ a$ находятся в первой четверти.

16. Основные формулы с обратными тригонометрическими функциями.

$$\arcsin(-a) = -\arcsin a \quad ; \quad \arctan(-a) = -\arctan a \quad ;$$

$$\arccos(-a) = \pi - \arccos a \quad ; \quad \arctan(-a) = \pi - \arctan a \quad ; \quad \arctan(a = \frac{\pi}{2} - \arctan a) \quad ;$$

$$\sin(\arcsin a) = \cos(\arccos a) = \tan(\arcsin a) = \cot(\arcsin a) =$$

17. Стандартные значения обратных тригонометрических функций.

$$\arcsin 0 = 0 \quad ;$$

$$\arcsin \left(\frac{1}{2}\right) = \frac{\pi}{6} \quad ;$$

$$\arcsin \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \quad ;$$

$$\arcsin \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \quad ;$$

$$\arcsin \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{3} \quad ;$$

$$\arcsin \left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \quad ;$$

$$\arcsin \left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3} \quad ;$$

$$\arcsin \left(-\frac{1}{2}\right) = -\frac{\pi}{3} \quad .$$

$$\arccos 0 = \frac{\pi}{2} ;$$

$$\arccos \left(\frac{1}{2}\right) = \frac{\pi}{3} ;$$

$$\arccos \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} ;$$

$$\arccos \left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} ;$$

$$\arccos \left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6} ;$$

$$\arccos \left(-\frac{\sqrt{3}}{2}\right) = \frac{3\pi}{4} ;$$

$$\arccos \left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6} ;$$

$$\arccos \left(-1\right) = \pi .$$

arctg 0 = 0 ;	
$\arctan\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} ;$	$\arctan\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6} ;$
$arctg1 = \frac{\pi}{4}$;	$\arctan(-1) = -\frac{\pi}{4} ;$
$arctg(\sqrt{3}) = \frac{\pi}{3}$.	$\arctan\left(-\sqrt{3}\right) = -\frac{\pi}{3} .$

$$\operatorname{arcctg} 0 = \frac{\pi}{2} ;$$

$$\operatorname{arcctg} \left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{3} ;$$

$$\operatorname{arcctg} 1 = \frac{\pi}{4} ;$$

$$\operatorname{arcctg} \left(\sqrt{3}\right) = \frac{\pi}{6} ;$$

$$\operatorname{arcctg} \left(-\frac{\sqrt{3}}{3}\right) = \frac{2\pi}{3} ;$$

$$\operatorname{arcctg} \left(-1\right) = \frac{3\pi}{4} ;$$

$$\operatorname{arcctg} \left(-\sqrt{3}\right) = \frac{5\pi}{6} .$$

18. Простейшие тригонометрические уравнения.

а) Если |a| > 1, то уравнение $\sin z = a$ не имеет решений.

Если $|a| \le 1$, то уравнение $\sin z = a$ имеет решения $z = (-1)^n \arcsin a + \pi n$.

$$\sin z = 0 \implies z = \pi n$$
.

Частные случаи: $\sin z = 1 \implies z = \frac{\pi}{2} + 2\pi n \ .$

$$\sin z = -1 \quad \Rightarrow \quad z = -\frac{\pi}{2} + 2\pi n \ .$$

б) Если |a| > 1 , то уравнение $\cos z = a$ не имеет решений.

Если $|a| \le 1$, то уравнение $\cos z = a$ имеет решения $z = \pm \arccos a + 2\pi n$.

$$\cos z = 0 \implies z = \frac{\pi}{2} + \pi n$$
.

Частные случаи: $\cos z = 1 \implies z = 2\pi n$.

$$\cos z = -1 \implies z = \pi + 2\pi n$$
.

в) Пусть a – любое число.

Тогда уравнение $\ensuremath{\operatorname{tg}}\ z = a$ имеет решения $\ensuremath{z} = \operatorname{arctg} a + \pi n$.

 Γ) Пусть a – любое число.

Тогда уравнение $\operatorname{ctg} z = a$ имеет решения $z = \operatorname{arcctg} a + \pi n$.

Пример 1. Вычислить
$$A = \frac{\cos 76^{\circ} - \cos 16^{\circ}}{1 - 2\sin^2 22^{\circ}}$$
.

Решение. Числитель разложим в произведение (одна из формул пункта 14), а к знаменателю применим формулу понижения степени (пункт 11). Получим

$$A = \frac{2\sin 46^{\circ}\sin(-30^{\circ})}{1 - 2\cdot\left(\frac{1}{2} - \frac{1}{2}\cos 44^{\circ}\right)} = \frac{-\sin 46^{\circ}}{\cos 44^{\circ}} = \frac{-\sin 46^{\circ}}{\cos(90^{\circ} - 46^{\circ})} = \{nyh\kappa m \ 7\} = \frac{-\sin 46^{\circ}}{\sin 46^{\circ}} = -1 \ .$$

Ответ: -1.

<u>Пример 2.</u> Вычислить $A = \arccos(tg(-315^\circ))$.

Решение. В силу периодичности тангенса $tg(-315^{\circ}) = tg(-315^{\circ} + 360^{\circ}) = tg 45^{\circ} = 1$. Следовательно, A = arccos 1 = 0. Ответ: 0.

Пример 3. Вычислить
$$A = \sin\left(\arctan\left(-\frac{5}{6}\right)\right)$$
.

Решение. В формулу (из пункта 16) $\sin(\arctan a) = \frac{1}{\sqrt{1+a^2}}$ подставим $a = -\frac{5}{6}$.

Получим
$$A = \frac{6}{\sqrt{61}} = \frac{6 \cdot \sqrt{61}}{61}$$
 . *Omsem*: $\frac{6 \cdot \sqrt{61}}{61}$

Пример 4. Вычислить в градусах угол
$$\arccos \frac{1}{2 \cdot \sqrt{7}} - \arccos \sqrt{\frac{3}{7}}$$
.

Решение. Обозначим $\alpha = \arccos \frac{1}{2 \cdot \sqrt{7}}$ и $\beta = \arccos \sqrt{\frac{3}{7}}$. Требуется вычислить

 $\alpha-\beta$. Согласно замечанию к пункту 15 , α и $\beta\in$ I-ой четверти, т.е. $0<\alpha<90^\circ$ и $0<\beta<90^\circ$. Следовательно, $-90^\circ<\alpha-\beta<90^\circ$. По формуле сложения (пункт 9) и по формулам пункта 16 имеем: $\cos(\alpha-\beta)=\cos\alpha\cos\beta+\sin\alpha\sin\beta=$

$$=\cos\left(\arccos\frac{1}{2\cdot\sqrt{7}}\right)\cos\left(\arccos\sqrt{\frac{3}{7}}\right)+\sin\left(\arccos\frac{1}{2\cdot\sqrt{7}}\right)\sin\left(\arccos\sqrt{\frac{3}{7}}\right)=$$

$$= \frac{1}{2 \cdot \sqrt{7}} \cdot \sqrt{\frac{3}{7}} + \sqrt{1 - \left(\frac{1}{2 \cdot \sqrt{7}}\right)^2} \cdot \sqrt{1 - \left(\sqrt{\frac{3}{7}}\right)^2} = \frac{\sqrt{3}}{2} . \text{ Итак, } \cos(\alpha - \beta) = \frac{\sqrt{3}}{2} .$$

Так как $-90^{\circ} < \alpha - \beta < 90^{\circ}$, то $\alpha - \beta = \arccos\left(\frac{\sqrt{3}}{2}\right) = 30^{\circ}$. Ответ: 30° .

Пример 5. Вычислить
$$A = \sin\left(\frac{1}{2} \cdot \operatorname{arcctg}\left(-\frac{3}{4}\right)\right)$$
.

Решение. Используя формулы пунктов 16 и 7, получим

$$A = \sin\left(\frac{1}{2} \cdot \left(\pi - \operatorname{arcctg}\frac{3}{4}\right)\right) = \sin\left(\frac{\pi}{2} - \frac{1}{2} \cdot \operatorname{arcctg}\frac{3}{4}\right) = \cos\left(\frac{1}{2} \cdot \operatorname{arcctg}\frac{3}{4}\right)$$

Обозначим $\alpha = \operatorname{arcctg} \frac{3}{4} \in \text{ I-ой четверти . Требуется вычислить } A = \cos \frac{\alpha}{2}$.

$$\cos \alpha = \cos \left(\operatorname{arcctg} \frac{3}{4} \right) = \frac{\frac{3}{4}}{\sqrt{1 + \frac{9}{6}}} = \frac{3}{5}$$
 . По формуле понижения степени $\cos^2 \frac{\alpha}{2} = \frac{1}{2} + \frac{1}{2} \cdot \cos \alpha = \frac{1}{2} + \frac{1}{2} \cdot \frac{3}{5} = \frac{4}{5}$ $\Rightarrow \cos \frac{\alpha}{2} = \frac{2}{\sqrt{5}} = \frac{2 \cdot \sqrt{5}}{5}$. Ответ: $\frac{2 \cdot \sqrt{5}}{5}$.

Пример 6. Дано:
$$\frac{2\sin\alpha + 3\cos\alpha}{\sin\alpha + 4\cos\alpha} = \frac{3}{2}$$
. Найти tg α .

Решение. После перемножения «крест-накрест» получим

$$4\sin\alpha + 6\cos\alpha = 3\sin\alpha + 12\cos\alpha$$
; $\sin\alpha = 6\cos\alpha$; $\frac{\sin\alpha}{\cos\alpha} = 6$; $\tan\alpha = 6\cos\alpha$

Ответ: 6.

Пример 7. Дано:
$$\operatorname{ctg} \frac{\alpha}{2} = 3$$
 . Найти $A = \frac{2\sin\alpha + \cos\alpha}{\sin\alpha - 2\cos\alpha}$.

Решение. Из условия задачи следует, что $tg\frac{\alpha}{2} = \frac{1}{3}$. Используя формулы пункта

12 , найдём
$$\sin\alpha = \frac{2\operatorname{tg}\frac{\alpha}{2}}{1+\operatorname{tg}^2\frac{\alpha}{2}} = \frac{2\cdot\frac{1}{3}}{1+\frac{1}{9}} = 0,6$$
 ; $\cos\alpha = \frac{1-\operatorname{tg}^2\frac{\alpha}{2}}{1+\operatorname{tg}^2\frac{\alpha}{2}} = \frac{1-\frac{1}{9}}{1+\frac{1}{9}} = 0,8$.

Следовательно, $A = \frac{2 \cdot 0.6 + 0.8}{0.6 - 2 \cdot 0.8} = -2$. *Ответ:* -2.

Пример 8. Упростить выражение
$$A = \left(\frac{1}{\sin \alpha} - \frac{1}{\sin 3\alpha}\right) \cdot \frac{1}{\cos \alpha + \cos 5\alpha}$$
.

Решение. Приведём к общему знаменателю, суммы и разности разложим в произведения по формулам пункта 14, затем сократим дроби.

$$A = \frac{\sin 3\alpha - \sin \alpha}{\sin \alpha \sin 3\alpha} \cdot \frac{1}{\cos \alpha + \cos 5\alpha} = \frac{2 \sin \alpha \cos 2\alpha}{\sin \alpha \sin 3\alpha} \cdot \frac{1}{2 \cos 3\alpha \cos 2\alpha} = \frac{2}{2 \sin 3\alpha \cos 3\alpha} = \frac{2}{\sin 6\alpha}.$$

$$Omsem: \frac{2}{\sin 6\alpha}.$$

<u>Пример 9.</u> Упростить выражение $A = \frac{(\operatorname{tg} \alpha - \operatorname{ctg} \alpha)(\cos 8\alpha - 1)}{\sin 4\alpha \cdot (\cos 4\alpha + 1)}$

Решение.
$$tg \alpha - ctg \alpha = \frac{\sin \alpha}{\cos \alpha} - \frac{\cos \alpha}{\sin \alpha} = \frac{\sin^2 \alpha - \cos^2 \alpha}{\sin \alpha \cos \alpha} = \frac{-\cos 2\alpha}{\frac{1}{2}\sin 2\alpha} = \frac{-2\cos 2\alpha}{\sin 2\alpha} ;$$

 $\cos 8\alpha - 1 = -(1 - \cos 8\alpha) = -2\sin^2 4\alpha$; $\cos 4\alpha + 1 = 2\cos^2 2\alpha$. Следовательно,

$$A = \frac{\frac{-2\cos 2\alpha}{\sin 2\alpha} \cdot \left(-2\sin^2 4\alpha\right)}{\sin 4\alpha \cdot 2\cos^2 2\alpha} = \frac{4\sin 4\alpha}{2\sin 2\alpha\cos 2\alpha} = \frac{4\sin 4\alpha}{\sin 4\alpha} = 4 \cdot Omsem: 4.$$

<u>Пример 10.</u> Найти среднее арифметическое корней уравнения $\cos^2 x - \sin x \cos x = 1$, принадлежащих отрезку [-200° ; 270°] .

Peшeниe. $\cos^2 x - \sin x \cos x = \sin^2 x + \cos^2 x$; $-\sin x \cos x - \sin^2 x = 0$ $-\sin x \cdot (\cos x + \sin x) = 0$. Найдём корни этого уравнения и произведём отбор корней. Так как границы отрезка указаны в градусах, то и корни должны быть указаны в градусах.

1) $\sin x = 0 \implies x = \pi n = 180^{\circ} n$. Придадим букве n значения 0; 1; 2; 3; ..., aтакже -1; -2; -3; ..., но только такие, чтобы попасть в отрезок [-200° ; 270°]. $n = 0 \implies x = 0^{\circ} \in \text{отрезку}.$

 $n=1 \implies x=180^{\circ} \in \text{отрезку}.$

 $n = 2 \implies x = 360^{\circ} \notin$ отрезку. Движение в положительном направлении прекращаем.

 $n = -1 \implies x = -180^{\circ} \in \text{ отрезку.}$

 $n = -2 \Rightarrow x = -360^{\circ} \notin \text{отрезку}$. Движение в отрицательном направлении прекращаем. Итак, мы нашли три корня 0° ; 180° ; $-180^{\circ} \in [-200^{\circ}; 270^{\circ}]$.

2) $\cos x + \sin x = 0$. Разделив это уравнение на $\cos x$, получим $1 + \operatorname{tg} x = 0$,

$$tg x = -1 \implies x = -\frac{\pi}{4} + \pi n = -45^{\circ} + 180^{\circ} n$$
.

 $n = 0 \implies x = -45^{\circ} \in \text{отрезку}.$

 $n=1 \implies x=135^{\circ} \in \text{отрезку}.$

n = 2 ⇒ x = 315° \notin отрезку. Движение в положительном направлении прекращаем.

 $n = -1 \Rightarrow x = -225^{\circ} \notin \text{отрезку}$. Движение в отрицательном направлении прекращаем.

Итак, мы нашли ещё два корня -45° ; $135^{\circ} \in [-200^{\circ}; 270^{\circ}]$.

Перечень всех требуемых корней: 0° ; 180° ; -180° ; -45° ; 135° . Всего 5 корней. Среднее арифметическое $\frac{0^{\circ} + 180^{\circ} + \left(-180^{\circ}\right) + \left(-45^{\circ}\right) + 135^{\circ}}{5} = 18^{\circ}$. *Ответ:* 18° .

<u>Пример 11.</u> Найти сумму корней уравнения $\cos\left(\frac{\pi}{2} - x\right) + \cos^2 x = 0.25$, принадлежащих отрезку $\left| -\frac{\pi}{6}; 2\pi \right|$.

Решение. Применив формулу приведения $\cos\left(\frac{\pi}{2} - x\right) = \sin x$ и основное тригонометрическое тождество $\cos^2 x = 1 - \sin^2 x$, получим уравнение $\sin x + 1 - \sin^2 x = 0.25 \quad .$ Произведём замену переменной: Дополнительное условие $(\mathcal{J}Y)$: $|a| \le 1$.

После замены переменной уравнение примет вид $a+1-a^2=0.25$. Это уравнение имеет два решения: $a_1 = -\frac{1}{2}$ (удовлетворяет $\mathcal{D}Y$) и $a_2 = \frac{3}{2}$ (не удовлетворяет

$$\mathcal{A}Y$$
). Обратная замена: $\sin x = -\frac{1}{2} \implies x = (-1)^n \left(-\frac{\pi}{6}\right) + \pi n$, $n = 0$; ± 1 ; ± 2 ; ...

Корни данного уравнения, принадлежащие данному отрезку: $-\frac{\pi}{6}$; $\frac{7\pi}{6}$; $\frac{11\pi}{6}$.

Сумма этих корней равна $\frac{17\pi}{6}$. *Ответ*: $\frac{17\pi}{6}$.

<u>Пример 12.</u> Найти сумму корней уравнения $\cos x = \frac{\sqrt{2}}{2} \operatorname{tg} x$, принадлежащих отрезку [-270° ; 90°] .

Решение. $\cos x = \frac{\sqrt{2}}{2} \cdot \frac{\sin x}{\cos x}$; $2\cos^2 x = \sqrt{2} \cdot \sin x$; $2 \cdot (1 - \sin^2 x) = \sqrt{2} \cdot \sin x$. Замена: $a = \sin x$. $\mathcal{A} \mathcal{Y}$: $|a| \le 1$. Получим уравнение $2 \cdot (1 - a^2) = \sqrt{2} \cdot a$. Корни этого уравнения: $a_1 = -\sqrt{2}$ (не удовлетворяет $\mathcal{A} \mathcal{Y}$) и $a_2 = \frac{\sqrt{2}}{2}$ (удовлетворяет $\mathcal{A} \mathcal{Y}$). Обратная замена: $\sin x = \frac{\sqrt{2}}{2}$. Общее решение: $x = (-1)^n \frac{\pi}{4} + \pi n = (-1)^n \cdot 45^\circ + 180^\circ n$. Корни, принадлежащие отрезку: 45° ; -225° . Их сумма равна -180° . Ответ: -180° .

Однородные уравнения и уравнения, сводящиеся к ним

- 1. Уравнение вида $a\sin^2 t + b\sin t\cos t + c\cos^2 t = 0$ называется однородным уравнением второй степени (здесь a, b, c = Const, t неизвестное). Если $a \neq 0$ и $c \neq 0$ (т.е. "ничего не выносится за скобку"), то уравнение можно разделить на $\cos^2 t$. Получим уравнение $a \operatorname{tg}^2 t + b \operatorname{tg} t + c = 0$, которое после замены переменной сводится к квадратному уравнению.
- 2. Уравнение вида $a \sin^2 t + b \sin t \cos t + c \cos^2 t = d$ сводится к однородному уравнению, если константу d представить в виде $d = d \sin^2 t + d \cos^2 t$, затем все слагаемые перенести в левую часть уравнения и привести подобные.
- 3. Уравнение вида $a\sin t + b\cos t = c$ можно решать двумя способами. <u>Первый способ</u> — переход к половинному аргументу. Запишем формулы: $\sin t = 2\sin\frac{t}{2}\cos\frac{t}{2}$; $\cos t = \cos^2\frac{t}{2} - \sin^2\frac{t}{2}$; $c = c\sin^2\frac{t}{2} + c\cos^2\frac{t}{2}$ и всё это подставим в уравнение. Затем все слагаемые перенесём в левую часть уравнения и приведём подобные. В результате получится однородное

уравнение.

<u>Пример 13.</u> Найти количество корней уравнения $3\cos^2 x - \sin^2 x = \sin 2x$, принадлежащих отрезку $[0; 2\pi]$.

Решение. $3\cos^2 x - \sin^2 x = 2\sin x \cos x$; $\sin^2 x + 2\sin x \cos x - 3\cos^2 x = 0$. Разделив последнее уравнение на $\cos^2 x$, получим $\tan^2 x + 2\tan x = 0$. Замена переменной: $a = \tan x$. Имеем: $a^2 + 2a - 3 = 0$, откуда $a_1 = 1$; $a_2 = -3$.

- 1) $\operatorname{tg} x = 1 \implies x = \frac{\pi}{4} + \pi n$. Корни, принадлежащие отрезку: $\frac{\pi}{4}$; $\frac{5\pi}{4}$
- 2) $\operatorname{tg} x = -3 \Rightarrow x = \operatorname{arctg}(-3) + \pi n$. Корни, принадлежащие отрезку: $\operatorname{arctg}(-3) + \pi$; $\operatorname{arctg}(-3) + 2\pi$.

Количество требуемых корней равно 4. Ответ: 4.

<u>Пример 14.</u> Решить уравнение $\sin 5x + \sqrt{3} \cdot \cos 5x = 1$ двумя способами – с помощью перехода к половинному аргументу и с помощью введения вспомогательного угла.

Решение.

<u>Первый способ</u> — переход к половинному аргументу. Запишем формулы: $\sin 5x = 2\sin\frac{5x}{2}\cos\frac{5x}{2}$; $\cos 5x = \cos^2\frac{5x}{2} - \sin^2\frac{5x}{2}$; $1 = \sin^2\frac{5x}{2} + \cos^2\frac{5x}{2}$ и всё это подставим в уравнение. Затем все слагаемые перенесём в левую часть уравнения и приведём подобные. В результате получится уравнение $(\sqrt{3} + 1)\sin^2\frac{5x}{2} - 2\sin\frac{5x}{2}\cos\frac{5x}{2} + (1 - \sqrt{3})\cos^2\frac{5x}{2} = 0$. После деления на $\cos^2\frac{5x}{2}$

получим уравнение $(\sqrt{3}+1)$ tg² $\frac{5x}{2}-2$ tg $\frac{5x}{2}+(1-\sqrt{3})=0$. Отсюда следует:

1)
$$\operatorname{tg} \frac{5x}{2} = 1 \implies \frac{5x}{2} = \frac{\pi}{4} + \pi n$$
; $x = \frac{\pi}{10} + \frac{2}{5}\pi n$.

2)
$$\operatorname{tg} \frac{5x}{2} = \frac{1-\sqrt{3}}{\sqrt{3}+1} \implies \frac{5x}{2} = \operatorname{arctg} \frac{1-\sqrt{3}}{\sqrt{3}+1} + \pi n = -\frac{\pi}{12} + \pi n \quad ; \quad x = -\frac{\pi}{30} + \frac{2}{5}\pi n \quad .$$

Omeem:
$$\frac{\pi}{10} + \frac{2}{5}\pi n$$
 ; $-\frac{\pi}{30} + \frac{2}{5}\pi n$, $n \in \mathbb{Z}$.

<u>Второй способ</u> — введение вспомогательного угла. Разделив все коэффициенты уравнения на $\sqrt{1^2 + \left(\sqrt{3}\right)^2} = 2$, получим $\frac{1}{2}\sin 5x + \frac{\sqrt{3}}{2}\cos 5x = \frac{1}{2}$. Коэффициенты

при синусе и косинусе – это «табличные» числа, именно $\frac{1}{2} = \cos \frac{\pi}{3}$; $\frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$.

Следовательно, уравнение можно переписать в виде $\cos \frac{\pi}{3} \sin 5x + \sin \frac{\pi}{3} \sin 5x = \frac{1}{2}$

или
$$\sin\left(5x + \frac{\pi}{3}\right) = \frac{1}{2}$$
. Отсюда $5x + \frac{\pi}{3} = (-1)^n \frac{\pi}{6} + \pi n$; $x = -\frac{\pi}{15} + (-1)^n \frac{\pi}{30} + \frac{\pi n}{5}$.

Omeem:
$$-\frac{\pi}{15} + (-1)^n \frac{\pi}{30} + \frac{\pi n}{5}$$
, $n \in \mathbb{Z}$.

Замечание. Форма записи общего решения тригонометрического уравнения может зависеть от способа решения уравнения. Однако все эти формы

записи определяют *одно и то же множество решений*. Желающие убедиться в этом могут найти все решения примера 14 на отрезке $[0; 2\pi]$, исходя из ответов, полученных как по первому, так и по второму способу.

<u>Пример 15.</u> Найти сумму корней уравнения $\sin 3x \sin 5x = \sin x \sin 7x$, принадлежащих отрезку [0°; 90°].

Решение. Разложим произведения в суммы, используя формулы пункта 13. Имеем: $\frac{1}{2}\cos 2x - \frac{1}{2}\cos 8x = \frac{1}{2}\cos 6x - \frac{1}{2}\cos 8x$; $\cos 2x - \cos 6x = 0$. Разность косинусов разложим в произведение по формуле из пункта 14. Получим $2\sin 4x\sin 2x = 0$. Корни этого уравнения, принадлежащие данному отрезку: 0° ; 45° ; 90° . Их сумма равна 135° . *Ответ*: 135° .

Решение. *ОДЗ*: $\sin 2x \neq 0$. Разложив числитель в произведение, получим $\frac{2\sin 2x \sin(-x)}{\sin 2x} + \sqrt{2} = 0$; $-2\sin x + \sqrt{2} = 0$. Корень этого уравнения,

принадлежащий данному отрезку: $\frac{3\pi}{4}$. Этот корень удовлетворяет условию, определяющему *ОДЗ*, поэтому его следует включить в ответ. *Ответ*: $\frac{3\pi}{4}$.

<u>Пример 17.</u> Найти все корни уравнения $\frac{\sin 4x}{\cos 5x} + 1 = 0$, принадлежащие отрезку [45°; 180°].

Решение. ОДЗ: $\cos 5x \neq 0$.

Умножив данное уравнение на $\cos 5x$, получим $\sin 4x + \cos 5x = 0$. Теперь мы «сделаем из косинуса синус» с помощью формулы приведения $\cos 5x = \sin \left(90^\circ - 5x\right)$. Имеем: $\sin 4x + \sin \left(90^\circ - 5x\right) = 0$. Полученную сумму разложим в произведение: $2\sin \frac{-x + 90^\circ}{2}\cos \frac{9x - 90^\circ}{2} = 0$. Корни этого уравнения, принадлежащие данному отрезку: 90° ; 70° ; 110° ; 150° . Однако не все они принадлежат OD3, а именно $90^\circ \not\in OD$ 3. Ответ: 70° ; 110° ; 150° .

<u>Пример 18.</u> Найти все корни уравнения $\frac{\cos 2x}{1+\lg x}=1$ на отрезке $\left[-\frac{\pi}{2};\frac{3\pi}{2}\right].$

Решение. ОДЗ определяется условиями: $\begin{cases} \cos x \neq 0 \\ 1 + \operatorname{tg} x \neq 0 \end{cases}$. Почему надо писать второе условие — понятно: знаменатель имеющейся дроби не должен равняться нулю. Первое условие вытекает из того, что в уравнении имеется функция $\operatorname{tg} x = \frac{\sin x}{\cos x}$, которая определена, если $\cos x \neq 0$.

Замечание. По аналогичным соображениям, если в уравнении (или в неравенстве) имеется функция $\cot x$, то в *ОДЗ* следует включать условие $\sin x \neq 0$.

Вернёмся к решению данного уравнения. Имеем: $\frac{\cos^2 x - \sin^2 x}{1 + \frac{\sin x}{\cos x}} = 1$;

$$\frac{(\cos x - \sin x)(\cos x + \sin x)}{\frac{\cos x + \sin x}{\cos x}} = 1 \quad ; \quad (\cos x - \sin x)\cos x = 1 \quad ;$$

 $\cos^2 x - \sin x \cos x = \sin^2 x + \cos^2 x$; $-\sin x \cos x - \sin^2 x = 0$; $-\sin x \cdot (\cos x + \sin x) = 0$. Отсюда следует:

- 1) $\sin x = 0$; $x = \pi n$ (n = 0; ± 1 ; ± 2 ;...). При n = 0 : x = 0 принадлежит данному отрезку и принадлежит $O\mathcal{J}3$. При n = 1 : $x = \pi$ принадлежит данному отрезку и принадлежит $O\mathcal{J}3$. При всех остальных n : $x = \pi n$ не принадлежит данному отрезку.

<u>Пример 19.</u> Найти все корни уравнения $\frac{\cos 3x + \cos x}{\cos x} + 1 = 0$ на отрезке $\left[-\frac{\pi}{2}; 0 \right]$.

 Решение.
 OД3:
 $\cos x \neq 0$. Разложив числитель в произведение, получим

 $\frac{2\cos 2x\cos x}{\cos x} + 1 = 0$;
 $2\cos 2x + 1 = 0$;
 $\cos 2x = -\frac{1}{2}$;
 $2x = \pm \frac{2\pi}{3} + 2\pi n$;

 $x = \pm \frac{\pi}{3} + \pi n$ $(n = 0; \pm 1; \pm 2; \dots)$.
 . После отбора корней легко выяснить, что

 только один корень, именно $x = -\frac{\pi}{3}$, принадлежит данному отрезку.

Ombem: $-\frac{\pi}{3}$.

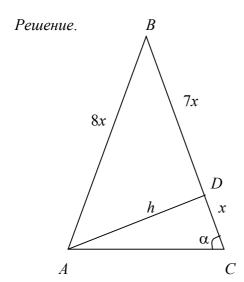
Задачи для самостоятельного решения

- 1. Вычислить $4\sin 36^{\circ}\cos 6^{\circ} + 4\sin^2 24^{\circ} 4$.
- Вычислить $arccos(sin(600^\circ))$.
- Вычислить $\operatorname{ctg}(\operatorname{arccos}(-\frac{4}{7}))$
- 4. Вычислить в градусах угол $\arctan \frac{\sqrt{3}}{2} \arctan \frac{5}{\sqrt{2}}$.
- Вычислить $A = tg(\frac{1}{2} \cdot arcsin(-\frac{2}{3}))$.
- 6. Дано: $\frac{2\cos\alpha \sin\alpha}{3\sin\alpha + 4\cos\alpha} = \frac{11}{27}$. Найти $\cot\alpha$.
- 7. Дано: $tg\frac{\alpha}{2} = \frac{1}{2}$. Найти $\frac{3\sin\alpha + 6\cos\alpha}{3\sin\alpha + \cos\alpha}$
- 8. Упростить выражение $\left(\frac{\sin 4\alpha}{\cos \alpha} + \frac{\cos 4\alpha}{\sin \alpha}\right) \cdot \left(\frac{1}{\cos 3\alpha} \frac{1}{\cos \alpha}\right)$.

 9. Упростить выражение $\frac{\sin 2\alpha \cdot (\cot \alpha + \tan \alpha)}{(1 + \tan 2\alpha \tan \alpha)\cos 2\alpha}$.
- 10. Найти среднее арифметическое корней уравнения $\sin 2x 2 \cdot \sqrt{3} \cdot \cos^2 x = 0$, принадлежащих промежутку $\left(-\frac{\pi}{4}; \frac{3\pi}{4}\right)$.
- 11. Найти сумму корней уравнения $2\sin^2 x + 3\sin(90^\circ + x) 3 = 0$, принадлежащих интервалу $(-60^{\circ}; 420^{\circ})$.
- 12. Найти среднее арифметическое корней уравнения $3 \cot x = 2 \sin x$, принадлежащих промежутку $\left| -\frac{\pi}{4}; 4\pi \right|$.
- 13. Найти количество корней уравнения $6\sin^2 x + 3\sin x \cos x = 2 + 5\cos^2 x$ принадлежащих отрезку $[-\pi;\pi]$.
- 14. Решить уравнение $\cos 4x \sin 4x = \sqrt{\frac{3}{2}}$ двумя способами с помощью перехода к половинному аргументу и с помощью введения вспомогательного угла.
- корней $\cos 3x \cos 2x - \sin x \sin 6x = \cos 7x$ 15. Найти сумму уравнения принадлежащих отрезку $[-150^{\circ}; -30^{\circ}]$.
- 16. Найти все корни уравнения $\frac{\sin x \cos x}{2 \sin x \sqrt{2}} = 0$, принадлежащие отрезку $[0; 2\pi]$.
- 17. Найти все корни уравнения $\frac{\cos 3x}{\sin 2x} = 1$, принадлежащие отрезку [0°; 180°].
- 18. Найти все корни уравнения $\frac{\sin 2x}{1-\cos 2x} + 1 = 0$ на отрезке [0; 2 π].
- 19. Найти все корни уравнения $\frac{\cos 5x \cos 3x}{\sin x} = 2$ на отрезке $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$.

ПЛАНИМЕТРИЯ

<u>Пример 1.</u> Высота равнобедренного треугольника, проведённая к его боковой стороне, делит эту сторону на части в отношении 7 : 1, считая от вершины треугольника. Найти косинус угла при основании треугольника.



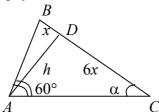
AB и BC — боковые стороны ΔABC ; AC — основание ΔABC ; AD = h — высота ΔABC ; BD = 7x ; DC = x ; AB = BC = 8x .

По теореме Пифагора, применённой к ΔABD , $h = \sqrt{AB^2 - BD^2} = \sqrt{64x^2 - 49x^2} = x \cdot \sqrt{15} \ .$

По теореме Пифагора, применённой к ΔADC , $AC = \sqrt{h^2 + x^2} = \sqrt{15x^2 + x^2} = 4x \ .$ $\cos\alpha = \frac{DC}{AC} = \frac{x}{4x} = \frac{1}{4} \ . \qquad \textit{Ответ:} \quad \frac{1}{4} \ .$

<u>Пример 2.</u> Один из углов треугольника равен 60° , а высота, опущенная из вершины этого угла, делит сторону на части в отношении 1:6. Найти тангенс меньшего угла треугольника.

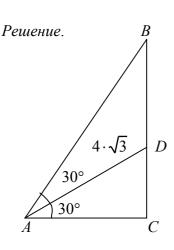
Решение.



$$BD = x$$
 ; $DC = 6x$.
 $AD = h$ — высота.
 $\angle BAC = 60^{\circ}$.
 $\angle ABD = 180^{\circ} - \alpha - 60^{\circ} = 120^{\circ} - \alpha$.
 α — меньший угол в $\triangle ABC$.

Из ΔADC $\operatorname{tg}\alpha = \frac{h}{6x} \Rightarrow \frac{h}{x} = 6\operatorname{tg}\alpha$. Из ΔADB $\frac{h}{x} = \operatorname{tg}\angle ABD = \operatorname{tg}(120^\circ - \alpha)$. Следовательно, $6\operatorname{tg}\alpha = \operatorname{tg}(120^\circ - \alpha)$; $6\operatorname{tg}\alpha = \frac{\operatorname{tg}120^\circ - \operatorname{tg}\alpha}{1 + \operatorname{tg}120^\circ\operatorname{tg}\alpha}$. Это уравнение имеет два решения: $\operatorname{tg}\alpha = -\frac{\sqrt{3}}{9}$ и $\operatorname{tg}\alpha = \frac{\sqrt{3}}{2}$. Так как, по смыслу задачи, α — острый угол, то $\operatorname{tg}\alpha > 0$. *Ответ*: $\frac{\sqrt{3}}{2}$.

<u>Пример 3.</u> Острый угол прямоугольного треугольника равен 60° , а биссектриса этого угла равна $4\cdot\sqrt{3}$. Найти площадь круга, описанного около треугольника.



M₃ ΔADC:
$$AC = AD\cos 30^\circ = 4 \cdot \sqrt{3} \cdot \frac{\sqrt{3}}{2} = 6$$
.

M₃ Δ*ABC*:
$$AB = \frac{AC}{\cos 60^{\circ}} = \frac{6}{1/2} = 12$$
.

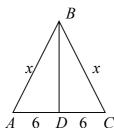
Так как центр круга, описанного около прямоугольного треугольника, находится на середине гипотенузы, то радиус круга равен

$$R = \frac{1}{2}\,AB = 6$$
 . Площадь круга $\,S = \pi R^2 = 36\pi\,$.

Ответ: 36π.

<u>Пример 4.</u> В равнобедренном треугольнике длина основания равна 12 см, а его периметр равен 32 см. Найти радиус вписанной окружности.

Решение.



Проведём BD — ось симметрии в ΔABC .

Периметр $\triangle ABC$ равен x + x + 12 = 32, отсюда x = 10.

По теореме Пифагора $BD = \sqrt{x^2 - 6^2} = \sqrt{10^2 - 6^2} = 8$

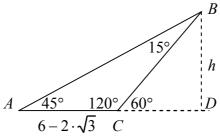
Площадь $S_{\Delta ABC}$ равна $\frac{1}{2} \cdot AC \cdot BD = \frac{1}{2} \cdot 12 \cdot 8 = 48$. Известно, что $S_{\Delta} = p_{\Delta} \cdot r$, где S_{Δ} – площадь ΔABC ,

 $p_{\scriptscriptstyle \Delta}$ – полупериметр ΔABC , r – радиус вписанного круга.

Следовательно, $r = \frac{S_{\triangle ABC}}{p_{\triangle ABC}} = \frac{48}{\frac{1}{2} \cdot 32} = 3$. *Ответ*: 3.

<u>Пример 5.</u> Углы треугольника относятся как 1:3:8, а его меньшая сторона равна $6-2\cdot\sqrt{3}$. Найти высоту треугольника, опущенную на эту сторону.

Решение. Обозначим углы треугольника через α , 3α , 8α . Сумма всех углов треугольника равна $\alpha + 3\alpha + 8\alpha = 180^{\circ}$. Отсюда $\alpha = 15^{\circ}$. Следовательно, углы треугольника соответственно равны 15°, 45°, 120°.



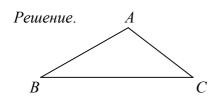
По теореме синусов $\frac{AC}{\sin 15^{\circ}} = \frac{BC}{\sin 45^{\circ}}$. Следовательно, $BC = AC \cdot \frac{\sin 45^{\circ}}{\sin 15^{\circ}}$

Кстати, $\sin 15^\circ = \sin (45^\circ - 30^\circ) = \sin 45^\circ \cos 30^\circ - \sin 30^\circ \cos 45^\circ = \frac{\sqrt{6 - \sqrt{2}}}{\sqrt{4}}$.

H₃ ΔBCD: $h = BC \sin 60^\circ = AC \cdot \frac{\sin 45^\circ}{\sin 15^\circ} \cdot \sin 60^\circ = (6 - 2 \cdot \sqrt{3}) \cdot \frac{\sin 45^\circ}{\sin 15^\circ} \cdot \sin 60^\circ = 6$.

Ответ: 6.

<u>Пример 6.</u> В треугольнике ABC : $\angle A$ — тупой , AC=5 , AB=6 , $\sin A$ =0,6 . Найти длину стороны BC .



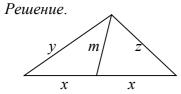
Из основного тригонометрического тождества $\sin^2 A + \cos^2 A = 1$ следует, что $\cos A = \pm \sqrt{1-\sin^2 A} = \pm \sqrt{1-\left(0,6\right)^2} = \pm 0.8$

Так как $\angle A$ – тупой , то $\cos A < 0$.

Следовательно, $\cos A = -0.8$. По теореме

косинусов $BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos A = 6^2 + 5^2 - 2 \cdot 6 \cdot 5 \cdot (-0.8) = 109$. Следовательно, $BC = \sqrt{109}$. Ответ: $\sqrt{109}$.

<u>Пример 7.</u> Треугольник, периметр которого равен 15 cм, делится медианой на два треугольника с периметрами 11 cм и 14 cм. Найти длину медианы.



Обозначим длины элементов треугольника, как указано на рисунке. Исходя из условий задачи, составим систему уравнений. Требуется найти лишь одно неизвестное, m – длину медианы.

$$\begin{cases} y+z+2x=15\\ y+m+x=11 \end{cases}$$
 . Сложив 2-ое и 3-ье уравнения, получим $(y+z+2x)+2m=25$. $z+m+x=14$

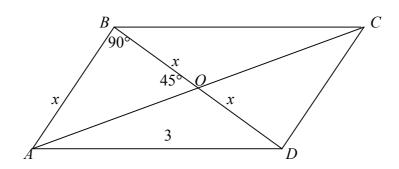
С учётом 1-го уравнения отсюда следует: 15 + 2m = 25, m = 5. Ответ: 5.

<u>Пример 8.</u> Диагонали параллелограмма равны 5 cm и $4\cdot\sqrt{2}$ cm , а угол между ними равен 45° . Найти площадь параллелограмма.

Решение. Площадь параллелограмма равна половине произведения диагоналей на синус угла между ними. Следовательно, $S = \frac{1}{2} \cdot 5 \cdot 4 \cdot \sqrt{2} \cdot \sin 45^\circ = 10$. *Ответ:* 10 .

<u>Пример 9.</u> Диагональ параллелограмма перпендикулярна одной из его сторон, а угол между диагоналями равен 45° . Найти площадь параллелограмма, если его большая сторона равна 3 c_M .

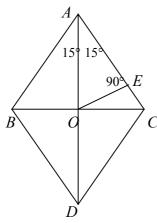
Решение.



Сторона AD является гипотенузой в прямоугольном $\triangle ABD$, поэтому AD > AB . Следовательно, большей стороной параллелограмма является именно AD . Обозначим BO = OD = x . Из прямоугольного $\triangle ABO$: $\frac{AB}{BO} = \operatorname{tg} 45^\circ = 1$. Следовательно, AB = BO = x . По теореме Пифагора, применённой к $\triangle ABD$, $AD^2 = AB^2 + SD^2$; $3^2 = x^2 + (2x)^2$. Отсюда $x^2 = \frac{9}{5}$. Известно, что площадь прямоугольного треугольника равна половине произведения его катетов. Поэтому $S_{\triangle ABD} = \frac{1}{2} \cdot AB \cdot BD = \frac{1}{2} \cdot x \cdot 2x = x^2 = \frac{9}{5}$. Площадь параллелограмма ABCD в два раза больше площади треугольника ABD . Следовательно, $S_{ABCD} = 2 \cdot \frac{9}{5} = 3,6$. Отвери: 3,6 .

<u>Пример 10.</u> Острый угол ромба равен 30° , а радиус вписанного в ромб круга равен $2\cdot\sqrt{5}$. Найти площадь ромба.

Решение.



Из точки O пересечения диагоналей ромба (которые взаимно перпендикулярны) проведём $OE \perp AC$.

Радиус вписанного круга — это как раз $\ OE$.

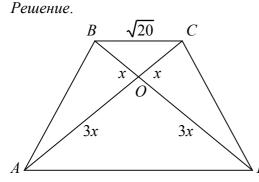
Из
$$\triangle AOC$$
: $\frac{OC}{AO} = \text{tg}15^{\circ} \implies OC = AO \text{tg}15^{\circ}$.

$$S_{\Delta AOC} = \frac{1}{2} \cdot AO \cdot OC = \frac{1}{2} (AO)^2 \text{ tg} 15^\circ =$$

$$= \frac{1}{2} \cdot \frac{(OE)^2}{\sin^2 15^\circ} \cdot \frac{\sin 15^\circ}{\cos 15^\circ} = \frac{\left(2 \cdot \sqrt{5}\right)^2}{2 \sin 15^\circ \cos 15^\circ} = \frac{20}{\sin 30^\circ} = 40.$$

$$S_{pon6a} = 4 \cdot S_{AAC} = 160. \quad Omsem: 160.$$

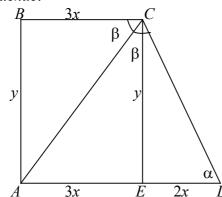
<u>Пример 11.</u> Диагонали равнобедренной трапеции взаимно перпендикулярны и делятся точкой пересечения в отношении 1:3. Найти боковую сторону трапеции, если её меньшее основание равно $\sqrt{20}$.



 ΔBOC — прямоугольный. По теореме Пифагора $BC^2 = BO^2 + OC^2$, т.е. $20 = x^2 + x^2 = 2x^2$. Отсюда $x^2 = 10$. ΔAOB — прямоугольный. По теореме Пифагора $AB^2 = AO^2 + OB^2 = 9x^2 + x^2 = 10x^2 = 100$. Следовательно, AB = 10 . *Ответ:* 10 .

<u>Пример 12.</u> Длины оснований прямоугольной трапеции относятся как 3:5, а диагональ является биссектрисой её тупого угла. Найти тангенс острого угла трапеции.

Решение.

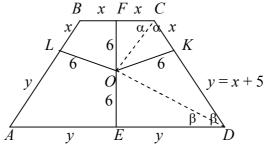


Проведём высоту CE и обозначим AB = CE = y. Из условия задачи следует, что BC = 3x, AD = 5x. Из рисунка ясно, что AE = BC = 3x, ED = AD - AE = 5x - 3x = 2x. Обозначим $\angle ACB = \angle ACD = \beta$, $\angle CDE = \alpha$. Так как $AD \parallel BC$ и CD — секущая, то $\alpha + 2\beta = 180^\circ$. Следовательно, $\beta = 90^\circ - \frac{\alpha}{2}$. Требуется найти $\log \alpha$.

Из
$$\Delta ABC$$
: $\frac{y}{3x}=\mathrm{tg}\,\beta=\mathrm{tg}\left(90^\circ-\frac{\alpha}{2}\right)=\mathrm{ctg}\,\frac{\alpha}{2}=\frac{1}{\mathrm{tg}\,\frac{\alpha}{2}} \implies \frac{y}{x}=\frac{3}{\mathrm{tg}\,\frac{\alpha}{2}}$.
Из ΔCED : $\frac{y}{2x}=\mathrm{tg}\,\alpha=\frac{2\,\mathrm{tg}\,\frac{\alpha}{2}}{1-\mathrm{tg}^2\,\frac{\alpha}{2}} \implies \frac{y}{x}=\frac{4\,\mathrm{tg}\,\frac{\alpha}{2}}{1-\mathrm{tg}^2\,\frac{\alpha}{2}}$.
Следовательно, $\frac{3}{\mathrm{tg}\,\frac{\alpha}{2}}=\frac{4\,\mathrm{tg}\,\frac{\alpha}{2}}{1-\mathrm{tg}^2\,\frac{\alpha}{2}}$. Отсюда $\mathrm{tg}\,\frac{\alpha}{2}=\sqrt{\frac{3}{7}}$. После подстановки в формулу $\mathrm{tg}\,\alpha=\frac{2\,\mathrm{tg}\,\frac{\alpha}{2}}{1-\mathrm{tg}^2\,\frac{\alpha}{2}}$ и упрощения получим $\mathrm{tg}\,\alpha=\frac{\sqrt{21}}{2}$. *Ответ*: $\frac{\sqrt{21}}{2}$.

<u>Пример 13.</u> В равнобедренную трапецию вписана окружность радиуса 6 cм. Точка касания делит боковую сторону на отрезки, разность между которыми равна 5 cм. Найти длину средней линии трапеции.

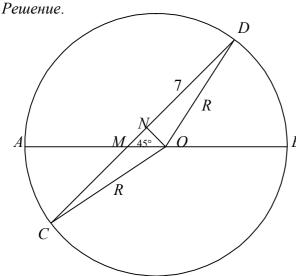
Решение.



Проведём ось симметрии EF . Пусть O — середина отрезка EF , $OL \perp AB$, $OK \perp CD$. Ясно, что OL , OK , OE и OF — радиусы вписанной окружности. $\triangle OFC = \triangle OKC$ (у них общая гипотенуза OC и два одинаковых катета OF и OK) . Следовательно, FC = CK = x и $\angle FCO = \angle KCO = \alpha$. Аналогично, из равенства треугольников $\triangle OED = \triangle OKD$ следует, что EED = y и EED = y и $EEDO = \angle EED = y$ и $EEDO = \triangle EED = x$ и EEDO = x и EEDO =

По теореме Пифагора для ΔCOD : $CD^2 = OC^2 + OD^2$. Следовательно, $(2x+5)^2 = 36+x^2+36+(x+5)^2$. Отсюда x=4 , y=x+5=9 . Длина средней линии трапеции равна $\frac{AD+BC}{2} = \frac{2y+2x}{2} = 13$. *Ответ*: 13 .

<u>Пример 14.</u> Через точку, которая делит диаметр круга в отношении 2:3, проведена хорда длиной 14~cm под углом 45° к диаметру. Найти расстояние от центра круга до хорды.



AB — диаметр окружности. M — точка, через которую проходит хорда. O — центр окружности. OA = OB = OC = OD = R — её радиусы. $ON \perp CD$; CD = 14.

Обозначим AM = 2x , MB = 3x . AM = MB = 5x = 2R .

Следовательно, R = 2.5x.

 $OM = OA - AM = 2,5x - 2x = \frac{x}{2}$. $M3 \Delta MNO : ON = OM \sin 45^\circ = \frac{x \cdot \sqrt{2}}{4}$.

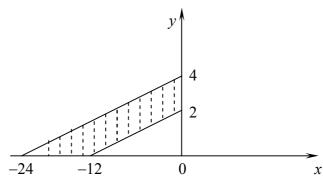
Так как ON – ось симметрии равнобедренного ΔCOD , то $DN = \frac{1}{2}CD = 7$.

По теореме Пифагора для ΔDNO : $R^2 = ON^2 + 7^2$; $(2.5x)^2 = \frac{2x^2}{16} + 49$. Отсюда $x = \sqrt{8}$. Требуемое расстояние $ON = \frac{\sqrt{8} \cdot \sqrt{2}}{4} = 1$. *Ответ:* 1 .

<u>Пример 15.</u> Найти площадь четырёхугольника, ограниченного прямыми $3y - \frac{x}{2} = 6$, $3y - \frac{x}{2} = 12$ и осями координат.

Peшeнue. В уравнение $3y - \frac{x}{2} = 6$ подставим x = 0 . Тогда y = 2 .

В уравнение $3y-\frac{x}{2}=6$ подставим y=0 . Тогда x=-12 . Следовательно, прямая $3y-\frac{x}{2}=6$ проходит через точки $\left(0\,;2\right)$ и $\left(-12\,;0\right)$. Аналогично, прямая $3y-\frac{x}{2}=12$ проходит через точки $\left(0\,;4\right)$ и $\left(-24\,;0\right)$.



Площадь заштрихованного четырёхугольника S равна разности площадей соответствующих прямоугольных треугольников: $S = \frac{1}{2} \cdot 24 \cdot 4 - \frac{1}{2} \cdot 12 \cdot 2 = 36$.

Ответ: 36.

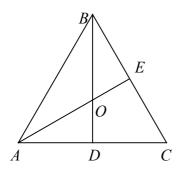
Задачи для самостоятельного решения

- 1. Высота равнобедренного треугольника, проведённая к его боковой стороне, делит эту сторону на части в отношении 3:22, считая от вершины треугольника. Найти синус угла при вершине треугольника.
- 2. Высота треугольника, проведённая из вершины его прямого угла, делит гипотенузу на части в отношении 3:4. Найти косинус меньшего острого угла треугольника.
- 3. Острый угол прямоугольного треугольника равен 60° , а биссектриса этого угла равна $6 \cdot \sqrt{2}$. Найти площадь треугольника.
- 4. В равнобедренном треугольнике боковая сторона равна 15 *см*, а его периметр равен 54 *см*. Найти радиус вписанной окружности.
- 5. Углы треугольника относятся как 1:4:7, а его меньшая сторона равна $\sqrt{3}-1$. Найти площадь треугольника.
- 6. В треугольнике ABC: $\angle B$ тупой , BC=2 , AB=13 , $\sin B = \frac{5}{13}$. Найти длину стороны AC .
- 7. Треугольник, периметр которого равен 18 *см* , делится медианой на два треугольника с периметрами 16 *см* и 14 *см* . Найти длину медианы.
- 8. Диагонали параллелограмма равны $6 \cdot \sqrt{6}$ *см* и $5 \cdot \sqrt{2}$ *см* , а угол между ними равен 60° . Найти площадь параллелограмма.
- 9. Диагонали параллелограмма равны 4 *см* и 6 *см* , и одна из них перпендикулярна стороне параллелограмма. Найти площадь параллелограмма.
- 10. Острый угол ромба равен 60° , а радиус вписанного в ромб круга равен $2 \cdot \sqrt{3}$ Найти периметр ромба.
- 11. Диагонали равнобедренной трапеции взаимно перпендикулярны и делятся точкой пересечения в отношении 3 : 4 . Найти большее основание трапеции, если её боковая сторона равна 10 .
- 12. Длины оснований прямоугольной трапеции относятся как 3 : 4 , а диагональ является биссектрисой её острого угла. Найти синус острого угла трапеции.
- 13. В равнобедренную трапецию вписан круг радиуса $3 \cdot \sqrt{5}$ *см*. Найти периметр трапеции, если её меньшее основание равно 6 *см*.
- 14. Через точку, которая делит диаметр круга в отношении 1:3, проведена хорда длиной $\sqrt{15}$ *см* под углом 30° к диаметру. Найти радиус круга.
- 15. Найти площадь четырёхугольника, ограниченного прямыми 2x-3y=6 , 2x-3y=18 и осями координат.

СТЕРЕОМЕТРИЯ

При решении задач на правильную пирамиду используются следующие факты.

Правильный треугольник.



Сторона основания AB = BC = AC = x. AE и BD — оси симметрии.

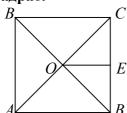
$$AD = DC = BE = EC = \frac{x}{2} .$$

Радиус вписанной окружности $OD = OE = \frac{x \cdot \sqrt{3}}{6}$.

Радиус описанной окружности $OA = OB = \frac{x \cdot \sqrt{3}}{3}$.

Площадь правильного треугольника $S = \frac{x^2 \cdot \sqrt{3}}{4}$.

Квадрат.



Сторона квадрата = x.

Диагональ квадрата $AC = x \cdot \sqrt{2}$.

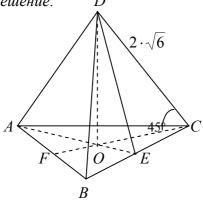
Радиус описанного круга $OC = \frac{x \cdot \sqrt{2}}{2}$.

Радиус вписанного круга $OE = \frac{x}{2}$.

Площадь квадрата $S = x^2$.

<u>Пример 1.</u> Боковое ребро правильной треугольной пирамиды равно $2 \cdot \sqrt{6}$ см и образует угол 45° с плоскостью основания пирамиды. Найти объём и площадь боковой поверхности пирамиды.

Решение.



AE и CF — оси симметрии в ΔABC .

DE — апофема пирамиды.

$$CD = 2 \cdot \sqrt{6}$$
; $\angle DCO = 45^{\circ}$.

Пусть сторона основания BC = x.

Тогда
$$EC = \frac{x}{2}$$
; $OC = \frac{x \cdot \sqrt{3}}{3}$; $OE = \frac{x \cdot \sqrt{3}}{6}$.

Из
$$\Delta DOC$$
: $OC = CD \cdot \cos 45^{\circ}$

Следовательно,
$$\frac{x \cdot \sqrt{3}}{3} = 2 \cdot \sqrt{6} \cdot \frac{\sqrt{2}}{2}$$
 . Отсюда

$$x = 6$$
; $EC = 3$; $OC = 2 \cdot \sqrt{3}$; $OE = \sqrt{3}$.

M₃ ΔDOC: DO = CD · sin 45° =
$$2 \cdot \sqrt{6} \cdot \frac{\sqrt{2}}{2} = 2 \cdot \sqrt{3}$$
.

Объём пирамиды
$$V=rac{1}{3}\cdot S_{\Delta\!A\!B\!C}\cdot DO=rac{1}{3}\cdot rac{x^2\cdot\sqrt{3}}{4}\cdot 2\cdot\sqrt{3}=18$$
 .

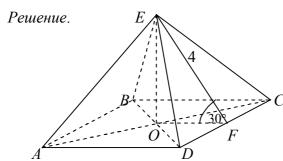
По теореме Пифагора для
$$\Delta DEC$$
 : $DE = \sqrt{CD^2 - EC^2} = \sqrt{24 - 9} = \sqrt{15}$.

Площадь боковой поверхности

$$S_{\delta o \kappa} = 3 \cdot S_{\Delta DBC} = 3 \cdot \frac{1}{2} \cdot BC \cdot DE = 3 \cdot \frac{1}{2} \cdot 6 \cdot \sqrt{15} = 9 \cdot \sqrt{15} .$$

Ombem: V = 18; $S_{\text{por}} = 9 \cdot \sqrt{15}$.

<u>Пример 2.</u> Апофема правильной четырёхугольной пирамиды равна 4 *см*, а боковая грань составляет с плоскостью основания угол 30°. Найти объём и площадь полной поверхности пирамиды.



Апофема EF = 4.

 $\angle EFO = 30^{\circ}$.

Пусть x — сторона основания.

Тогда $OF = \frac{x}{2}$.

Из ΔEOF : $OF = EF \cdot \cos 30^{\circ}$.

Следовательно,
$$\frac{x}{2} = 4 \cdot \frac{\sqrt{3}}{2}$$
 . Отсюда $x = 4 \cdot \sqrt{3}$. Из ΔEOF :

$$EO = EF \cdot \sin 30^{\circ} = 4 \cdot 0.5 = 2$$
.

Объём пирамиды
$$V=rac{1}{3}\cdot S_{ABCD}\cdot EO=rac{1}{3}\cdot \left(4\cdot\sqrt{3}
ight)^2\cdot 2=32$$
 .

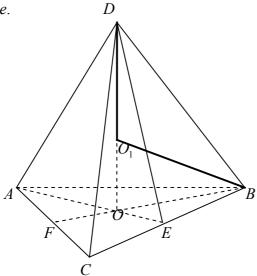
Площадь полной поверхности

$$S_{_{NOJH}} = S_{_{ABCD}} + 4 \cdot S_{_{\Delta CED}} = \left(4 \cdot \sqrt{3}\right)^2 + 4 \cdot \frac{1}{2} \cdot CD \cdot EF = 48 + 4 \cdot \frac{1}{2} \cdot 4 \cdot \sqrt{3} \cdot 4 = 48 + 32 \cdot \sqrt{3} \; .$$

Ombem: V = 32 ; $S_{nonh} = 48 + 32 \cdot \sqrt{3}$.

<u>Пример 3.</u> В правильной треугольной пирамиде длина высоты в два раза больше длины ребра основания. Найти отношение объёма вписанного шара к объёму описанного шара.

Решение.



Пусть x — сторона основания.

AE и BF_{-} оси симметрии.

$$BO = \frac{x \cdot \sqrt{3}}{3}$$
 ; $OE = \frac{x \cdot \sqrt{3}}{6}$

Высота DO = 2x.

Обозначим через R радиус описанного шара.

Пусть O_1 – его центр.

Тогда $O_1D = O_1B = R$.

$$O_1O = DO - O_1D = 2x - R .$$

По теореме Пифагора для $\Delta O_1 OB$: $\left(O_1 O\right)^2 + \left(OB\right)^2 = \left(O_1 B\right)^2$, т.е.

 $(2x-R)^2 + \left(\frac{x\cdot\sqrt{3}}{3}\right)^2 = R^2$. Из этого уравнения находим, что $R = \frac{13}{12} \cdot x$.

Объём пирамиды $V = \frac{1}{3} \cdot S_{\Delta ABC} \cdot DO = \frac{1}{3} \cdot \frac{x^2 \cdot \sqrt{3}}{4} \cdot 2x = \frac{x^3 \cdot \sqrt{3}}{6}$

По теореме Пифагора для ΔDOE : $DE = \sqrt{DO^2 + OE^2} = \sqrt{4x^2 + \frac{x^2}{12}} = \frac{7x}{2 \cdot \sqrt{3}}$.

Площадь полной поверхности пирамиды

$$S_{norm} = S_{\Delta ABC} + 3 \cdot S_{\Delta DCB} = S_{\Delta ABC} + 3 \cdot \frac{1}{2} \cdot BC \cdot DE = \frac{x^2 \cdot \sqrt{3}}{4} + 3 \cdot \frac{1}{2} \cdot x \cdot \frac{7x}{2 \cdot \sqrt{3}} = 2x^2 \cdot \sqrt{3}$$
.

Радиус вписанного шара r находим по формуле $r = \frac{3 \cdot V}{S_{noл.H}} = \frac{3 \cdot \frac{x^3 \cdot \sqrt{3}}{6}}{2x^2 \cdot \sqrt{3}} = \frac{x}{4}$.

Искомое отношение
$$\frac{V_{enuc\,uapa}}{V_{onuc\,uapa}} = \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R^3} = \left(\frac{r}{R}\right)^3 = \left(\frac{\frac{x}{4}}{\frac{13}{12}\cdot x}\right)^3 = \frac{27}{2197}$$
. Ответ: $\frac{27}{2197}$.

<u>Пример 4.</u> В правильной треугольной пирамиде боковые рёбра взаимно перпендикулярны, а длина бокового ребра равна 6 *см*. Найти объём и площадь полной поверхности пирамиды.

A E B

По условию, $\angle CDB = 90^{\circ}$. Апофема DE — биссектриса этого угла. Следовательно, $\angle BDE = 45^{\circ}$.

Пусть x — сторона основания. Тогда $BE = \frac{x}{2} = 6\sin 45^\circ = 3 \cdot \sqrt{2}$.

Отсюда $x = 6 \cdot \sqrt{2}$.

$$DE = 6\cos 45^{\circ} = 3 \cdot \sqrt{2}$$

 $OE = \frac{x \cdot \sqrt{3}}{6} = \sqrt{6}$. Площадь полной поверхности

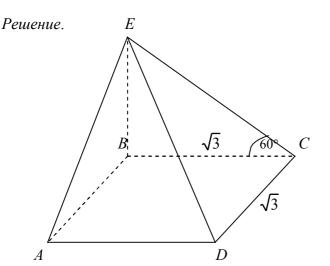
$$S_{norm} = S_{\Delta ABC} + 3 \cdot \frac{1}{2} \cdot BC \cdot DE = \frac{x^2 \cdot \sqrt{3}}{4} + \frac{3}{2} \cdot x \cdot 3 \cdot \sqrt{2} = 18 \cdot \sqrt{3} + 54$$

По теореме Пифагора для ΔDOE : $DO = \sqrt{DE^2 - OE^2} = \sqrt{18 - 6} = 2 \cdot \sqrt{3}$.

Объём пирамиды $V = \frac{1}{3} \cdot S_{\Delta ABC} \cdot DO = \frac{1}{3} \cdot \frac{x^2 \cdot \sqrt{3}}{4} \cdot 2 \cdot \sqrt{3} = 36$.

Ombem: $S_{norm} = 18 \cdot \sqrt{3} + 54$; V = 36 .

<u>Пример 5.</u> Найти площадь боковой поверхности пирамиды, в основании которой лежит квадрат со стороной $\sqrt{3}$ *см*, если одно из боковых рёбер перпендикулярно плоскости основания, а соседнее с ним ребро наклонено к плоскости основания под углом 60° .



 $BE \perp$ плоскости ABCD. Так как $CD \perp BE$ и $CD \perp BC$, то по теореме о трёх перпендикулярах $CD \perp EC$. Другими словами, $\angle ECD = 90^\circ$. Поскольку $\Delta ABE = \Delta CBE$ и $\Delta EAD = \Delta ECD$, то площадь боковой поверхности можно считать так:

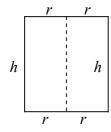
$$\begin{split} S_{\delta o \kappa} &= 2 \cdot S_{\Delta BEC} + 2 \cdot S_{\Delta DEC} = \\ &= 2 \cdot \frac{1}{2} \cdot BC \cdot BE + 2 \cdot \frac{1}{2} \cdot DC \cdot EC = \\ &= \sqrt{3} \cdot BE + \sqrt{3} \cdot EC \;. \end{split}$$

M₃ Δ*CBE*:
$$BE = BC \cdot \text{tg } 60^\circ = \sqrt{3} \cdot \sqrt{3} = 3$$
; $EC = \frac{BC}{\cos 60^\circ} = \frac{\sqrt{3}}{\cos 60^\circ} = 2 \cdot \sqrt{3}$.

Следовательно, $S_{\delta o \kappa} = \sqrt{3} \cdot 3 + \sqrt{3} \cdot 2 \cdot \sqrt{3} = 3 \cdot \sqrt{3} + 6$. Ответ: $3 \cdot \sqrt{3} + 6$.

<u>Пример 6.</u> Периметр осевого сечения цилиндра равен 10 cм, а площадь боковой поверхности равна 4π $cм^2$. Найти высоту цилиндра, если его объём равен 4π cm^3 .

Решение.



Осевым сечением цилиндра является прямоугольник.

Ось цилиндра изображена пунктиром.

 $r\,$ – радиус основания , $\,h\,$ – высота цилиндра.

Периметр осевого сечения равен 4r + 2h = 10.

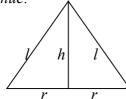
Площадь боковой поверхности равна $2\pi rh = 4\pi$. Полученная система уравнений имеет два решения:

$$\begin{cases} r_1 = 2 \\ h_1 = 1 \end{cases}$$
 $\begin{cases} r_2 = 0.5 \\ h_2 = 4 \end{cases}$

В первом случае объём цилиндра $V=\pi r^2h=4\pi$, что удовлетворяет условию. Во втором случае объём цилиндра $V=\pi r^2h=\pi$, что не удовлетворяет условию. *Ответ*: 1 .

<u>Пример 7.</u> Площадь полной поверхности конуса равна $4\pi \ cm^2$, а периметр осевого сечения равен 6 *см*. Найти высоту конуса.

Решение.



Осевым сечением конуса является равнобедренный треугольник.

r — радиус основания , h — высота , l — образующая. Периметр осевого сечения равен $\ 2l+2r=6$.

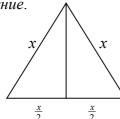
Площадь полной поверхности равна $\pi r l + \pi r^2 = 4\pi$.

Полученная система уравнений имеет единственное решение $\begin{cases} r=rac{4}{3} \\ l=rac{5}{3} \end{cases}$.

По теореме Пифагора $h = \sqrt{l^2 - r^2} = 1$. Ответ: 1.

<u>Пример 8.</u> Осевое сечение конуса — правильный треугольник с площадью $9\cdot\sqrt{3}$ cm^2 . Найти площадь боковой поверхности конуса.

Решение.



Обозначим сторону правильного треугольника через x . Тогда образующая конуса равна l=x ,

Радиус основания конуса равен $r = \frac{x}{2}$.

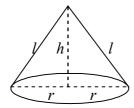
Площадь боковой поверхности равна $\pi r l = \frac{\pi x^2}{2}$

Площадь осевого сечения равна $\frac{x^2 \cdot \sqrt{3}}{4} = 9 \cdot \sqrt{3}$. Отсюда x = 6.

Следовательно, площадь боковой поверхности конуса равна 18π . *Ответ*: 18π .

<u>Пример 9.</u> Развёрткой конуса является четверть круга, а длина образующей конуса равна $4\cdot\sqrt{15}$. Найти объём конуса.

Решение. Пусть r – радиус основания , $l = 4 \cdot \sqrt{15}$ – образующая , h – высота.



С одной стороны, длина окружности основания конуса равна $2\pi r$. С другой стороны, эта же длина равна длине дуги развёртки боковой поверхности, т.е. длине четверти окружности радиуса l, т.е. $\frac{1}{4}\cdot 2\pi l$.

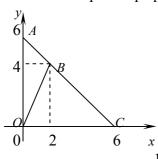
Следовательно, $2\pi r = \frac{1}{4} \cdot 2\pi l$. Отсюда $r = \frac{1}{4} l = \sqrt{15}$.

По теореме Пифагора $h = \sqrt{l^2 - r^2} = \sqrt{240 - 15} = 15$.

Объём конуса равен $\frac{1}{3} \cdot \pi r^2 h = \frac{1}{3} \cdot \pi \cdot 15 \cdot 15 = 75\pi$. *Ответ:* 75π .

<u>Пример 10.</u> Область, ограниченная линиями y = 2x, y = 6 - x и x = 0, вращается вокруг оси Ox. Найти объём полученного тела вращения.

Решение. Построим графики всех данных функций. Требуется найти объём тела,



которое получается в результате вращения вокруг оси Ox треугольника OAB. Объём этого тела равен объёму конуса, образованного вращением отрезка AC (радиус основания r=6, высота h=6), минус объём конуса, образованного вращением отрезка BC (радиус основания r=4, высота h=4), минус объём конуса, образованного вращением отрезка OB (радиус основания r=4, высота h=2).

Следовательно, $V_{\text{mena}} = \frac{1}{3} \cdot \pi \cdot 6^2 \cdot 6 - \frac{1}{3} \cdot \pi \cdot 4^2 \cdot 4 - \frac{1}{3} \cdot \pi \cdot 4^2 \cdot 2 = 40\pi$. Ответ: 40π .

<u>Пример 11.</u> Сфера радиуса 5 *см* проходит через все вершины прямоугольного параллелепипеда, в основании которого лежит прямоугольник со сторонами 3 *см* и 4 *см*. Найти объём параллелепипеда.

 $Peшение. \ \,$ Обозначим через $\,x\,,\,y\,,\,z\,$ и $\,d\,$ соответственно длину, ширину, высоту и

диагональ параллелепипеда. По условию, x=3, y=4. Так как сфера является *описанной* около прямоугольного параллелепипеда, то её диаметр равен длине диагонали параллелепипеда. Следовательно, $d=2\cdot 5=10$. По свойству диагонали параллелепипеда $d^2=x^2+y^2+z^2$, т.е. $10^2=3^2+4^2+z^2$, отсюда $z=\sqrt{75}=5\cdot\sqrt{3}$. Объём параллелепипеда равен $xyz=60\cdot\sqrt{3}$. *Ответ:* $60\cdot\sqrt{3}$.

<u>Пример 12.</u> Диагональ куба равна 12 c_M . Найти площадь сферы, касающейся всех граней этого куба.

Решение. Обозначим через x и d соответственно ребро и диагональ куба. По условию, d=12. По свойству диагонали куба $d^2=x^2+x^2+x^2$, т.е. $12^2=3x^2$, отсюда $x=\sqrt{48}$. Так как данная сфера является вписанной в куб, то её радиус R равен половине ребра куба, т.е. $R=\frac{1}{2}x=\frac{1}{2}\cdot\sqrt{48}=\sqrt{12}$. Площадь сферы равна $4\pi R^2=48\pi$. Ответ: 48π .

Задачи для самостоятельного решения

- 1. Сторона основания правильной треугольной пирамиды равна $6\cdot\sqrt{2}$ *см*, а угол между боковой гранью и плоскостью основания пирамиды равен 45°. Найти объём и площадь боковой поверхности пирамиды.
- 2. Боковое ребро правильной четырёхугольной пирамиды равно 4 *см* и образует угол 30° с плоскостью основания пирамиды. Найти объём и площадь полной поверхности пирамиды.
- 3. В правильной четырёхугольной пирамиде длина высоты в три раза больше длины ребра основания. Найти отношение площади поверхности описанного шара к площади поверхности вписанного шара.
- 4. В правильной треугольной пирамиде боковые рёбра взаимно перпендикулярны, а высота пирамиды равна 2 *см*. Найти объём и площадь полной поверхности пирамиды.
- 5. В основании пирамиды лежит равносторонний треугольник. Одно из боковых рёбер перпендикулярно основанию, а два других наклонены к основанию под углом 60° . Найти объём пирамиды, если апофема боковой грани, имеющей большую площадь, равна $\sqrt{15}$ *см*.
- 6. Площадь осевого сечения цилиндра равна $3~cm^2$, а площадь его полной поверхности равна $11\pi~cm^2$. Найти объём цилиндра.
- 7. Площадь осевого сечения конуса равна $4 \cdot \sqrt{3} \ cm^2$, а его объём равен $8\pi \ cm^3$. Найти образующую конуса.
- 8. Осевое сечение конуса прямоугольный треугольник с гипотенузой, равной 18 *см*. Найти объём конуса.
- 9. Диагональ боковой развёртки цилиндра равна 2 *см* и пересекает основание под углом 30°. Найти объём цилиндра.
- 10. Область, ограниченная линиями y = x, y = 4 x и y = 1, вращается вокруг оси Ox. Найти объём полученного тела вращения.
- 11. Сфера проходит через все вершины прямоугольного параллелепипеда с рёбрами 1 *см*, 2 *см* и 2 *см*. Найти объём шара, ограниченного этой сферой.
- 12. Диагональ куба равна 6 см. Найти объём шара, касающегося всех граней этого куба.

ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА

Свойства степеней.

Если a > 0, x - любое число, то $a^x > 0$.

$$a^{x+y} = a^{x} \cdot a^{y} \quad ; \quad a^{x-y} = \frac{a^{x}}{a^{y}} \quad ; \quad a^{xy} = \left(a^{x}\right)^{y} = \left(a^{y}\right)^{x} \quad ; \quad a^{x} \cdot b^{x} = \left(ab\right)^{x} \quad ; \quad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x} .$$

$$a^{0} = 1 \quad ; \quad a^{-n} = \frac{1}{a^{n}} \quad ; \quad a^{\frac{k}{n}} = \sqrt[n]{a^{k}} = \left(\sqrt[n]{a}\right)^{k} .$$

Свойства логарифмов.

 $\log_a b$ — это показатель степени, в который нужно возвести число a , чтобы получить число b . Основное логарифмическое тождество: $a^{\log_a b} = b$.

Выражение
$$\log_a b$$
 определено, если
$$\begin{cases} b>0\\ a>0\\ a\neq 1 \end{cases}$$

При x > 0, y > 0, a > 0, $a \ne 1$, b > 0, $b \ne 1$ справедливы формулы: $x^{\log_a y} = y^{\log_a x}$;

$$\log_a x + \log_a y = \log_a (xy) \quad ; \quad \log_a x - \log_a y = \log_a \left(\frac{x}{y}\right) \quad ;$$

$$\log_a(x^n) = n \cdot \log_a x \quad ; \quad \log_{a^k}(x) = \frac{1}{k} \cdot \log_a x \quad ; \quad \log_{a^k}(x^n) = \frac{n}{k} \cdot \log_a x \quad ;$$

$$\log_a b = \frac{1}{\log_b a}$$
 ; $\log_a b = \frac{\log_c b}{\log_a a}$ (при $c > 0$, $c \ne 1$) ; $\log_a b = \frac{\lg b}{\lg a} = \frac{\ln b}{\ln a}$.

Основные значения логарифмов: $\log_a 1 = 0$; $\log_a a = 1$; $\log_a (a^n) = n$.

Замечание.

Если из условий задачи не вытекает, что x>0 , то **при чётных значениях** n используют формулы: $\log_a(x^n) = n \cdot \log_a|x|$; $\log_{x^n}(a) = \frac{1}{n} \cdot \log_{|x|}(a)$.

Простейшие степенные уравнения.

- 1) Если n нечётное число , a любое число , то $x^n = a \implies x = \sqrt[n]{a}$. Например, $x^5 = 32 \implies x = \sqrt[5]{32} = 2$; $x^3 = -15 \implies x = \sqrt[3]{-15} = -\sqrt[3]{15}$.
- 2) Если n чётное число , a < 0 , то уравнение $x^n = a$ не имеет решений. Если n чётное число , $a \ge 0$, то $x^n = a$ $\Rightarrow x = \pm \sqrt[n]{a}$. Например, $x^2 = -4$ \Rightarrow нет решений ; $x^2 = 14$ \Rightarrow $x = \pm \sqrt{14}$; $x^4 = -16$ \Rightarrow нет решений ; $x^4 = 16$ \Rightarrow $x = \pm \sqrt[4]{16} = \pm 2$.
- 3) Если n нечётное число , a любое число , то $\sqrt[n]{x} = a \implies x = a^n$. Например, $\sqrt[5]{x} = 2 \implies x = 2^5 = 32$; $\sqrt[3]{x} = -8 \implies x = (-8)^3 = -512$.

4) Если n — чётное число , a < 0 , то уравнение $\sqrt[n]{x} = a$ не имеет решений. Если n — чётное число , $a \ge 0$, то $\sqrt[n]{x} = a$ $\Rightarrow x = a^n$. Например, $\sqrt{x} = -9$ \Rightarrow нет решений ; $\sqrt{x} = 9$ \Rightarrow $x = 9^2 = 81$; $\sqrt[n]{x} = -2$ \Rightarrow нет решений ; $\sqrt[n]{x} = 2$ \Rightarrow $x = 2^6 = 64$.

Простейшие показательные и логарифмические уравнения.

Пусть a > 0, $a \ne 1$.

- 1) Если $b \le 0$, то уравнение $a^x = b$ не имеет решений. Если b > 0 , то $a^x = b \implies x = \log_a b$. Частный случай: $a^x = a^y \implies x = y$. Например, $2^x = -8 \implies$ нет решений ; $2^x = 15 \implies x = \log_2 15$; $2^x = 8 \implies 2^x = 2^3 \implies x = 3$.
- 2) При любом значении $b: \log_a x = b \implies x = a^b$. Частный случай: $\log_a x = \log_a y \implies x = y$. Например, $\log_3 x = -4 \implies x = 3^{-4} = \frac{1}{8!}$; $\log_2 x = \log_2 5 \implies x = 5$.

Простейшие показательные и логарифмические неравенства.

Если при решении неравенства мы "избавляемся" от основания степени или от логарифма, то при этом:

- 1) если основание больше 1, то знак неравенства сохраняется;
- 2) если основание меньше 1 (и больше 0), то знак неравенства меняет своё направление на противоположное.

Примеры.
$$2^x \ge 2^3 \implies x \ge 3$$
 ; $2^x \ge 5 \implies x \ge \log_2 5$; $2^x \le 2^3 \implies x \le 3$; $2^x \le 5 \implies x \le \log_2 5$; $\left(\frac{3}{7}\right)^x \ge \left(\frac{3}{7}\right)^x \ge \left(\frac{3}{7}\right)^x \ge \left(\frac{3}{7}\right)^x \ge \frac{2}{3} \implies x \le \log_{\frac{3}{7}}\left(\frac{2}{3}\right)$; $(0,5)^x \le (0,5)^3 \implies x \ge 3$; $(0,5)^x \le 3 \implies x \ge \log_{0,5} 3$; $\log_2 x \ge 5 \implies x \ge 2^5 \implies x \ge 32$; $\log_2 x \le 5 \implies 0 < x \le 2^5 \implies 0 < x \le 32$; $\log_{\frac{1}{2}} x \ge 5 \implies 0 < x \le \left(\frac{1}{2}\right)^5 \implies 0 < x \le \frac{1}{32}$; $\log_{\frac{1}{2}} x \le 5 \implies x \ge \left(\frac{1}{2}\right)^5 \implies x \ge \frac{1}{32}$.

<u>Пример 1.</u> Вычислить $A = \log_3 8 \cdot \log_{\sqrt{2}} 243$.

Решение. $A = \log_3(2^3) \cdot \log_{2^{0.5}}(3^5) = 3 \cdot \log_3 2 \cdot \frac{5}{0.5} \cdot \log_2 3 = 30 \cdot \log_3 2 \cdot \frac{1}{\log_3 2} = 30$.

Пример 2. Вычислить
$$A = \frac{4 \cdot \log_5 200}{\log_{25} 5} - \frac{2 \cdot \log_5 8}{\log_{625} 5}$$
.

Решение.
$$A = \frac{4 \cdot \log_5 200}{\frac{1}{2}} - \frac{2 \cdot \log_5 8}{\frac{1}{4}} = 8 \cdot (\log_5 200 - \log_5 8) = 8 \cdot \log_5 \left(\frac{200}{8}\right) = 16$$
.

<u>Пример 3.</u> Вычислить $A = \begin{pmatrix} 1,5 \end{pmatrix}^{\frac{1}{3 \cdot \log_{125} 3}} \cdot \begin{pmatrix} 2 \end{pmatrix}^{\frac{1}{3 \cdot \log_{125} 3}}$.

Решение. $A = \begin{pmatrix} 1,5 \cdot 2 \end{pmatrix}^{\frac{1}{3 \cdot \log_{125} 3}} = \begin{pmatrix} 3 \end{pmatrix}^{\frac{1}{3 \cdot \log_{3} 125}} = \begin{pmatrix} 3 \end{pmatrix}^{\log_{3} \sqrt[3]{125}} = 5$. Ответ: 5.

<u>Пример 6.</u> Решить уравнение $\left(\sqrt[5]{6^{x-1}}\right)^{x+3}=36^{x+1}$. Решение. Используя свойства степеней, получим $6^{\frac{1}{5}(x-1)(x+3)}=\left(6^2\right)^{x+1}$. Следовательно, $\frac{1}{5}\cdot(x-1)(x+3)=2x+2$. Отсюда $x_{1,2}=4\pm\sqrt{29}$. Ответ: $4\pm\sqrt{29}$.

<u>Пример 7.</u> Решить уравнение $6^x \cdot 3^{x+4} = 4^{x+1}$

Решение. Разделив уравнение на всю правую часть, получим $\frac{(2\cdot 3)^x\cdot 3^{x+4}}{(2^2)^{x+1}}=1$;

$$\frac{2^{x} \cdot 3^{x} \cdot 3^{x+4}}{2^{2x+2}} = 1 \; ; \; \frac{3^{2x+4}}{2^{x+2}} = 1 \; ; \; \frac{\left(3^{2}\right)^{x+2}}{2^{x+2}} = 1 \; ; \; \left(\frac{9}{2}\right)^{x+2} = \left(\frac{9}{2}\right)^{0} \; . \; \textit{Omsem: } -2 \; .$$

<u>Пример 8.</u> Решить уравнение $6^{\frac{x-1}{x}} \cdot 3^{x+1} = 9$.

Решение. *ОДЗ*: $x \neq 0$. Разделив уравнение на всю правую часть, получим

$$\frac{2^{\frac{x-1}{x}} \cdot 3^{\frac{x-1}{x}} \cdot 3^{x+1}}{3^2} = 1 \; ; \quad 2^{\frac{x-1}{x}} \cdot 3^{\frac{x^2-1}{x}} = 1 \; ; \quad 2^{\frac{x-1}{x}} \cdot 3^{\frac{(x+1)(x-1)}{x}} = 1 \; ; \quad \left(2 \cdot 3^{x+1}\right)^{\frac{x-1}{x}} = 1 \; .$$

Заметим, что $a^b=1$ в двух случаях: 1) a=1, b- любое; 2) b=0, $a\neq 0$. В соответствии с этим последнее уравнение распадается на два уравнения.

1)
$$2 \cdot 3^{x+1} = 1$$
. Отсюда $3^{x+1} = \frac{1}{2}$; $x+1 = \log_3\left(\frac{1}{2}\right) = -\log_3 2$; $x = -1 - \log_3 2$.

<u>Пример 9.</u> Решить уравнение $4^x + 4^{x+1} = 10 \cdot 2^{1-x}$. Решение. $2^{2x} + 2^{2x+2} = 10 \cdot \frac{2}{2^x}$; $2^{2x} + 2^{2x} \cdot 4 = \frac{20}{2^x}$; $2^{2x} \cdot (1+4) = \frac{20}{2^x}$; $2^{3x} = 4 = 2^2$; 3x = 2 ; $x = \frac{2}{3}$. *Ombem*: $x = \frac{2}{3}$.

<u>Пример 10.</u> Решить уравнение $25^{\log_2 x} - 6 \cdot 5^{\log_2 x} + 5 = 0$. Решение. После замены переменной $a = 5^{\log_2 x} > 0$ получим уравнение $a^2 - 6a + 5 = 0$. Его корни: $a_1 = 1$; $a_2 = 5$. Выполним обратную замену.

1)
$$5^{\log_2 x} = 1$$
; $\log_2 x = 0$; $x = 2^0 = 1$.

2)
$$5^{\log_2 x} = 5$$
; $\log_2 x = 1$; $x = 2^1 = 2$.

Ответ: 1;2.

<u>Пример 11.</u> Решить уравнение $\frac{16^x}{10^{2x}} - 4 = 3 \cdot (0,4)^x$.

Решение. Сначала преобразуем первое слагаемое: $\frac{16^x}{10^{2x}} = \frac{16^x}{100^x} = \left(\frac{16}{100}\right)^x = (0,16)^x \ .$ Имеем уравнение $(0,16)^x - 4 = 3 \cdot (0,4)^x$. Замена переменной: $a = (0,4)^x > 0$. Получим уравнение $a^2 - 3a - 4 = 0$. Его корни: $a_1 = -1$ (не подходит) , $a_2 = 4$ (подходит) . Обратная замена: $(0,4)^x = 4$. *Ответ*: $x = \log_{0,4} 4$.

<u>Пример 12.</u> Решить уравнение $(5+2\cdot\sqrt{6})^x+(5-2\cdot\sqrt{6})^x=10$. Решение. Так как $(5+2\cdot\sqrt{6})(5-2\cdot\sqrt{6})=1$, то $5-2\cdot\sqrt{6}=\frac{1}{5+2\cdot\sqrt{6}}$. Следовательно, уравнение принимает вид $(5+2\cdot\sqrt{6})^x+\frac{1}{(5+2\cdot\sqrt{6})^x}=10$. Замена переменной: $a=(5+2\cdot\sqrt{6})^x$. Получим уравнение $a+\frac{1}{a}=10$. Его корни: $a_{1,2}=5\pm\sqrt{24}=5\pm2\cdot\sqrt{6}$. Обратная замена: 1) $(5+2\cdot\sqrt{6})^x=5+2\cdot\sqrt{6}$; x=1 ; 2) $(5+2\cdot\sqrt{6})^x=5-2\cdot\sqrt{6}=\frac{1}{5+2\cdot\sqrt{6}}=(5+2\cdot\sqrt{6})^{-1}$; x=-1 . Ответ: ± 1 .

<u>Пример 13.</u> Решить уравнение $3\cdot 16^x + 36^x = 2\cdot 81^x$. Решение. Наименьшее основание $16 = 4^2$, наибольшее основание $81 = 9^2$, среднее основание $36 = 4\cdot 9$. Имеем: $3\cdot \left(4^2\right)^x + \left(4\cdot 9\right)^x - 2\cdot \left(9^2\right)^x = 0$; $3\cdot \left(4^x\right)^2 + 4^x\cdot 9^x - 2\cdot \left(9^x\right)^2 = 0$. Разделив уравнение на $\left(9^x\right)^2$, получим

$$3\cdot \frac{\left(4^x\right)^2}{\left(9^x\right)^2} + \frac{4^x}{9^x} - 2 = 0$$
 . Замена переменной: $a = \frac{4^x}{9^x} = \left(\frac{2}{3}\right)^{2x} > 0$. Получим уравнение $3a^2 + a - 2 = 0$. Его корни: $a_1 = -1$ (не подходит) , $a_2 = \frac{2}{3}$ (подходит). Обратная замена: $\left(\frac{2}{3}\right)^{2x} = \frac{2}{3}$. Отсюда $x = \frac{1}{2}$. *Ответ*: $\frac{1}{2}$.

<u>Пример 15.</u> Решить уравнение $\log_2^2(2x) = \log_2(2x^2) + 1$.

Решение. ОДЗ: $\begin{cases} 2x>0\\ 2x^2>0 \end{cases} \Rightarrow x>0 \text{ . Имеем: } (\log_2(2x))^2 = \log_2 2 + \log_2 x^2 + 1 \text{ ; } \\ (\log_2 2 + \log_2 x)^2 = 1 + 2 \cdot \log_2 x + 1 \text{ ; } (1 + \log_2 x)^2 = 2 + 2 \cdot \log_2 x \text{ . Замена переменной: } \\ a = \log_2 x \text{ . Получим } (1+a)^2 = 2 + 2a \text{ . Отсюда } a = \pm 1 \text{ . Обратная замена: } \\ 1) \log_2 x = 1 \text{ ; } x = 2^1 = 2 \text{ ; } 2) \log_2 x = -1 \text{ ; } x = 2^{-1} = \frac{1}{2} \text{ . } \textit{Ответ: } 2 \text{ ; } \frac{1}{2} \text{ . } \end{cases}$

<u>Пример 16.</u> Решить уравнение $\lg^2(10x^2) = 1 + \lg(x^6)$.

Решение. ОДЗ: $\begin{cases} 10x^2>0 \\ x^6>0 \end{cases} \Rightarrow x\neq 0 \text{ . Поэтому при выносе чётных степеней за} \end{cases}$ знаки логарифмов появляются модули (см. замечание на стр. 53) . Имеем: $\left(\lg\left(10x^2\right)\right)^2=1+6\cdot\lg|x| \quad ; \quad \left(\lg10+\lg x^2\right)^2=1+6\cdot\lg|x| \quad ; \quad \left(1+2\lg|x|\right)^2=1+6\cdot\lg|x| \quad .$ Замена: $a=\lg|x|$. Получим $(1+2a)^2=1+6a$. Отсюда $a_1=0$; $a_2=\frac{1}{2}$. Обратная замена: 1) $\lg|x|=0 \quad ; \quad |x|=1 \quad ; \quad x=\pm 1 \quad ; \quad 2) \quad \lg|x|=\frac{1}{2} \quad ;$ $|x|=10^{\frac{1}{2}}=\sqrt{10} \quad ; \quad x=\pm\sqrt{10} \quad . \quad \textit{Ответ: } \pm 1 \quad ; \quad \pm\sqrt{10} \quad .$

<u>Пример 17.</u> Решить уравнение $\log_{x+3} \left(2x^2 + 7x + 7\right) = 2$. Решение. ОДЗ: $2x^2 + 7x + 7 > 0$; x+3>0 ; $x+3\neq 1$. Из данного уравнения следует, что $2x^2 + 7x + 7 = \left(x+3\right)^2$. Отсюда $x_1 = 1 \in OДЗ$; $x_2 = -2 \notin OДЗ$. Ответ: 1 .

Пример 18. Решить уравнение
$$\frac{1}{\log_{x} 2} + \frac{1}{\log_{4} x} + 3 = 0$$
.

Решение. ОДЗ:
$$x > 0$$
 ; $x \ne 1$. Так как $\log_x 2 = \frac{1}{\log_2 x}$, то $\frac{1}{\log_x 2} = \log_2 x$.

Так как
$$\log_4 x = \log_{2^2} x = \frac{1}{2} \cdot \log_2 x = \frac{\log_2 x}{2}$$
 , то $\frac{1}{\log_4 x} = \frac{2}{\log_2 x}$. Следовательно,

уравнение можно переписать в виде $\log_2 x + \frac{2}{\log_2 x} + 3 = 0$. Решив это уравнение

с помощью замены переменной $a = \log_2 x$, получим:

1)
$$\log_2 x = -1$$
 ; $x = \frac{1}{2} \in O \mathcal{A} 3$;

2)
$$\log_2 x = -2$$
 ; $x = \frac{1}{4} \in O / 3$.

Ответ:
$$\frac{1}{2}$$
; $\frac{1}{4}$.

Пример 19. Решить уравнение
$$\log_{0.6x} \left(\frac{3}{5x} \right) + \frac{1}{\log_x^2(0.6)} = 1$$
.

 $Pешение. \ O \ \ \, 23: \ \, \begin{cases} x>0 \\ x\neq 1 \\ 0,6x\neq 1 \ , \ \, \text{т.e.} \ \, x\neq \frac{5}{3} \end{cases} \ \, .$ Преобразуем каждое слагаемое, входящее в

данное уравнение.
$$\log_{0,6x} \left(\frac{3}{5x}\right) = \log_{0,6x} \left(\frac{\frac{3}{5}}{x}\right) = \log_{0,6x} \left(\frac{0,6}{x}\right) = \frac{\log_{0,6} \left(\frac{0,6}{x}\right)}{\log_{0,6} \left(0,6x\right)} =$$

$$= \frac{\log_{0.6}(0.6) - \log_{0.6} x}{\log_{0.6}(0.6) + \log_{0.6} x} = \frac{1 - \log_{0.6} x}{1 + \log_{0.6} x} \qquad ; \qquad \frac{1}{\log_x^2(0.6)} = \left(\frac{1}{\log_x 0.6}\right)^2 = \left(\log_{0.6} x\right)^2 .$$

Перепишем уравнение в виде $\frac{1-\log_{0,6}x}{1+\log_{0,6}x}+(\log_{0,6}x)^2=1$. Решив это уравнение с помощью замены переменной $a=\log_{0.6}x$, получим:

1)
$$\log_{0.6} x = 0$$
 ; $x = (0.6)^0 = 1 \notin O \square 3$.

2)
$$\log_{0.6} x = 1$$
 ; $x = (0.6)^1 = 0.6 = \frac{3}{5} \in O \mathcal{I} 3$.

3)
$$\log_{0.6} x = -2$$
 ; $x = (0.6)^{-2} = \left(\frac{3}{5}\right)^{-2} = \frac{25}{9} \in O \square 3$. Omsem: $\frac{3}{5}$; $\frac{25}{9}$.

<u>Пример 20.</u> Решить уравнение $3^{\log_3\left(\frac{1}{9}\right)} \cdot x^{\log_3\left(\frac{x^3}{9}\right) - 3} = 1$.

Pешение. OД3: x > 0 . Упрощая уравнение, получим $\frac{1}{9} \cdot x^{\log_3\left(x^3\right) - \log_3 9 - 3} = 1$;

 $\frac{1}{9} \cdot x^{3 \cdot \log_3 x - 2 - 3} = 1$; $x^{3 \cdot \log_3 x - 5} = 9$. Полученное уравнение прологарифмируем по основанию 3 : $\log_3 \left(x^{3 \cdot \log_3 x - 5} \right) = \log_3 9$; $(3 \cdot \log_3 x - 5) \cdot \log_3 x = 2$. Решив это уравнение с помощью замены переменной $a = \log_3 x$, получим:

1)
$$\log_3 x = 2$$
 ; $x = 3^2 = 9$

2)
$$\log_3 x = -\frac{1}{3}$$
; $x = 3^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{3}}$. Omeem: 9; $\frac{1}{\sqrt[3]{3}}$.

Пример 21. Решить неравенство
$$\left(\frac{1}{2}\right)^{\log_3\left(x^2+6x-7\right)} \ge \frac{1}{4}$$
.

 $Peшение. \left(\frac{1}{2}\right)^{\log_3\left(x^2+6x-7\right)} \ge \left(\frac{1}{2}\right)^2 \; ; \; \log_3\left(x^2+6x-7\right) \le 2 \; ($ знак неравенства меняет

своё направление на противоположное, так как отбрасываемое основание $\frac{1}{2} < 1$).

Следовательно, $0 < x^2 + 6x - 7 \le 3^2$ или $\begin{cases} x^2 + 6x - 7 > 0 \\ x^2 + 6x - 7 \le 9 \end{cases}$. Поскольку методы

решения подобных систем неравенств были изложены ранее, мы не приводим *Omeem*: $[-8;-7) \cup (1;2]$. дальнейшего хода решения.

Пример 22. Решить неравенство
$$\left(\sin\frac{\pi}{3}\right)^{\sqrt{2x+3}-3} \ge \left(\frac{\pi}{3}\right)^{\sqrt{2x+3}-3}$$
.

Решение. Разделив неравенство на его правую часть (это можно делать по причине положительности правой части) , получим $\left(\frac{\sin\frac{\pi}{3}}{\frac{\pi}{3}}\right)^{\sqrt{2x+3}-3} \ge 1 = \left(\frac{\sin\frac{\pi}{3}}{\frac{\pi}{2}}\right)^0$.

Так как $\frac{\sin\frac{\pi}{3}}{\frac{\pi}{2}} \approx 0.83 < 1$, то при отбрасывании основания направление знака неравенства меняется. Следовательно, $\sqrt{2x+3}-3 \le 0$; $\sqrt{2x+3} \le 3$;

 $0 \le 2x + 3 \le 9$; $-3 \le 2x \le 6$; $-1,5 \le x \le 3$.

<u>Пример 23.</u> Решить неравенство $3^{\log_2 x} + 2 \cdot x^{\log_4 9} \le 3 \cdot x^{\log_x 9}$. *Решение. ОДЗ*: x > 0 ; $x \ne 1$. Сначала преобразуем отдельные слагаемые.

$$\log_4 9 = \log_{2^2} \left(3^2\right) = \frac{2}{2} \cdot \log_2 3 = \log_2 3 \qquad ; \qquad x^{\log_4 9} = x^{\log_2 3} = \begin{cases} no \ \phi opmyne \\ a^{\log_b c} = c^{\log_b a} \end{cases} = 3^{\log_2 x}$$

 $3 \cdot x^{\log_x 9} = 3 \cdot 9 = 27$. Следовательно, неравенство принимает вид: $3^{\log_2 x} + 2 \cdot 3^{\log_2 x} \le 27$. Дальнейший ход решения: $3^{\log_2 x} \cdot (1+2) \le 27$; $3^{\log_2 x} \le 9 = 3^2$; Следовательно, $\log_2 x \le 2$; $0 < x \le 2^2 = 4$. С учётом *ОДЗ* получаем следующий ответ. Ответ: $(0;1) \cup (1;4]$.

<u>Пример 24.</u> Решить неравенство $\log_{0,7}(x+5) \ge \log_{0,7}(x^2+2x-7)$.

$$Peшение. \ \, O \hspace{-0.5em} \not \square 3: \ \begin{cases} x+5>0 \\ x^2+2x-7>0 \end{cases} \quad \Rightarrow \quad x \in \left(-5\;; -1-\sqrt{8}\;\right) \cup \left(-1+\sqrt{8}\;; +\infty\;\right) \, .$$

В данном неравенстве отбрасываем логарифмы, меняя направление знака неравенства (потому что основание 0.7 < 1) . Получим $x + 5 \le x^2 + 2x - 7$. Это неравенство имеет решения $x \in (-\infty; -4] \cup [3; +\infty)$. Ответом является пересечение полученного множества с OД3. Ответом: $(-5; -4] \cup [3; +\infty)$.

Пример 25. Решить неравенство
$$\sqrt{\log_3 \frac{5x-3}{x+4}} < 1$$
.

Решение. Возведём неравенство в квадрат и учтём, что подкоренное выражение должно быть неотрицательным. $0 \le \log_3 \frac{5x-3}{x+4} < 1$; $3^0 \le \frac{5x-3}{x+4} < 3^1$; $\begin{cases} \frac{5x-3}{x+4} \ge 1 \\ \frac{5x-3}{x+4} < 3 \end{cases}$;

$$\begin{cases} \frac{4x-7}{x+4} \geq 0 \\ \frac{2x-15}{x+4} < 0 \end{cases} \quad \textit{Omsem: } \left[\begin{array}{c} \frac{7}{4} \, ; \frac{15}{2} \end{array} \right).$$

Пример 26. Решить неравенство
$$\frac{\sqrt{x+11}-3}{2^{|x|}-4} \ge 0$$
.

Решение. Данное неравенство мы решим методом интервалов. Обозначим $f(x) = \frac{\sqrt{x+11}-3}{2^{|x|}-4}$ и выполним три стандартных пункта.

1)
$$O \square 3$$
:
$$\begin{cases} x+11 \ge 0 \\ 2^{|x|}-4 \ne 0 \end{cases}$$
;
$$\begin{cases} x \ge -11 \\ 2^{|x|} \ne 2^2 \implies |x| \ne 2 \end{cases}$$
; $x \ne \pm 2$.

2)
$$f(x) = 0$$
 ; $\frac{\sqrt{x+11}-3}{2^{|x|}-4} = 0$; $\sqrt{x+11}-3 = 0$; $x = -2 \notin O \mathcal{J} 3$.

3) Рисунок и расстановка знаков функции f(x)

$$\frac{\bullet}{-11}$$
 $\frac{}{-2}$ $\frac{}{-2}$ $\frac{}{2}$

Omsem: $(2; +\infty)$

Пример 27. Решить неравенство
$$\frac{\sqrt{\log_{0,1}(x-3)+1}}{x^2-14x+40} \ge 0$$
.

Решение. Данное неравенство мы решим методом интервалов. Обозначим

$$f(x) = \frac{\sqrt{\log_{0,1}(x-3)+1}}{x^2-14x+40}$$
 и выполним три стандартных пункта.

1)
$$OJJ3$$
:
$$\begin{cases} \log_{0,1}(x-3)+1 \ge 0 \\ x^2-14x+40 \ne 0 \end{cases}$$
;
$$\begin{cases} \log_{0,1}(x-3) \ge -1 \\ x \ne 4 \end{cases}$$
;
$$\begin{cases} 3 < x \le 13 \\ x \ne 4 \end{cases}$$
;
$$x \ne 10$$
;
$$\begin{cases} 3 < x \le 13 \end{cases}$$

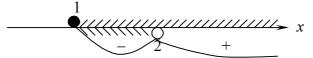
- 2) f(x) = 0; $\log_{0.1}(x-3) + 1 = 0$; $\log_{0.1}(x-3) = -1$; x = 13.
- 3) Рисунок и расстановка знаков функции f(x).

Ответ: $(3;4) \cup (10;13]$.

Пример 28. Решить неравенство $5^{\sqrt{x-1}} - 2 \cdot 5^{1-\sqrt{x-1}} < 3$.

Решение. Данное неравенство мы решим методом интервалов. Обозначим $f(x) = 5^{\sqrt{x-1}} - 2 \cdot 5^{1-\sqrt{x-1}} - 3 < 0$ и выполним три стандартных пункта.

- 1) OД3: $x \ge 1$.
- 2) f(x) = 0 ; $5^{\sqrt{x-1}} 2 \cdot \frac{5^1}{5^{\sqrt{x-1}}} 3 = 0$. Решив это уравнение с помощью замены переменной $a = 5^{\sqrt{x-1}}$, получим x = 2.
- 3) Рисунок и расстановка знаков функции f(x) .



Ответ: [1;2).

<u>Пример 29.</u> Найти целый корень уравнения $\log_2(3-|x|) = \sqrt{2x+3}$.

Решение. ОДЗ:
$$\begin{cases} 3 - |x| > 0 \\ 2x + 3 \ge 0 \end{cases}$$
;
$$\begin{cases} -3 < x < 3 \\ x \ge -1,5 \end{cases}$$
; $x \in [-1,5;3]$.

Целые числа, принадлежащие O / 3: -1; 0; 1; 2. Подставляя эти числа в данное уравнение, убеждаемся в том, что лишь число -1 является корнем уравнения. Ответ: -1.

Пример 30. Найти целый корень уравнения
$$4^{\frac{x+3}{2}} + \frac{x-3}{x+2} = 0$$
.

Решение. Имеем: $4^{\frac{x+3}{2}} = \frac{3-x}{x+2}$. Так как левая часть полученного уравнения положительна, то и правая часть должна быть положительной. Следовательно, $\frac{3-x}{x+2} > 0$, т.е. $x \in (-2;3)$. Целые числа, принадлежащие промежутку (-2;3): -1; 0; 1; 2. Подставляя эти числа в данное уравнение, убеждаемся в том, что лишь число -1 является корнем уравнения. Ответ: -1.

<u>Пример 31.</u> Решить уравнение $\log_2(3-2^{|x+1|})=x$.

- Решение. $O\!\mathcal{J}\!3:\ 3-2^{|x+1|}>0$. Из уравнения следует, что $\ 3-2^{|x+1|}=2^x$. 1) Если $x+1\geq 0$, то уравнение принимает вид $\ 3-2^{x+1}=2^x$. Отсюда $\ x=0$ (удовлетворяет OД3 и условию 1)).
- $x+1 \le 0$, то уравнение принимает вид $3-2^{-x-1}=2^x$. 2) Если Отсюда $x_1 = \log_2 \frac{3 + \sqrt{7}}{2}$ (не удовлетворяет условию 2)) ,

$$x_2 = \log_2 \frac{3 - \sqrt{7}}{2}$$
 (удовлетворяет *ОДЗ* и условию 2)).
 Ответ: 0 ; $\log_2 \frac{3 - \sqrt{7}}{2}$.

<u>Пример 32.</u> Найти количество целых решений неравенства $\log_{\frac{1}{3}}(x+5)+2\cdot\log_3 4 \ge \frac{1}{\log_{x-1} 3}$.

Решение. ОДЗ:
$$\begin{cases} x+5>0 \\ x-1>0 & ; \ x\in (1\,;2\,) \cup (2\,;+\infty\,) \\ x-1\neq 1 \end{cases}$$

Так как $\log_{\frac{1}{3}}(x+5) = -\log_3(x+5)$, $2 \cdot \log_3 4 = \log_3 16$, $\frac{1}{\log_{x-1} 3} = \log_3(x-1)$, то неравенство принимает вид $-\log_3(x+5) + \log_3 16 \ge \log_3(x-1)$. Отсюда следует: $\log_3 16 \ge \log_3(x-1) + \log_3(x+5)$; $\log_3 16 \ge \log_3(x^2 + 4x - 5)$; $x^2 + 4x - 5 \le 16$; $x^2 + 4x - 21 \le 0$; $(x-3)(x+7) \le 0$. На верхней части рисунка отметим *ОДЗ* , а на нижней части отметим все решения полученного неравенства.

Целое решение, принадлежащее пересечению полученных множеств: 3 . Количество целых решений равно 1 . *Ответ*: 1 .

Пример 33. Найти количество целых решений неравенства
$$(x^2 - 10x) \cdot \log_4(x - 3) \le \frac{25}{\log_{10} x \cdot 0.25}$$
.

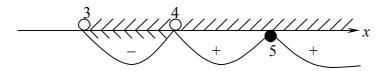
Решение. ОДЗ:
$$\begin{cases} x-3>0 \\ x-3\neq 1 \end{cases}$$
; $x\in (3;4)\cup (4;+\infty)$.

Так как
$$\frac{25}{\log_{x-3} 0.25} = 25 \cdot \log_{0.25}(x-3) = 25 \cdot \log_{4^{-1}}(x-3) = -25 \cdot \log_4(x-3)$$
, то

неравенство принимает вид $(x^2-10x)\cdot\log_4(x-3)\leq -25\cdot\log_4(x-3)$. Отсюда следует, что $(x^2-10x)\cdot\log_4(x-3)+25\cdot\log_4(x-3)\leq 0$;

$$(x^2 - 10x + 25) \cdot \log_4(x - 3) \le 0$$
; $f(x) = (x - 5)^2 \log_4(x - 3) \le 0$.

Решим уравнение f(x)=0 , т.е. $(x-5)^2\log_4(x-3)=0$. Из этого уравнения следует, что либо $(x-5)^2=0$, т.е. $x=5\in O\mathcal{J}3$, либо $x=4\notin O\mathcal{J}3$.

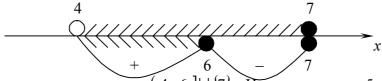


Все решения данного неравенства: $(3;4) \cup \{5\}$. Целое решение: 5. Количество целых решений равно 1. *Ответ*: 1.

Пример 34. Найти количество целых решений неравенства

$$\sqrt{7-x} \cdot \left(\log_{0,2} (2x-8) + \frac{1}{\log_{x-2} 5} \right) \ge 0$$
.

Решение. $O\!\!\mathcal{J}3$ определяется условиями: $7-x\geq 0$; 2x-8>0 ; x-2>0 ; x-2>0 ; $x-2\neq 1$. Отсюда следует, что $x\in (4\,;7\,]$. Так как $\log_{0,2}(2x-8)+\frac{1}{\log_{x-2}5}=\log_{5^{-1}}(2x-8)+\log_5(x-2)=-\log_5(2x-8)+\log_5(x-2)=$ $=\log_5\frac{x-2}{2x-8}$, то неравенство принимает вид $f(x)=\sqrt{7-x}\cdot\log_5\frac{x-2}{2x-8}\geq 0$. Решим уравнение f(x)=0 , т.е. $\sqrt{7-x}\cdot\log_5\frac{x-2}{2x-8}=0$. Из этого уравнения следует, что либо $\sqrt{7-x}=0$, т.е. $x=7\in O\!\!\mathcal{J}3$, либо $\log_5\frac{x-2}{2x-8}=0$, т.е. $x=6\in O\!\!\mathcal{J}3$. На верхней части рисунка изобразим $O\!\!\mathcal{J}3$, а на нижней части рисунка отметим точки, в которых f(x)=0 , и расставим знаки функции f(x) .



Все решения данного неравенства: $(4;6] \cup \{7\}$. Целые решения: 5;6;7. Количество целых решений равно 3. *Ответ*: 3.

Задачи для самостоятельного решения

- 1. Вычислить $\log_5 121 \cdot \log_{\sqrt{11}} 125$.
- 2. Вычислить $\frac{3 \cdot \log_3 54}{\log_{81} 3} \frac{4 \cdot \log_3 6}{\log_{27} 3} \ .$
- 3. Вычислить $(20)^{\frac{1}{2 \cdot \log_{81} 5}} \cdot (0,25)^{\frac{1}{2 \cdot \log_{81} 5}}$
- 4. Вычислить 5 $\log \sqrt{5}^{\sqrt{4+2\cdot\sqrt{3}}} + 5^{\log_{25}(2\cdot\sqrt{3}-4)^2}$.
- 5. Вычислить $3^{\frac{x-2}{x}} \cdot 6^{x-1}$ при $x = -\log_6 3$.
- 6. Решить уравнение $(\sqrt[3]{5^{x+1}})^{x-4} = 125^{x-1}$.
- 7. Решить уравнение $5^{2x-1} \cdot 3^{x+4} = 45^{x+1}$

8. Решить уравнение
$$2^{\frac{x+2}{x}} \cdot 3^{x-1} = 12$$
.

9. Решить уравнение
$$3^x - 3^{x-2} = 24 \cdot 9^{1-x}$$

10. Решить уравнение
$$4^{\log_9 x} - 6 \cdot 2^{\log_9 x} + 8 = 0$$

11. Решить уравнение
$$\frac{3^{2x}}{100^x} = 2 \cdot (0,3)^x + 3$$
.

12. Решить уравнение
$$(4+\sqrt{15})^x + (4-\sqrt{15})^x = 62$$
.

13. Решить уравнение
$$7 \cdot 4^{x^2} - 9 \cdot 14^{x^2} + 2 \cdot 49^{x^2} = 0$$

14. Решить уравнение
$$\log_{0,25}(x^2+x-4) = \log_{0,25}(x^2-2x-3) + 0.5$$
.

15. Решить уравнение
$$\log_2(x^3) \cdot \log_2(\frac{x}{4}) = \log_2(\frac{2}{x^4})$$
.

16. Решить уравнение
$$\log_3^2(3x^2) + \log_9(x^2) \cdot \log_3(\frac{x^2}{3}) = 1$$
.

17. Решить уравнение
$$\log_{4-x}(4x^2 - 16x + 13) = 2$$
.

18. Решить уравнение
$$\log_2 \sqrt{3x+1} \cdot \log_{x-1} 2 = 1$$
.

19. Решить уравнение
$$\log_{\frac{x}{3}} \left(\frac{1}{3x} \right) + \log_{x}^{-2} (3) = 1$$
.

20. Решить уравнение
$$x^{2 \cdot \lg^2 x - 1, 5} = \sqrt{10}$$

21. Решить неравенство
$$3^{\log_2(x^2-6x+5)} \le 27$$
.

22. Решить неравенство
$$\left(\operatorname{tg} \frac{\pi}{6} \right)^{\sqrt{2-3x}-3} < \left(\sin \frac{\pi}{6} \right)^{\sqrt{2-3x}-3}$$

23. Решить неравенство
$$6^{\log_{\frac{1}{3}}x} + 3 \cdot x^{\log_{\frac{1}{3}}6} > 4 \cdot x^{-2 \cdot \log_{x}6}$$

24. Решить неравенство
$$\log_6(x+2) < \log_6 \frac{18}{7-x}$$
.

25. Решить неравенство
$$\sqrt{\log_{0.5} \frac{2x+1}{x-3}} < 1$$
.

26. Решить неравенство
$$\frac{\sqrt{x+2}-2}{3^{-x}-\sqrt{3}} \le 0$$
.

27. Решить неравенство
$$\frac{\sqrt{\log_{0,2}(3x-4)}}{16x-25} \ge 0.$$

28. Решить неравенство
$$3^{1+\sqrt{3-x}} - 3^{1-\sqrt{3-x}} \le 8$$
.

29. Найти целый корень уравнения
$$\frac{\log_3(x+7)}{\log_3(-x-1)} = \frac{x+4}{x+3}$$
.

30. Найти целый корень уравнения
$$6^{\frac{x+5}{2}} + 2x^2 + 8x = 0$$

31. Решить уравнение
$$\log_3(4-3^{|x-2|})=x-2$$

32. Найти количество целых решений неравенства
$$\lg(x-1) + 2 \cdot \log_{0,1} 6 \le \frac{1}{\log_{x-9} 0,1}$$
.

33. Найти количество целых решений неравенства
$$(x^2 + 25) \cdot \log_{0,2}(x-3) + \frac{10x}{\log_{x-3} 5} \ge 0$$
.

34. Найти количество целых решений неравенства
$$\sqrt{6-x} \cdot \left(\log_{0,5}(2x-6) + \frac{1}{\log_{x-1} 2}\right) \ge 0$$
.

ПРОИЗВОДНЫЕ

Таблица производных.

$$(z^{n})' = nz^{n-1} \quad (n = Const) \quad ; \quad (\sqrt{z})' = \frac{1}{2 \cdot \sqrt{z}} \quad ; \quad (\frac{1}{z^{n}})' = -\frac{n}{z^{n+1}} \quad ;$$

$$(a^{z})' = a^{z} \ln a \quad (a = Const) \quad ; \quad (e^{z})' = e^{z} \quad ; \quad (\log_{a} z)' = \frac{1}{z \ln a} \quad ; \quad (\ln z)' = \frac{1}{z} \quad ;$$

$$(\sin z)' = \cos z \quad ; \quad (\cos z)' = -\sin z \quad ; \quad (\operatorname{tg} z)' = \frac{1}{\cos^{2} z} \quad ; \quad (\operatorname{ctg} z)' = -\frac{1}{\sin^{2} z} \quad .$$

Если z зависит от x , то каждую табличную производную нужно умножить на $\left(z\right)'$.

Свойства производной.

$$(Const)' = 0$$
; $(u \pm v)' = u' \pm v'$; $(C \cdot u)' = C \cdot (u)'$;
 $(uv)' = u'v + uv'$; $(uvw)' = u'vw + uv'w + uvw'$; $(\frac{u}{v})' = \frac{u'v - uv'}{v^2}$.

<u>Пример 1.</u> Найти производную функции $y=2\sin^3 3x+6\cdot\ln\cos 3x$ в точке $x_0=\frac{\pi}{18}$.

Решение. $y' = 2 \cdot (\sin^3 3x)' + 6 \cdot (\ln \cos 3x)'$. Считаем каждую производную по отдельности. В фигурных скобках даётся пояснение: выписывается табличная производная **с учётом фразы, написанной после таблицы производных**, и указывается, *что именно* следует подставить вместо z в написанную формулу.

$$\left(\sin^3 3x\right)' = \begin{cases} \left(z^3\right)' = 3z^2 \cdot (z)' \\ z = \sin 3x \end{cases} = 3\sin^2 3x \cdot \left(\sin 3x\right)' = 3\sin^2 3x \cdot \left(3\cos 3x\right) = 9\sin^2 3x\cos 3x \ .$$

$$(\ln \cos 3x)' = \begin{cases} (\ln z)' = \frac{1}{z} \cdot (z)' \\ z = \cos 3x \end{cases} = \frac{1}{\cos 3x} \cdot (\cos 3x)' = \frac{1}{\cos 3x} \cdot (-3\sin 3x) = -3 \operatorname{tg} 3x .$$

$$y' = 2 \cdot (9\sin^2 3x \cos 3x) + 6 \cdot (-3 \operatorname{tg} 3x) = 18 \cdot (\sin^2 3x \cos 3x - \operatorname{tg} 3x).$$

В полученную производную подставим значение x_0

$$y'(x_0) = 18 \cdot \left(\sin^2 \frac{\pi}{6} \cos \frac{\pi}{6} - \lg \frac{\pi}{6}\right) = -\frac{15 \cdot \sqrt{3}}{4}$$
. Omsem: $-\frac{15 \cdot \sqrt{3}}{4}$.

Нахождение критических точек и промежутков монотонности функции.

Критические точки — это такие точки, в которых функция определена, и в которых производная равна нулю или не определена.

На рисунках все *критические точки* отмечаются *закрашенными*, а точки, в которых функция y(x) не определена, отмечаются *не закрашенными*.

Если во всех точках некоторого промежутка y'(x) > 0, то функция y(x) возрастает на этом промежутке. Если y'(x) < 0, то функция убывает.

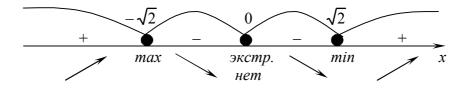
Допустим, что на двух соседних промежутках функция возрастает. Вопрос: в каких случаях эти промежутки следует объединять в один промежуток, а в каких случаях этого делать нельзя? Ответ: если точка, разделяющая эти промежутки, принадлежит ОДЗ функции, то промежутки объединяются; если точка, разделяющая эти промежутки, не принадлежит ОДЗ функции, то промежутки не объединяются.

Если требуется найти *интервалы* возрастания функции, то граничные точки соответствующих промежутков *не включаются*. Если требуется найти *промежутки* возрастания функции, то граничные точки соответствующих промежутков *включаются при условии*, что они принадлежат *ОДЗ* функции.

Если при переходе (слева направо) через критическую точку производная меняет знак с «минуса» на «плюс», то в критической точке достигается минимум. Если знак меняется с «плюса» на «минус», то достигается максимум. Если знаки не чередуются, то в критической точке экстремума нет. Разумеется, что в точках, не принадлежащих O J 3 функции, никаких экстремумов нет.

<u>Пример 2.</u> Найти критические точки функции $y = 0.6x^5 - 2x^3 - 1$, интервалы и промежутки возрастания и убывания, а также значения функции во всех критических точках.

Решение. $y'=3x^4-6x^2=3x^2\big(x^2-2\big)$. Приравняем производную к нулю и найдём критические точки: $x_1=0$; $x_{2,3}=\pm\sqrt{2}$. Отметим на числовой оси критические точки и определим знаки производной.

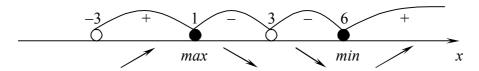


Ответ: интервалы возрастания: $\left(-\infty\,; -\sqrt{2}\;\right)$ и $\left(\sqrt{2}\;; +\infty\right)$; промежутки возрастания: $\left(-\infty\,; -\sqrt{2}\;\right]$ и $\left[\sqrt{2}\;; +\infty\right)$; интервал убывания: $\left(-\sqrt{2}\;; \sqrt{2}\;\right)$; промежуток убывания: $\left[-\sqrt{2}\;; \sqrt{2}\;\right]$; в точке $x=-\sqrt{2}$ достигается максимум; $y_{\max}=y\left(-\sqrt{2}\right)=1,6\cdot\sqrt{2}-1$; в точке x=0 экстремума нет; y(0)=-1; в точке $x=\sqrt{2}$ достигается минимум; $y_{\min}=y\left(\sqrt{2}\right)=-1,6\cdot\sqrt{2}-1$.

<u>Пример 3.</u> Найти критические точки функции $y = \ln(x+3) + \frac{1}{x-3}$, интервалы и промежутки возрастания и убывания, а также значения функции во всех критических точках.

Решение. *ОДЗ*: x > -3 ; x ≠ 3 . Вычислим производную, приравняем её к нулю

и найдём критические точки. $y'=\frac{1}{x+3}-\frac{1}{(x-3)^2}=\frac{x^2-7x+6}{(x+3)(x-3)^2}=\frac{(x-1)(x-6)}{(x+3)(x-3)^2}$. y'=0 при $x_1=1\in O\mathcal{I}3$ и $x_2=6\in O\mathcal{I}3$. Критические точки: 1 ; 6 . Отметим на числовой оси критические точки и определим знаки производной.



Ответ: интервалы возрастания: (-3;1) и $(6;+\infty)$; промежутки возрастания: (-3;1] и $[6;+\infty)$; интервалы убывания: (1;3) и (3;6); промежутки убывания: [1;3) и (3;6]; в точке x=1 достигается максимум; $y_{\text{max}}=y(1)=\ln 4-\frac{1}{2}$; в точке x=6 достигается минимум; $y_{\text{min}}=y(6)=\ln 9+\frac{1}{3}$.

Нахождение наибольшего и наименьшего значений функции на отрезке.

- 1) Находим критические точки функции, принадлежащие данному отрезку.
- 2) Подсчитываем значения функции в этих критических точках и значения функции в граничных точках отрезка.
- 3) Из всех подсчитанных значений выбираем наибольшее и наименьшее. <u>Пример 4.</u> Найти сумму наибольшего и наименьшего значений функции $y = \ln x - x^2 - x + 2$ на отрезке $\left\lceil \frac{1}{4}; 2 \right\rceil$.

Решение. Вычислим производную, приравняем её к нулю и найдём критические точки, принадлежащие данному отрезку. $y' = \frac{1}{x} - 2x - 1 = \frac{1 - 2x^2 - x}{x} = 0 \quad \text{при}$ $x_1 = -1 \not\in \textit{отрезку} \quad \text{и} \quad x_2 = \frac{1}{2} \in \textit{отрезку} \quad \text{.} \quad \text{Подсчитываем следующие значения:}$ $y\left(\frac{1}{2}\right) = \ln\frac{1}{2} - \frac{1}{4} - \frac{1}{2} + 2 = -\ln 2 + 1,25 \approx 0,56 \; ;$ $y\left(\frac{1}{4}\right) = \ln\frac{1}{4} + 1,6875 = -2 \cdot \ln 2 + 1,6875 \approx 0,30 \quad ; \quad y(2) = \ln 2 - 4 \approx -3,31 \; .$

Наибольшее значение $y_{nau\delta} = y \left(\frac{1}{2}\right) = -\ln 2 + 1,25$.

Наименьшее значение $y_{\text{наим}} = y(2) = \ln 2 - 4$.

Сумма наибольшего и наименьшего значений равна -2,75. Ответ: -2,75.

Касательные.

Уравнение касательной к графику функции y = y(x) в точке с абсциссой x_0 : $y = y(x_0) + y'(x_0)(x - x_0)$.

Значение $y'(x_0)$ называется угловым коэффициентом касательной. Угловой коэффициент равен тангенсу угла наклона касательной к положительному направлению оси абсцисс.

Если касательная к графику y=y(x) в точке x_0 параллельна прямой y=kx+b , то угловые коэффициенты касательной и прямой равны, т.е. $y'(x_0)=k$.

Если касательная к графику $y = y_1(x)$ в точке x_1 параллельна касательной к графику $y = y_2(x)$ в точке x_2 , то угловые коэффициенты этих касательных равны, т.е. $y_1'(x_1) = y_2'(x_2)$.

<u>Пример 5.</u> Написать уравнение касательной к графику функции $y = \ln x$ в точке его пересечения с осью абсцисс.

Решение. Для нахождения точки пересечения графика с осью абсцисс нужно «игрек» приравнять к нулю: $\ln x = 0 \implies x = e^0 = 1$. Обозначим $x_0 = 1$. Имеем:

$$y(x_0) = \ln 1 = 0$$
 ; $y' = \frac{1}{x}$; $y'(x_0) = \frac{1}{1} = 1$.

Уравнение касательной: $y=y(x_0)+y'(x_0)(x-x_0)$, т.е. $y=0+1\cdot (x-1)$, y=x-1 . *Ответ*: y=x-1 .

<u>Пример 6.</u> В точке с абсциссой $x_0=3$ проведена касательная к графику функции $y=7+2x-5x^2-2x^3+\frac{27}{x}$. Найти ординату точки касательной, абсцисса которой равна 2.

Решение. $y(x_0) = 7 + 6 - 45 - 54 + 9 = -77$; $y' = 2 - 10x - 6x^2 - \frac{27}{x^2}$; $y'(x_0) = 2 - 30 - 54 - 3 = -85$. Уравнение касательной: $y = y(x_0) + y'(x_0)(x - x_0)$; $y = -77 - 85 \cdot (x - 3)$. В полученное уравнение подставим x = 2 . Тогда y = 8 . Ответ: 8 .

<u>Пример 7.</u> В точке пересечения графика функции $y = x \ln x$ с осью абсцисс проведена касательная. Какой угол она образует с осью Ox?

Решение. Сначала найдём абсциссу точки пересечения графика с осью Ox. Для этого решим уравнение $x \ln x = 0$. $O \not = 3$: x > 0. Следовательно, $\ln x = 0$; x = 1. Обозначим $x_0 = 1$. Вычислим производную: $y' = (x)' \ln x + x (\ln x)' = \ln x + 1$. Пусть α — угол между касательной и осью Ox. Тогда угловой коэффициент касательной равен $\log \alpha = y'(x_0) = \ln 1 + 1 = 1$. Следовательно, $\alpha = 45^\circ$. Ответ: 45° .

<u>Пример 8.</u> В какой точке пересекает ось абсцисс касательная к графику функции $y = 20 \cdot \log_2(x-3)$ с угловым коэффициентом $k = \frac{5}{\ln 2}$?

Решение. Пусть x_0 – абсцисса точки касания.

Угловой коэффициент
$$k=y'(x_0)=\frac{20}{(x_0-3)\ln 2}=\frac{5}{\ln 2}$$
 . Отсюда $x_0=7$;

 $y(x_0) = 20 \cdot \log_2 4 = 40$. Уравнение касательной: $y = y(x_0) + y'(x_0)(x - x_0)$; $y = 40 + \frac{5}{\ln 2}(x - 7)$. В полученное уравнение касательной подставим y = 0 и найдём x . Получим $x = 7 - 8 \cdot \ln 2$. *Ответ*: $(7 - 8 \cdot \ln 2; 0)$.

<u>Пример 9.</u> Написать уравнение касательной к графику функции $y = \frac{3}{x+4}$ в точке с положительной ординатой, где эта касательная параллельна прямой y = -3x.

Решение. Пусть x_0 — абсцисса точки касания. Так как касательная параллельна прямой, то угловой коэффициент касательной $y'(x_0) = -\frac{3}{(x_0+4)^2}$ равен угловому коэффициенту данной прямой, т.е. числу —3 . Следовательно, $-\frac{3}{(x_0+4)^2} = -3 \text{ . Отсюда} \begin{cases} x_0 = -5 \\ y(x_0) = \frac{3}{x_0+4} = -3 < 0 \end{cases}$ или $\begin{cases} x_0 = -3 \\ y(x_0) = \frac{3}{x_0+4} = 3 > 0 \end{cases}$

Первая пара значений не удовлетворяет условию задачи, вторая — удовлетворяет. Уравнение касательной: $y=y(x_0)+y'(x_0)(x-x_0)$; $y=3-3\cdot(x+3)$; y=-3x-6 . *Ответ:* y=-3x-6 .

<u>Пример 10.</u> Прямая y = 9x является касательной к графику функции $y = x^3 - 3x + 16$. Найти координаты точки касания.

Решение. Пусть x_0 — абсцисса точки касания. Угловой коэффициент касательной $y'(x_0)=3x_0^2-3$ равен угловому коэффициенту данной прямой, т.е. числу 9. Следовательно, $3x_0^2-3=9$. Отсюда $x_0=\pm 2$. Так как данная прямая и данный график пересекаются в точке с абсциссой x_0 , то должно выполняться условие $9x_0=x_0^3-3x_0+16$. Этому условию удовлетворяет лишь $x_0=2$. При этом $y(x_0)=x_0^3-3x_0+16=18$. Ответ: (2;18).

<u>Пример 11.</u> Пусть касательная к графику функции $y=x^3$, проведённая в точке с абсциссой $x_1=1$, параллельна касательной к графику функции $y=2\cdot \sqrt{x}$, проведённой в точке с абсциссой x_2 . Найти x_2 .

Решение. Обозначим $y_1(x)=x^3$, $y_2(x)=2\cdot\sqrt{x}$. Так как касательные параллельны, то соответствующие угловые коэффициенты равны, т.е. $y_1^{'}(x_1)=y_2^{'}(x_2)$. Имеем: $y_1^{'}(x_1)=3x_1^2=3$; $y_2^{'}(x_2)=\frac{1}{\sqrt{x_2}}$. Следовательно, $\frac{1}{\sqrt{x_2}}=3$, отсюда $x_2=\frac{1}{9}$. Ответ: $\frac{1}{9}$.

<u>Пример 12.</u> Через точку (5;3) проходят две касательные к графику функции $y = -2x^2 + 4x + 1$. Найти сумму абсцисс точек касания.

Pешение. Пусть x_0 – абсцисса какой-либо точки касания. Тогда $y(x_0) = -2x_0^2 + 4x_0 + 1$; $y'(x_0) = -4x_0 + 4$. Уравнение $y = y(x_0) + y'(x_0)(x - x_0)$; $y = -2x_0^2 + 4x_0 + 1 + (-4x_0 + 4)(x - x_0)$. Поскольку касательная проходит через точку (5;3), то в уравнение касательной можно подставить x=5 , y=3 . Получим $3=-2x_0^2+4x_0+1+\left(-4x_0+4\right)\left(5-x_0\right)$, отсюда $(x_0)_1 = 1$; $(x_0)_2 = 9$. Сумма этих значений равна 10 . *Ответ*: 10 .

<u>Пример 13.</u> Касательная к параболе $y = x^2 + mx + 4$ проходит через начало координат. Найти значение параметра m, при котором абсцисса точки касания положительна, а ордината равна 6.

Решение. Пусть x_0 – абсцисса точки касания. Тогда $y(x_0) = x_0^2 + mx_0 + 4$; $y'(x_0) = 2x_0 + m$. Уравнение касательной: $y = y(x_0) + y'(x_0)(x - x_0)$; $y = x_0^2 + mx_0 + 4 + (2x_0 + m)(x - x_0)$. Поскольку касательная проходит через начало координат, то в уравнение касательной можно подставить x = 0 , y = 0 . Получим $0 = x_0^2 + mx_0 + 4 + (2x_0 + m)(-x_0)$, отсюда $x_0 = \pm 2$. Так как, по условию, $x_0 > 0$, то $x_0 = 2$. Ордината точки касания $y(x_0) = 4 + 2m + 4 = 6$. Отсюда m = -1. *Ответ*: -1.

<u>Пример 14.</u> Составить уравнение общей касательной к графикам функций $y = x^2 - 3x + 2$ и $y = x^2 - x + 4$.

Решение. Обозначим $y_1(x) = x^2 - 3x + 2$ и $y_2(x) = x^2 - x + 4$. Запишем уравнение общей касательной в виде y = ax + b . Пусть $(x_1; y_1)$ и $(x_2; y_2)$ точки касания, принадлежащие соответственно первой и второй параболе. Составим систему уравнений, из которой найдём a и b.

- $\begin{array}{lll} (1) & y_1 = x_1^2 3x_1 + 2 & \qquad & \text{(точка $\left(x_1\,;\,y_1\right)$ принадлежит первой параболе);} \\ (2) & y_2 = x_2^2 x_2 + 4 & \qquad & \text{(точка $\left(x_2\,;\,y_2\right)$ принадлежит второй параболе);} \\ (3) & y_1 = ax_1 + b & \qquad & \text{(точка $\left(x_1\,;\,y_1\right)$ принадлежит прямой);} \\ (4) & y_2 = ax_2 + b & \qquad & \text{(точка $\left(x_2\,;\,y_2\right)$ принадлежит прямой);} \end{array}$

- (5) $2x_1 3 = a$ (угловой коэффициент $y_1'(x_1) = a$);
- (6) $2x_2 1 = a$ (угловой коэффициент $y_2'(x_2) = a$).

Приравняем правые части уравнений (1) и (3), а также правые части уравнений (2) и (4) . Получим: $\begin{cases} ax_1 + b = x_1^2 - 3x_1 + 2 \\ ax_2 + b = x_2^2 - x_2 + 4 \end{cases}$

Из уравнений (5) и (6) выразим $x_1 = \frac{a+3}{2}$ и $x_2 = \frac{a+1}{2}$. Подставим эти значения

в предыдущую систему:
$$\begin{cases} a \cdot \frac{a+3}{2} + b = \left(\frac{a+3}{2}\right)^2 - 3 \cdot \frac{a+3}{2} + 2 \\ a \cdot \frac{a+1}{2} + b = \left(\frac{a+1}{2}\right)^2 - \frac{a+1}{2} + 4 \end{cases}.$$

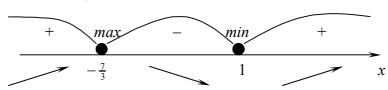
После упрощений получим:
$$\begin{cases} b = \frac{-a^2 - 6a - 1}{4} \\ b = \frac{-a^2 - 2a + 15}{4} \end{cases}$$
 . Отсюда
$$\begin{cases} a = -4 \\ b = \frac{7}{4} \end{cases}$$
 .

Уравнение общей касательной: y = ax + b ; $y = -4x + \frac{7}{4}$. *Ответ*: $y = -4x + \frac{7}{4}$.

<u>Пример 15.</u> К графику функции $y = x^3 + 2x^2 - 7x - 7$ в точке минимума проведена касательная. Найти точки её пересечения с графиком.

Решение. Вычислим производную, приравняем её к нулю, найдём критические точки, а также промежутки возрастания и убывания данной функции.

$$y'(x) = (x^3 + 2x^2 - 7x - 7)' = 3x^2 + 4x - 7 = 0$$
 при $x_1 = 1$ или при $x_2 = -\frac{7}{3}$.



 $y(x_1)=y(1)=-11$; $y'(x_1)=0$. Уравнение касательной к графику данной функции в точке $x_1=1$: $y=y(x_1)+y'(x_1)(x-x_1)$, т.е. y=-11 .

Для нахождения точек пересечения касательной и графика нужно решить систему

уравнений
$$\begin{cases} y = x^3 + 2x^2 - 7x - 7 \\ y = -11 \end{cases}$$
 . Её решения: $\begin{cases} x_1 = 1 \\ y_1 = -11 \end{cases}$; $\begin{cases} x_2 = -4 \\ y_2 = -11 \end{cases}$.

Omsem: (1;-11); (-4;-11).

<u>Пример 16.</u> К графику функции $y = x^3 - 2$ из начала координат проведена касательная. Найти абсциссы точек пересечения касательной и графика.

Pешение. Пусть x_0 – абсцисса точки касания.

Тогда
$$y(x_0) = x_0^3 - 2$$
 ; $y'(x) = (x^3 - 2)' = 3x^2$; $y'(x_0) = 3x_0^2$.
 Уравнение касательной: $y = y(x_0) + y'(x_0)(x - x_0)$; $y = x_0^3 - 2 + 3x_0^2(x - x_0)$.

Так как касательная проходит через начало координат, то в последнее уравнение можно подставить x=0 и y=0 . Получим $0=x_0^3-2+3x_0^2\left(0-x_0\right)$. Отсюда $x_0=-1$. Тогда $y(x_0)=-3$; $y'(x_0)=3$. Следовательно, уравнение касательной

имеет вид y = -3 + 3(x+1) , т.е. y = 3x . Для нахождения абсцисс точек пересечения касательной и графика нужно решить систему $\begin{cases} y = x^3 - 2 \\ y = 3x \end{cases}$. Её решения: $\begin{cases} x_1 = -1 \\ y = 3x \end{cases}$

решения: $\begin{cases} x_1 = -1 \\ y_1 = -3 \end{cases}$; $\begin{cases} x_2 = 2 \\ y_2 = 6 \end{cases}$. В ответ следует записать абсциссы полученных точек. *Ответ*: -1 ; 2 .

<u>Пример 17.</u> К графику функции $y = \frac{3}{x^2} - 1$ из начала координат проведена касательная с положительным угловым коэффициентом. Найти точки её пересечения с графиком.

Решение. Пусть x_0 – абсцисса точки касания.

Тогда
$$y(x_0) = \frac{3}{x_0^2} - 1$$
 ; $y'(x) = \left(\frac{3}{x^2} - 1\right)' = -\frac{6}{x^3}$; $y'(x_0) = -\frac{6}{x_0^3}$.

Уравнение касательной:
$$y = y(x_0) + y'(x_0)(x - x_0)$$
; $y = \frac{3}{x_0^2} - 1 - \frac{6}{x_0^3}(x - x_0)$.

Так как касательная проходит через начало координат, то в последнее уравнение можно подставить x=0 и y=0 . Получим $0=\frac{3}{x_0^2}-1-\frac{6}{x_0^3}\left(0-x_0\right)$. Отсюда $x_0=\pm 3$. Так как касательная имеет, по условию, положительный угловой коэффициент, то $y'(x_0)=-\frac{6}{x_0^3}>0$. Этому условию удовлетворяет лишь $x_0=-3$.

При этом
$$y(x_0) = \frac{3}{x_0^2} - 1 = \frac{3}{(-3)^2} - 1 = -\frac{2}{3}$$
 ; $y'(x_0) = -\frac{6}{x_0^3} = -\frac{6}{(-3)^3} = \frac{2}{9}$. .

Следовательно, уравнение касательной имеет вид $y = -\frac{2}{3} + \frac{2}{9}(x+3)$, т.е. $y = \frac{2}{9}x$.

Для нахождения точек пересечения касательной и графика нужно решить систему

уравнений
$$\begin{cases} y = \frac{3}{x^2} - 1 \\ y = \frac{2}{9}x \end{cases}$$
 . Её решения: $\begin{cases} x_1 = -3 \\ y_1 = -\frac{2}{3} \end{cases}$; $\begin{cases} x_2 = \frac{3}{2} \\ y_2 = \frac{1}{3} \end{cases}$.

Omeem:
$$\left(-3; -\frac{2}{3}\right); \left(\frac{3}{2}; \frac{1}{3}\right)$$
.

Задачи для самостоятельного решения

- 1. Найти производную функции $y = 3 \operatorname{tg}^2 4x e^{\cos 8x}$ в точке $x_0 = \frac{\pi}{16}$
- 2. Найти критические точки функции $y = -2.4x^5 + 20x^3 6$, интервалы и промежутки возрастания и убывания, а также значения функции во всех критических точках.

- 3. Найти критические точки функции $y = -\ln(x+5) \frac{1}{x-1}$, интервалы и промежутки возрастания и убывания, а также значения функции во всех критических точках.
- 4. Найти сумму наибольшего и наименьшего значений функции $y = \frac{x}{8} + \frac{2}{x}$ на отрезке [-6;-1].
- 5. Написать уравнение касательной к графику функции $y = \sqrt{x} 1$ в точке его пересечения с осью абсцисс.
- 6. В точке с абсциссой $x_0 = -2$ проведена касательная к графику функции $y = x^3 5x^2 + 2x 3 + \frac{2}{x+1}$. Найти абсциссу точки касательной, ордината которой равна -5.
- 7. В точке пересечения графика функции $y = xe^x$ с осью абсцисс проведена касательная. Какой угол она образует с осью Ox?
- 8. В какой точке пересекает ось абсцисс касательная к графику функции $y = 12 \cdot 2^{x-4}$ с угловым коэффициентом $k = 3 \cdot \ln 2$?
- 9. Написать уравнение касательной к графику функции $y = -\frac{27}{x-1}$ в точке с отрицательной абсциссой, где эта касательная параллельна прямой y = 3x + 20.
- 10. Прямая $y = -\frac{3}{4}x \frac{3}{32}$ является касательной к графику функции $y = \frac{1}{2}x^4 x$. Найти координаты точки касания.
- 11. Пусть касательная к графику функции $y=\lg x$, проведённая в точке с абсциссой $x_1=\frac{\pi}{4}$, параллельна касательной к графику функции $y=e^x$, проведённой в точке с абсциссой x_2 . Найти x_2 .
- 12. Через точку (-1,5;3) проходят две касательные к графику функции $y = -0,5x^2 + 2x + 1$. Найти сумму абсцисс точек касания.
- 13. Касательная к параболе $y = x^2 mx + 9$ проходит через начало координат. Найти значение параметра m, при котором абсцисса точки касания положительна, а ордината равна 3.
- 14. Составить уравнение общей касательной к графикам функций $y = x^2 + 4x + 8$ и $y = x^2 + 8x + 4$.
- 15. К графику функции $y = 2x^3 3x^2 12x + 2$ в точке максимума проведена касательная. Найти точки её пересечения с графиком.
- 16. К графику функции $y = 1 4x^3$ из начала координат проведена касательная. Найти абсциссы точек пересечения касательной и графика.
- 17. К графику функции $y = \frac{9}{x^2} 3$ из начала координат проведена касательная с положительным угловым коэффициентом. Найти точки её пересечения с графиком.

ЗАДАЧИ С ПАРАМЕТРАМИ

Исследование квадратного трёхчлена $y = Ax^2 + Bx + C$.

При решении конкретных задач *нужно особо рассматривать* случай A=0 . Далее мы предполагаем, что $A\neq 0$.

Графиком функции $y = Ax^2 + Bx + C$ является парабола, вершина которой находится в точке $\left(-\frac{B}{2A}; -\frac{D}{4A}\right)$, где $D = B^2 - 4AC$ — дискриминант.

Парабола $y = Ax^2 + Bx + C$ не имеет общих точек с осью Ox (или уравнение $Ax^2 + Bx + C = 0$ не имеет действительных корней), если D < 0.

Парабола $y = Ax^2 + Bx + C$ имеет одну общую точку с осью Ox (или уравнение $Ax^2 + Bx + C = 0$ имеет единственный действительный корень, или квадратный трёхчлен $y = Ax^2 + Bx + C$ можно представить в виде полного квадрата), если D = 0.

Парабола $y = Ax^2 + Bx + C$ имеет две общие точки с осью Ox (или уравнение $Ax^2 + Bx + C = 0$ имеет два действительных корня), если D > 0.

График квадратного трёхчлена $y = Ax^2 + Bx + C$ лежит выше оси абсцисс (или квадратный трёхчлен $y = Ax^2 + Bx + C$ принимает только положительные значения, или неравенство $Ax^2 + Bx + C > 0$ выполнено для любого x) , если $\begin{cases} A > 0 \\ D < 0 \end{cases}$.

График квадратного трёхчлена $y = Ax^2 + Bx + C$ лежит не ниже оси абсцисс (или квадратный трёхчлен $y = Ax^2 + Bx + C$ не принимает отрицательных значений, или неравенство $Ax^2 + Bx + C \ge 0$ выполнено для любого x) , если $\begin{cases} A > 0 \\ D \le 0 \end{cases}$.

График квадратного трёхчлена $y = Ax^2 + Bx + C$ лежит ниже оси абсцисс (или квадратный трёхчлен $y = Ax^2 + Bx + C$ принимает только отрицательные значения, или неравенство $Ax^2 + Bx + C < 0$ выполнено для любого x) , если $\begin{cases} A < 0 \\ D < 0 \end{cases}$.

График квадратного трёхчлена $y=Ax^2+Bx+C$ лежит не выше оси абсцисс (или квадратный трёхчлен $y=Ax^2+Bx+C$ не принимает положительных значений, или неравенство $Ax^2+Bx+C\leq 0$ выполнено для любого x) , если $\begin{cases} A<0\\ D\leq 0 \end{cases}$.

Квадратное уравнение $x^2 + px + q = 0$.

Обозначим $f(x) = x^2 + px + q$; $D = p^2 - 4q$ – дискриминант.

1) При каких значениях параметров уравнение $x^2 + px + q = 0$ имеет корни, меньшие данного значения x_0 ? Ответ на этот вопрос следующий:

$$\begin{cases} D \geq 0 & \text{(существование корней) ;} \\ -\frac{p}{2} < x_0 & \text{(абсцисса вершины параболы} \quad y = f(x) \text{ находится слева от } x_0 \text{) ;} \\ f(x_0) > 0 & \text{.} \end{cases}$$

Замечание. Если в условии задачи явно написано, что уравнение имеет два корня, то вместо $D \ge 0$ следует писать D > 0.

2) При каких значениях параметров уравнение $x^2 + px + q = 0$ имеет корни, большие данного значения x_0 ? Ответ на этот вопрос следующий:

$$\begin{cases} D \geq 0 & \text{(существование корней) ;} \\ -\frac{p}{2} > x_0 & \text{(абсцисса вершины параболы} \quad y = f(x) \; \text{ находится справа от } x_0 \text{);} \\ f(x_0) > 0 \; . \end{cases}$$

Замечание. Если в условии задачи явно написано, что уравнение имеет два корня, то вместо $D \ge 0$ следует писать D > 0.

3) При каких значениях параметров уравнение $x^2 + px + q = 0$ имеет корни, один из которых больше, а другой меньше, чем x_0 ? Ответ на этот вопрос следующий: $f(x_0) < 0$.

<u>Пример 1.</u> Найти количество целых значений параметра a, при которых абсцисса вершины параболы $y = x^2 - 4ax + 3a^2 - 4a + 12$ отрицательна, а ордината положительна.

Решение. Используем обозначения и сведения, указанные на стр. 69. Имеем:

$$A=1$$
; $B=-4a$; $C=3a^2-4a+12$; $D=16a^2-4\cdot (3a^2-4a+12)=4a^2+16a-48$.

Система неравенств
$$\begin{cases} -\frac{B}{2A} = 2a < 0 \\ -\frac{D}{4A} = -a^2 - 4a + 12 > 0 \end{cases}$$
 имеет решения $a \in (-6; 0)$. Целые решения: $-5; -4; -3; -2; -1$. Их количество равно 5 . *Ответ*: 5 .

<u>Пример 2.</u> При каких значениях a квадратный квадратный трёхчлен $y = x^2 - (2a+1)x + a^2 + 2$ можно представить в виде полного квадрата ?

Решение. Приравняем к нулю дискриминант: $D = (2a+1)^2 - 4 \cdot (a^2+2) = 4a-7 = 0$. Отсюда $a = \frac{7}{4}$. *Ответ*: $\frac{7}{4}$.

<u>Пример 3.</u> Найти все значения параметра a, при которых график функции $y = a(4-a)x^2 + 2ax + 1$ не имеет общих точек с осью Ox.

Решение. I) Допустим, что коэффициент при x^2 равен нулю, т.е. a(4-a)=0 . Отсюда a=0 или a=4 .

При a=0 получим функцию y=1 . График этой функции не имеет общих точек с осью Ox , что соответствует условию задачи. Следовательно, a=0 нужно включить в ответ.

При a=4 получим функцию y=8x+1 . График этой функции имеет одну общую точку с осью Ox , что не соответствует условию задачи. Следовательно, $a\neq 4$.

II) Допустим, что коэффициент при x^2 не равен нулю, т.е. $a \neq 0$, $a \neq 4$. Тогда графиком данной функции является парабола. Так как она не имеет общих точек с осью Ox , то дискриминант $D=4a^2-4a(4-a)<0$. Следовательно, $a \in (0;2)$. Omsem: [0;2) .

<u>Пример 4.</u> Найти все значения параметра a, при которых график функции $y = (a+2)x^2 + 4x + 3 - a$ имеет с осью Ox только одну общую точку.

Решение. I) Допустим, что коэффициент при x^2 равен нулю, т.е. a=-2 . Тогда получим функцию y=4x+5 . График этой функции имеет одну общую точку с осью Ox , что соответствует условию задачи. Следовательно, a=-2 нужно включить в ответ.

II) Допустим, что коэффициент при x^2 не равен нулю, т.е. $a \neq -2$. Тогда графиком данной функции является парабола. Так как она имеет с осью Ox только одну общую точку, то дискриминант $D=16-4\cdot (a+2)(3-a)=0$. Следовательно, a=-1 или a=2 . Ответ: -1; ± 2 .

<u>Пример 5.</u> Найти все значения параметра a, при которых график функции $y = a(a+1)x^2 + 2(a+1)x - a - 1$ имеет с осью Ox более одной общей точки.

Решение. I) Допустим, что коэффициент при x^2 равен нулю, т.е. a(a+1)=0 . Отсюда a=0 или a=-1 .

При a=0 получим функцию y=2x-1 . График этой функции имеет одну общую точку с осью Ox , что не соответствует условию задачи. Следовательно, $a\neq 0$.

При a=-1 получим функцию y=0 . График этой функции совпадает с осью Ox , т.е. имеет с осью Ox бесконечно много общих точек, что соответствует условию задачи. Следовательно, a=-1 нужно включить в ответ.

II) Допустим, что коэффициент при x^2 не равен нулю, т.е. $a \neq 0$, $a \neq -1$. Тогда графиком данной функции является парабола. Так как она имеет более одной общей точки с осью Ox (точнее , две общие точки) , то дискриминант $D=4(a+1)^2-4a(a+1)(-a-1)=4(a+1)^3>0$. Следовательно, $a\in (-1\,;+\infty)$. $Omsem: [-1\,;0]\cup (0\,;+\infty)$.

<u>Пример 6.</u> Найти все значения параметра a, при которых для любого значения x выполнено неравенство $(a^2-1)x^2+4(a-1)x+1>0$.

Решение. I) Допустим, что коэффициент при x^2 равен нулю, т.е. $a^2-1=0$. Отсюда a=1 или a=-1 .

При a=1 получим неравенство $0x^2+0x+1>0$, которое является истинным для любого значения x, что соответствует условию задачи. Следовательно, a=1 нужно включить в ответ.

При a=-1 получим неравенство -8x+1>0 , которое является истинным не для любого значения x , что не соответствует условию задачи. Следовательно, $a\neq -1$.

II) Допустим, что коэффициент при x^2 не равен нулю, т.е. $a \ne 1$, $a \ne -1$. Тогда нужно решить систему неравенств (см. стр. 69) :

$$\begin{cases} A = a^2 - 1 > 0 \\ D = 16(a - 1)^2 - 4(a^2 - 1) < 0 \end{cases}$$
. Отсюда следует, что $a \in \left(1; \frac{5}{3}\right)$. Ответ: $\left[1; \frac{5}{3}\right)$.

<u>Пример 7.</u> Найти все значения параметра a , при которых уравнение $(a+3)x^2+4x+2-a=0$ имеет только отрицательные корни.

Решение. I) Допустим, что коэффициент при x^2 равен нулю, т.е. a=-3 . Тогда получим уравнение 4x+5=0 , корень которого x=-1,25<0 , что соответствует условию задачи. Следовательно, a=-3 нужно включить в ответ.

II) Допустим, что коэффициент при x^2 не равен нулю, т.е. $a \neq -3$. Разделим уравнение на a+3 и введём обозначения:

$$f(x) = x^2 + \frac{4}{a+3} \cdot x + \frac{2-a}{a+3} = 0$$
 ; $p = \frac{4}{a+3}$; $q = \frac{2-a}{a+3}$; $x_0 = 0$;

 $D = p^2 - 4q = \frac{4a^2 + 4a - 8}{(a+3)^2}$. Согласно изложенному на стр. 70 , нужно решить

систему
$$\begin{cases} D \geq 0 \\ -\frac{p}{2} < x_0 \\ f(x_0) > 0 \end{cases}$$
 , т.е.
$$\begin{cases} \frac{4a^2 + 4a - 8}{(a+3)^2} \geq 0 \\ -\frac{2}{a+3} < 0 \\ f(0) = \frac{2-a}{a+3} > 0 \end{cases}$$
 . Отсюда $a \in (-3; -2] \cup [1; 2)$.

Ответ: $[-3;-2] \cup [1;2)$.

<u>Пример 8.</u> Найти все значения параметра a, при которых один из корней уравнения $ax^2 - 6x + a - 8 = 0$ больше, а другой меньше, чем 2.

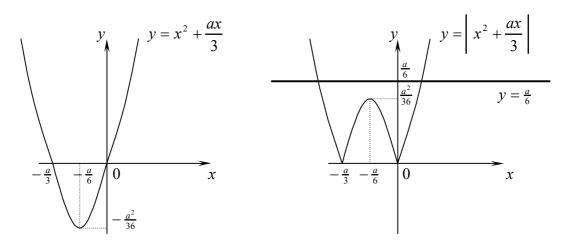
Решение. Так как уравнение имеет два корня, то коэффициент при x^2 не равен нулю, т.е. $a \neq 0$. Разделим уравнение на a и обозначим:

$$f(x) = x^2 - \frac{6}{a} \cdot x + \frac{a-8}{a} = 0$$
 ; $x_0 = 2$. Согласно изложенному на стр. 70 , нужно

решить неравенство
$$f(x_0) = f(2) = 4 - \frac{12}{a} + \frac{a-8}{a} < 0$$
. *Ответ*: (0;4).

<u>Пример 9.</u> Найти все значения параметра $a \neq 0$, при которых графики функций $y = \begin{vmatrix} x^2 + \frac{ax}{3} \end{vmatrix}$ и $y = \frac{a}{6}$ имеют только две общие точки.

Решение. Графиком функции $y=x^2+\frac{ax}{3}$ является парабола, ветви которой направлены вверх. Вершина параболы находится в точке $\left(-\frac{a}{6};-\frac{a^2}{36}\right)$. Для того, чтобы найти точки пересечения параболы с осью Ox, нужно решить уравнение $x^2+\frac{ax}{3}=0$, из которого следует, что x=0 или $x=-\frac{a}{3}$. Воспользуемся следующим общим соображением: если известен график функции y=f(x), то для построения графика функции y=|f(x)| нужно поступить так: ту часть графика, которая располагается выше оси Ox, оставить без изменения, а ту часть графика, которая располагается ниже оси Ox, симметрично отразить относительно оси Ox.



Так как, по условию, данные графики должны пересекаться ровно в двух точках, то прямая $y=\frac{a}{6}$ должна располагаться на более высоком уровне, чем $\frac{a^2}{36}$ (см. правый рисунок) . Следовательно, мы получаем неравенство $\frac{a}{6}>\frac{a^2}{36}$, из которого следует, что $a\in (0\,;6)$. *Ответ*: $(0\,;6)$.

<u>Пример 10.</u> Найти все значения параметра a , при которых графики функций $y = \frac{|x-7|}{|x-7|}$ и y = |x+a| имеют одну общую точку.

Решение. I) Построим график функции $y=\frac{\left|\begin{array}{c}x-7\\x-7\end{array}\right|}{x-7}$. *ОДЗ*: $x\neq 7$. Если x-7>0 , т.е. x>7 , то $y=\frac{x-7}{x-7}=1$.

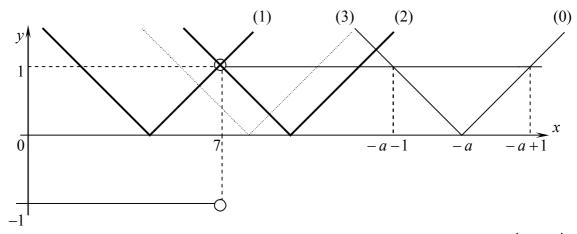
Если
$$x-7<0$$
 , т.е. $x<7$, то $y=\frac{-(x-7)}{x-7}=-1$.

График функции $y = \frac{|x-7|}{x-7}$ состоит из двух горизонтальных сплошных полупрямых с выколотыми точками, как показано на рисунке.

II) Построим графики функции y = |x + a| при различных значениях a.

Графиком функции y=x+a является прямая, пересекающая ось Ox в точке $\left(-a\,;0\right)$. Для построения графика функции $y=\left|\,x+a\,\right|$ нужно ту часть прямой y=x+a, которая располагается выше оси Ox, оставить без изменения, а ту часть прямой y=x+a, которая располагается ниже оси Ox, симметрично отразить относительно оси Ox. В результате получится ломаная линия, обозначенная на рисунке символом (0). При изменении параметра a эта линия перемещается параллельно оси Ox.

III) Найдём абсциссы точек пересечения линий $y=\mid x+a\mid$ и y=1 . Из того, что $\mid x+a\mid =1$, следует: $x+a=\pm 1$, x=-a-1 или x=-a+1 .



Ломаная сплошная жирная линия (1) не пересекает график функции $y = \frac{|x-7|}{x-7}$, так как она проходит через выколотую точку. Для линии (1) имеем: -a+1=7, т.е. a=-6.

Ломаная сплошная жирная линия (2) пересекает график функции $y = \frac{|x-7|}{x-7}$ ровно в одной точке. Для линии (2) имеем: -a-1=7, т.е. a=-8.

Ясно, что графики, данные в условии задачи, имеют ровно одну общую точку в том и только в том случае, когда график функции y = |x+a| занимает положение (3), находясь «между» линиями (1) и (2). При этом параметр a находится между значениями -6 и -8. Уточним: параметр a не может принять значение -6 (не допускается, чтобы линия (3) совпала с линией (1)); параметр a может принять значение -8 (допускается, чтобы линия (3) совпала с линией (2)).

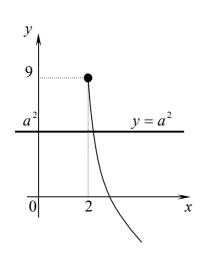
Ответ: [-8; -6).

<u>Пример 11.</u> Найти все значения параметра a , при которых уравнение $\sqrt{18-a^2x}=x-2$ имеет единственное решение.

Решение. Так как левая часть данного уравнения неотрицательна, то и правая часть должна быть неотрицательной. Отсюда возникает дополнительное условие: $x-2 \ge 0$ т.е. $x \ge 2$. Данное уравнение возведём в квадрат, а затем преобразуем таким образом, чтобы в левой части осталась только буква "a", а в правой – только буква "x": $18-a^2x=x^2-4x+4$; $-a^2x=x^2-4x-14$; $a^2=-x+4+\frac{14}{x}$.

Построим графики функций $y = -x + 4 + \frac{14}{x}$ и $y = a^2$ при $x \ge 2$.

Функция $y(x) = -x + 4 + \frac{14}{x}$ определена при всех $x \in [2; +\infty)$. y(2) = 9 . $y' = -1 - \frac{14}{x^2} < 0$, следовательно, функция убывает. Если x стремится $x + \infty$, то y(x) стремится $x - \infty$. Для того, чтобы это понять, подсчитайте значения y(100) , y(1000) , y(10000) и т.д. Исходя из этих соображений, можно схематично построить график функции y(x) .

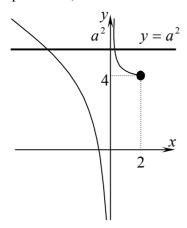


Уравнение, данное в условии задачи, имеет единственное решение тогда и только тогда, когда прямая $y = a^2$ и график функции y(x) пересекаются в единственной точке. Следовательно, прямая $y = a^2$ должна располагаться на уровне *не выше* 9. Таким образом, мы должны решить неравенство $a^2 \le 9$. Отсюда $a \in [-3;3]$. *Ответ:* [-3;3].

<u>Пример 12.</u> Найти все значения параметра a , при которых уравнение $\sqrt{16-2a^2x}=2-x$ имеет два различных корня.

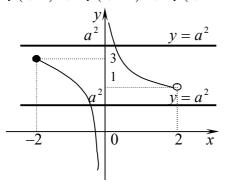
Решение. Так как левая часть данного уравнения неотрицательна, то и правая часть должна быть неотрицательной. Отсюда возникает дополнительное условие: $2-x\geq 0$ т.е. $x\leq 2$. Данное уравнение возведём в квадрат, а затем преобразуем таким образом, чтобы в левой части осталась только буква "a" , а в правой – только буква "x" : $16-2a^2x=4-4x+x^2$; $-2a^2x=-12-4x+x^2$; $a^2=\frac{6}{x}+2-\frac{x}{2}$. Построим графики функций $y=\frac{6}{x}+2-\frac{x}{2}$ и $y=a^2$ при $x\leq 2$. Функция $y(x)=\frac{6}{x}+2-\frac{x}{2}$ определена при $x\in (-\infty\,;0)\cup (0\,;2]$. y(2)=4 . $y'=-\frac{6}{x^2}-\frac{1}{2}<0$, следовательно, функция убывает на любом из промежутков $(-\infty\,;0)$ и $(0\,;2]$. Подсчитав значения y(-100) ; y(-1000) ; y(-10000)

и т.д. , нетрудно убедиться в том, что если x стремится κ $-\infty$, то y(x) стремится κ $+\infty$. Подсчитав значения y(-0.01) ; y(-0.001) ; y(-0.0001) и т.д. , нетрудно убедиться в том, что если x стремится κ нулю слева (т.е. x стремится κ нулю, оставаясь при этом меньше 0) , то y(x) стремится κ $-\infty$. Подсчитав значения y(0.01) ; y(0.001) ; y(0.0001) и т.д. , нетрудно убедиться в том, что если x стремится κ нулю справа (т.е. x стремится κ нулю, оставаясь при этом больше 0) , то y(x) стремится κ $+\infty$. Исходя из этих соображений, можно схематично построить график функции y(x) .



<u>Пример 13.</u> Найти все значения параметра a , при которых уравнение $x^2 + (a^2 - 2)x - 2 = 0$ имеет единственный корень на промежутке [-2;2].

Решение. Преобразуем уравнение таким образом, чтобы в левой части осталась только буква "а", а в правой — только буква "х": $(a^2-2)x=2-x^2$; $a^2-2=\frac{2}{x}-x$; $a^2=\frac{2}{x}-x+2$. Построим графики функций $y=\frac{2}{x}-x+2$ и $y=a^2$ при $x\in [-2\,;2\,)$. Функция $y(x)=\frac{2}{x}-x+2$ определена при $x\in [-2\,;0\,)\cup (0\,;2\,)$. y(-2)=3 , y(2)=1 . $y'=-\frac{2}{x^2}-1<0$, следовательно, функция убывает на любом из промежутков $[-2\,;0\,)$ и $(0\,;2\,)$. Подсчитав значения y(-0,01) ; y(-0,001) ; y(-0,0001) и т.д. , нетрудно убедиться в том, что если x стремится x нулю слева (т.е. x стремится x нулю, оставаясь при этом меньше x0 , то x2 стремится x3 . Подсчитав значения x3 годовательно, при этом меньше x4 годовательно, при этом меньше x6 годовательно оставаясь при этом меньше x7 годовательно объектельно объект



стремится к нулю справа (т.е. x стремится к нулю, оставаясь при этом больше 0), то y(x) стремится к $+\infty$. Исходя из этих соображений, можно схематично построить график функции y(x). Из графика ясно, что требуемые значения a удовлетворяют неравенствам: $a^2 > 3$ или $a^2 \le 1$. Ответ: $(-\infty; -\sqrt{3}) \cup [-1; 1] \cup (\sqrt{3}; +\infty)$.

<u>Пример 14.</u> При каких значениях параметра a уравнение $x^4 - 3ax + 3 = 0$ имеет два положительных корня?

Решение. Из данного уравнения выразим параметр $a: 3ax = x^4 + 3$; $a = \frac{x^4}{3x} + \frac{3}{3x}$; $a = \frac{x^3}{3} + \frac{1}{x}$. Так как уравнение, по условию, должно иметь два

положительных корня, то графики функций $y = a \left(= Const \right)$ и $y = \frac{x^3}{3} + \frac{1}{x}$ должны пересекаться ровно в двух точках при положительных x.

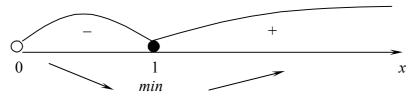
Обозначим $y(x) = \frac{x^3}{3} + \frac{1}{x}$. Заметим, что функция y(x) не определена при x = 0.

Схематично построим график этой функции при положительных x.

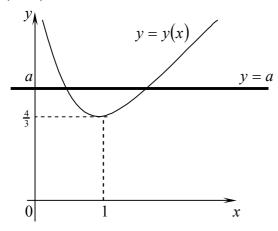
В этих целях мы исследуем функцию с помощью производной на возрастание и убывание , наличие критических точек, а также выясним поведение функции на границах её области определения (с учётом того, при каких x следует строить график в условиях конкретной задачи) .

$$y'(x) = \left(\frac{x^3}{3}\right)' + \left(\frac{1}{x}\right)' = x^2 - \frac{1}{x^2} = \frac{x^4 - 1}{x^2}$$
. $y'(x) = 0$ при $x^4 - 1 = 0$, т.е. при $x = 1$.

На рисунке расставим знаки производной, укажем промежутки возрастания и убывания функции v(x) и тип критической точки.



 $y_{\min}=y(1)=\frac{1^3}{3}+\frac{1}{1}=\frac{4}{3}$. Если x стремится к нулю справа (т.е. x стремится к нулю, оставаясь при этом больше нуля) , то, после подсчёта значений типа y(0,1) , y(0,01) , y(0,001) и т.д. легко убедиться в том, что y(x) стремится к $+\infty$. Если x стремится к $+\infty$, то, после подсчёта значений типа y(10) , y(1000) и т.д. легко убедиться в том, что y(x) стремится к $+\infty$.



Линии y=y(x) (тонкая кривая линия) и y=a (жирная прямая линия) пересекаются в двух точках в точности тогда, когда прямая y=a находится на уровне выше $\frac{4}{3}$, т.е. когда $a>\frac{4}{3}$. Другими словами, $a\in\left(\frac{4}{3};+\infty\right)$. Ответ: $\left(\frac{4}{3};+\infty\right)$.

<u>Пример 15.</u> При каких значениях параметра a уравнение $x^3 + 6ax - 2 = 0$ имеет три различных корня ?

Решение. Из данного уравнения выразим параметр a: $6ax = 2 - x^3$; $a = \frac{2}{6x} - \frac{x^3}{6x}$;

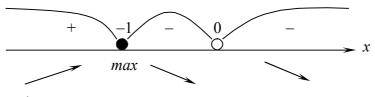
 $a = \frac{1}{3x} - \frac{x^2}{6}$. Так как уравнение, по условию, должно иметь три различных корня,

то графики функций $y = a \left(= Const \right)$ и $y = \frac{1}{3x} - \frac{x^2}{6}$ должны пересекаться ровно

в трёх точках. Обозначим $y(x) = \frac{1}{3x} - \frac{x^2}{6}$. Заметим, что функция y(x) не определена при x = 0. Схематично построим график этой функции на всей числовой оси.

$$y'(x) = -\frac{1}{3x^2} - \frac{x}{3} = \frac{-1 - x^3}{3x^2}$$
. $y'(x) = 0$ при $-1 - x^3 = 0$, т.е. при $x = -1$.

На рисунке расставим знаки производной, укажем промежутки возрастания и убывания функции y(x) и тип критической точки.



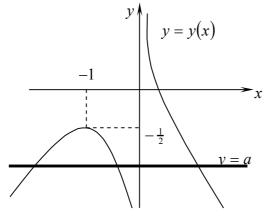
$$y_{\text{max}} = y(-1) = -\frac{1}{2}$$
.

Если x стремится $\kappa - \infty$, то, после подсчёта значений типа y(-10), y(-100), y(-1000) и т.д. легко убедиться в том, что y(x) стремится $\kappa - \infty$.

Если x стремится к нулю слева (т.е. x стремится к нулю, оставаясь при этом меньше нуля) , то, после подсчёта значений типа y(-0,1) , y(-0,01) , y(-0,001) и т.д. легко убедиться в том, что y(x) стремится к $-\infty$.

Если x стремится к нулю справа (т.е. x стремится к нулю, оставаясь при этом больше нуля) , то, после подсчёта значений типа y(0,1) , y(0,01) , y(0,001) и т.д. легко убедиться в том, что y(x) стремится к $+\infty$.

Если x стремится к $+\infty$, то, после подсчёта значений типа y(10) , y(100) , y(1000) и т.д. легко убедиться в том, что y(x) стремится к $-\infty$.



Линии y=y(x) (тонкая кривая линия) и y=a (жирная прямая линия) пересекаются в трёх точках в точности тогда, когда прямая y=a находится на уровне ниже $-\frac{1}{2}$, т.е. когда $a<-\frac{1}{2}$. Другими словами, $a\in \left(-\infty\;;-\frac{1}{2}\right)$. Ответ: $\left(-\infty\;;-\frac{1}{2}\right)$.

<u>Пример 16.</u> При каких значениях параметра a уравнение $ax^4 - 4x^3 - 1 = 0$ имеет единственный корень ?

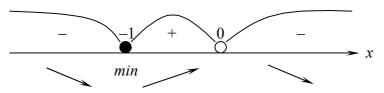
Решение. Из данного уравнения выразим параметр $a: a = \frac{4}{x} + \frac{1}{x^4}$. Так как уравнение, по условию, должно иметь единственный корень, то графики функций $y = a \left(= Const \right)$ и $y = \frac{4}{x} + \frac{1}{x^4}$ должны пересекаться ровно в одной точке.

Обозначим $y(x) = \frac{4}{x} + \frac{1}{x^4}$. Заметим, что функция y(x) не определена при x = 0.

Схематично построим график этой функции на всей числовой оси.

$$y'(x) = -\frac{4}{x^2} - \frac{4}{x^5} = \frac{-4x^3 - 4}{x^5}$$
. $y'(x) = 0$ при $-4x^3 - 4 = 0$, т.е. при $x = -1$.

На рисунке расставим знаки производной, укажем промежутки возрастания и убывания функции v(x) и тип критической точки.

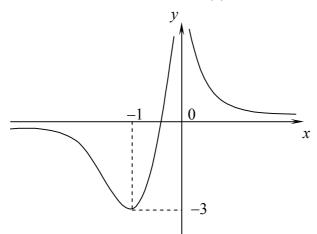


 $y_{\min} = y(-1) = -3$. Если x стремится $\kappa - \infty$, то y(x) стремится $\kappa = 0$.

Если x стремится к нулю слева, то y(x) стремится к $+\infty$.

Если x стремится к нулю справа, то y(x) стремится к $+\infty$.

Если x стремится $\kappa + \infty$, то y(x) стремится $\kappa = 0$.

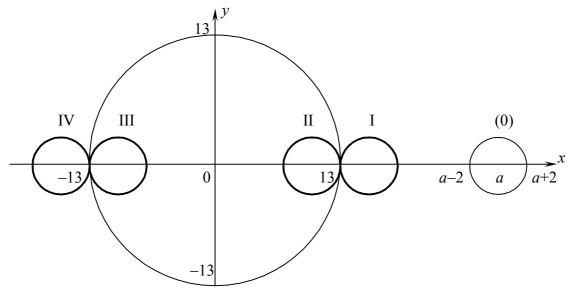


Линии y = y(x) и y = a пересекаются в единственной точке в точности тогда, когда прямая y = a находится на уровне 0 или -3. Другими словами, a = 0 или a = -3.

Ответ: 0;-3.

Пример 17. При каких значениях
$$a$$
 система уравнений
$$\begin{cases} x^2 + y^2 = 169 \\ (x-a)^2 + y^2 = 4 \end{cases}$$
 имеет единственное решение ?

Решение. Первое уравнение данной системы — это уравнение окружности радиуса 13 с центром в точке (0;0), второе уравнение данной системы — это уравнение окружности радиуса 2 с центром в точке (a;0) (положение (0)). Заметим, что при изменении параметра a большая окружность остаётся неизменной (её уравнение не зависит от a), а маленькая окружность перемещается параллельно оси Ox. Крайняя левая точка маленькой окружности имеет x-координату, равную a-2, а крайняя правая точка маленькой окружности имеет x-координату, равную a+2.

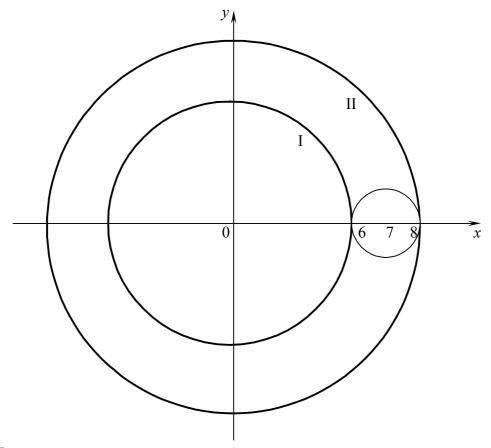


Данная система имеет единственное решение тогда и только тогда, когда большая и маленькая окружности пересекаются в единственной точке, а это возможно в следующих четырёх ситуациях:

- I) левая точка маленькой окружности a-2=13, т.е. a=15 (положение I);
- II) правая точка маленькой окружности a+2=13, т.е. a=11 (положение II);
- III) левая точка маленькой окружности a-2=-13 , т.е. a=-11 (положение III) ;
- IV) правая точка маленькой окружности a+2=-13 , т.е. a=-15 (положение IV) . *Ответ*: ± 11 ; ± 15 .

Пример 18. При каких значениях
$$a$$
 система уравнений
$$\begin{cases} x^2 + y^2 = a^2 \\ (x-7)^2 + y^2 = 1 \end{cases}$$
 имеет единственное решение ?

Решение. Первое уравнение данной системы — это уравнение окружности радиуса $\sqrt{a^2} = \mid a \mid$ с центром в точке (0;0), второе уравнение данной системы — это уравнение окружности радиуса 1 с центром в точке (7;0). Заметим, что при увеличении $\mid a \mid$ первая окружность «раздувается» , а вторая остаётся неизменной .



Данная система имеет единственное решение тогда и только тогда, когда обе окружности пересекаются в единственной точке, а это возможно в следующих двух ситуациях:

- I) первая окружность касается второй окружности в точке (6;0); при этом |a|=6; $a=\pm 6$ (положение I);
- II) первая окружность касается второй окружности в точке (8;0); при этом |a|=8; $a=\pm 8$ (положение II) .

Omeem: ± 6 ; ± 8 .

<u>Пример 19.</u> Найти значение параметра a , при котором наименьшее решение неравенства $\frac{ax+8}{x} \le 2$ равно -8 .

Решение. Вместо неравенства рассмотрим уравнение $\frac{ax+8}{x}=2$ и подставим в него значение x=-8 . Получим $\frac{-8a+8}{-8}=2$. Отсюда a=3 . Проверка показывает, что неравенство $\frac{3x+8}{x} \le 2$ имеет наименьшее решение x=-8 . Отверия x=-8 .

Задачи для самостоятельного решения

- 18. Найти количество целых значений параметра a, при которых абсцисса вершины параболы $y = x^2 16ax + 65a^2 8a + 15$ положительна, а ордината отрицательна.
- 19. При каких значениях a квадратный квадратный трёхчлен $y = x^2 + 2(a+1)x + 9a 5$ можно представить в виде полного квадрата ?
- 20. Найти все значения параметра a , при которых график функции $y=a(a+1)x^2+2(a+1)x+2$ не имеет общих точек с осью Ox.
- 21. Найти все значения параметра a , при которых график функции $y = (2a+1)x^2 + 2(a-1)x + a + 1$ имеет с осью Ox только одну общую точку.
- 22. Найти все значения параметра a , при которых график функции $y = (a+4)x^2 + 6x + a 4$ имеет с осью Ox две общие точки.
- 23. Найти все значения параметра a , при которых квадратный трёхчлен $y = (a-1)x^2 + ax + a + 1$ не принимает отрицательных значений.
- 24. Найти все значения параметра a, при которых уравнение $ax^2 + 2(a-2)x + 1 = 0$ имеет только положительные корни.
- 25. Найти все значения параметра a , при которых один из корней уравнения $(a+3)x^2+4x+2-a=0$ больше, а другой меньше, чем -1 .
- 26. Найти все значения параметра $a \neq 0$, при которых графики функций $y = \begin{vmatrix} x^2 2ax \end{vmatrix}$ и y = 3a имеют только две общие точки.
- 27. Найти все значения параметра a , при которых графики функций $y = \frac{|x+2|}{x+2}$ и y = |x-a| имеют одну общую точку.
- 28. Найти все значения параметра a , при которых уравнение $\sqrt{4-a^2x}=x-1$ имеет единственное решение.
- 29. Найти все значения параметра a , при которых уравнение $\sqrt{36+2a^2x}=x+2$ имеет два различных корня.
- 30. Найти все значения параметра a , при которых уравнение $x^2 + 2ax 1 = 0$ имеет два различных корня на промежутке (-3;1].
- 31. При каких значениях параметра a уравнение $27x^4 ax + 16 = 0$ имеет два отрицательных корня?
- 32. При каких значениях параметра a уравнение $x^3 ax 2 = 0$ имеет три различных корня ?
- 33. При каких значениях параметра a уравнение $ax^4 2x^3 + 4 = 0$ имеет единственный корень ?
- 34. При каких значениях a система уравнений $\begin{cases} x^2 + y^2 = 16 \\ (x a)^2 + y^2 = 1 \end{cases}$ имеет единственное решение ?
- 35. При каких значениях a система уравнений $\begin{cases} x^2 + y^2 = 16 \\ x^2 + (y+1)^2 = a^2 \end{cases}$ имеет единственное решение ?
- 36. Найти значение параметра a , при котором наибольшее отрицательное решение неравенства $\frac{ax+8}{x} \ge -5$ равно -4 .

ВАРИАНТЫ ЦЕНТРАЛИЗОВАННОГО ТЕСТИРОВАНИЯ ПО МАТЕМАТИКЕ

Вариант № 1 / 2001

No	Вариант № 1 / 2001	OTDATE
	Задания	Ответы
A1	Дано: $\sqrt{3-t} - \sqrt{2-t} = 1$. Вычислить $\sqrt{3-t} + \sqrt{2-t}$.	1
A2	Дано: $f(x) = \frac{2x-3}{x-4}$. Вычислить $f(x^2) - f(x+2)$.	$-\frac{5(x+1)}{x^2-4}$
A3	Найти сумму координат вершины параболы $y = x^2 - 4x + 6$.	4
A4	Найти произведение корней уравнения $(x^2 + x + 1)(x^2 + x - 1) = 3$.	-2
A5	Вычислить $2^{\log_4(\sqrt{3}-2)^2} + 3^{\log_9(2+\sqrt{3})^2}$.	4
A6	Найти сумму корней уравнения $2^{x^2} + 2^{x^2+3} - 2^{x^2+1} = 7 \cdot 2^{5x+6}$.	5
A7	Найти произведение корней уравнения $\log_{\frac{1}{3}}^{2} \left(\frac{x}{9} \right) + \log_{\frac{1}{3}}^{2} \left(\frac{x}{3} \right) = 1$.	27
A8	В арифметической прогрессии первый и девятый члены соответственно равны -6 и 10. Найти сумму первых двенадцати членов прогрессии.	60
A9	Вычислить $\sin\left(\operatorname{arcctg}\left(-\frac{5}{6}\right)\right)$.	$\frac{6 \cdot \sqrt{61}}{61}$
A10	Вычислить $\frac{\cos 76^{\circ} - \cos 16^{\circ}}{1 - 2\sin^2 22^{\circ}}$.	-1
A11	Одна из сторон треугольника на 3 <i>см</i> меньше другой, высота делит третью сторону на отрезки длиной 5 <i>см</i> и 10 <i>см</i> . Найти периметр треугольника.	40
A12	Сфера проходит через все вершины прямоугольного параллелепипеда с рёбрами 1 <i>см</i> , 2 <i>см</i> и 2 <i>см</i> . Найти объём шара, ограниченного этой сферой.	4,5π
Б1	Найти сумму корней уравнения $(x-1)^3 - 36 = 28$.	8
Б2	Найти число целых решений неравенства $\frac{x^2 - 9x + 17}{(x-1)(x-3)} \le -\frac{1}{x-3}$.	2
Б3	Найти число целых решений неравенства $\sqrt{x+1} - \sqrt{x-2} > 1$.	1
Б4	Найти число целых решений неравенства $ \left(\sin \frac{\pi}{6} \right)^{x^2 - x - 6} < \left(tg^2 \frac{\pi}{6} \right)^{x^2 - x - 6}. $	4
Б5	Найти наименьшее целое решение неравенства $11^{\log_7 x} + x^{\log_7 11} \le 2 \cdot x^{2 \cdot \log_x 11}$.	2
Б6	Найти число решений уравнения $2\sin^2 x - 5\cos x - 4 = 0$, принадлежащих отрезку $\left[0; \frac{9\pi}{2}\right]$.	4
Б7	Найти сумму координат точки с положительной абсциссой, касательная в которой к графику функции $f(x) = x^2 - 3x + 4$ походит через начало координат.	4
Б8	Сколько точек $(x;y)$ с целыми координатами x , y лежат внутри прямоугольника с вершинами $A(1,5;1,5)$, $B(1,5;5,5)$, $C(5,5;5,5)$, $D(5,5;1,5)$?	16

Б9	$m{a}$ и $m{b}$ – векторы. Найти $\ m{a} + m{b} \ $, если $\ m{a} \ = 11$, $\ m{b} \ = 23$, $\ m{a} - m{b} \ = 30$.	20
	Найти значение параметра a , при котором наибольшее	
Б10	отрицательное решение неравенства $\frac{ax+10}{x} \ge -3$ равно -5 .	-1

Вариант № 9 / 2001

3.0	обриант № 9 / 2001 Э	0
№	Задания	Ответы
A1	Дано: $\sqrt{11-t} - \sqrt{3-t} = 1$. Вычислить $\sqrt{11-t} + \sqrt{3-t}$.	8
A2	Дано: $f(x) = \frac{5x-1}{x+3}$. Вычислить $f(x-5) - f(x-1)$.	$-\frac{64}{x^2-4}$
A3	Найти сумму координат вершины параболы $y = 2x^2 - 8x + 1$.	-5
A4	Найти произведение корней уравнения $x^3 - 4x^2 - 3x + 12 = 0$.	-12
A5	Вычислить $125^{\log_5\sqrt[3]{1+\sqrt{3}}} - 5^{\log_{25}(1-\sqrt{3})^2}$.	2
A6	Найти произведение корней уравнения $2^{2 x } - 3 \cdot 2^{ x } - 4 = 0$.	-4
A7	Найти произведение корней уравнения $\log_{0,5}^2 \left(\frac{x}{4}\right) + \log_{0,5}^2 \left(\frac{x}{2}\right) = 1$.	8
A8	Третий и седьмой члены арифметической прогрессии соответственно равны 1,1 и 2,3 . Найти шестнадцатый член прогрессии.	5
A9	Вычислить $\sin\left(\operatorname{arcctg}\frac{7}{4}\right)$.	$\frac{4\cdot\sqrt{65}}{65}$
A10	Вычислить $2\sin 55^{\circ}\cos 10^{\circ} + 2\sin^2 12^{\circ}30' + \frac{\sqrt{2}}{2}$.	$1+\sqrt{2}$
A11	В треугольнике две стороны равны 17 см и 25 см, высота делит третью сторону на отрезки, разность которых равна 12 см. Найти периметр треугольника.	70
A12	Диагональ куба равна 15 <i>см</i> . Найти площадь сферы, касающейся всех граней этого куба.	75π
Б1	Найти сумму корней уравнения $ (x+4)^3+49 =76$.	-10
Б2	Найти число целых решений неравенства $\frac{x^2+x-4}{(x+3)(x+5)} \le -\frac{1}{x+3}$.	2
Б3	Найти число целых решений неравенства $\sqrt{\frac{x^2-1}{x}} < 2$.	5
Б4	Найти сумму целых решений неравенства $\left(\sin^2\frac{\pi}{4}\right)^{x^2-2x} > 16^{x-2}$.	-5
Б5	Найти наибольшее целое решение неравенства $8^{\log_5 x} + 5 \cdot x^{\log_5 8} < 6 \cdot x^{\log_x 64}$.	24
Б6	Найти число решений уравнения $\cos^2 x + 2\sin x = 0$, принадлежащих отрезку $\left[-2\pi \; ; \; 2\pi \; \right]$.	4
Б7	Найти сумму координат точки с положительной абсциссой, касательная в которой к графику функции $f(x) = x^2 - x + 9$ проходит через начало координат.	18

Б8	Сколько точек $(x;y)$ с целыми координатами x , y лежат внутри прямоугольника с вершинами $A(0,5;-2,5)$, $B(0,5;-0,5)$, $C(4,5;-0,5)$, $D(4,5;-2,5)$?	8
Б9	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	15
Б10	Найти значение параметра a , при котором наибольшее отрицательное решение неравенства $\frac{ax+8}{x} \ge -5$ равно -4 .	-3

Вариант № 11 / 2001

$N_{\underline{0}}$	Задания	Ответы
A1	Дано: $\sqrt{16-t} - \sqrt{5-t} = 3$. Вычислить $\sqrt{16-t} + \sqrt{5-t}$.	<u>11</u> 3
A2	Дано: $f(x) = \frac{3x+2}{x+5}$. Вычислить $f(x-1) - f(x-9)$.	$\frac{104}{x^2 - 16}$
A3	Найти сумму координат вершины параболы $y = -x^2 - 2x - 2$.	-2
A4	Которому из промежутков $(-6; -4)$, $(-2; 0)$, $(1; 3)$, $(4; 6)$, $(7; 10)$ принадлежит корень уравнения $\frac{8x^3 + 27}{4x + 6} = 5x + 21$?	(4;6)
A5	Вычислить $\log_{\sqrt{2}} \left(\frac{4}{\sqrt{7} + \sqrt{3}} \right) + \log_{\frac{1}{2}} \left(\frac{1}{10 + 2 \cdot \sqrt{21}} \right)$.	4
A6	Найти сумму корней уравнения $\left(\left(\sqrt{\frac{2}{3}} \right)^{x-1} \right)^{x+3} = \sqrt[5]{\left(\frac{3}{2} \right)^{x+3}}$.	-2,4
A7	Найти произведение корней уравнения $\log_{\frac{1}{3}}(3x)^2 + \log_{\frac{1}{3}}^2(9x) = 5$.	$\frac{1}{9}$
A8	В арифметической прогрессии сумма третьего и седьмого членов равна 10, первый член равен -3. Найти разность прогрессии.	2
A9	Вычислить $\cos\left(\operatorname{arctg}\frac{3}{5}\right)$.	$\frac{5\cdot\sqrt{34}}{34}$
A10	Упростить выражение $\left(\frac{\sin 4\alpha}{\cos \alpha} + \frac{\cos 4\alpha}{\sin \alpha}\right) \cdot \left(\frac{1}{\cos 3\alpha} - \frac{1}{\cos \alpha}\right)$.	4tga
A11	В равнобедренном треугольнике боковая сторона равна $15 \ cm$, периметр равен $54 \ cm$. Найти радиус вписанной окружности.	4
A12	Сфера проходит через все вершины прямоугольного параллелепипеда с рёбрами 2 <i>см</i> , 5 <i>см</i> и 6 <i>см</i> . Найти площадь сферы.	65π
Б1	Найти сумму корней уравнения $\left \sqrt{x-4} - 6 \right = 2$.	88
Б2	Найти число целых решений неравенства $\frac{x^2 - 3x + 3}{(x - 2)(x - 4)} \le -\frac{1}{x - 4}$.	2
Б3	Найти число целых решений неравенства $\sqrt{x-1} - \sqrt{x-4} > 1$.	1
Б4	Найти сумму целых решений неравенства $\left(tg \frac{\pi}{3} \right)^{4-2x^2} > \left(\frac{1}{3} \right)^x$.	1

Б5	Найти сумму целых решений неравенства $6^{\log_3 x} + 4 \cdot x^{\log_9 36} \le 5 \cdot x^{\log_x 6}$.	5
Б6	Найти число решений уравнения $2\cos^2 x - \sin x - 2 = 0$, принадлежащих отрезку $\left[0; \frac{5\pi}{2}\right]$.	5
Б7	Касательная к параболе $y = x^2 + mx + 9$ проходит через начало координат. Найти значение параметра m , при котором абсцисса точки касания положительна, а ордината равна 3 .	-5
Б8	Сколько точек $(x; y)$ с целыми координатами x , y лежат внутри прямоугольника с вершинами $A(0,5; -3,5)$, $B(0,5; 0,5)$, $C(2,5; 0,5)$, $D(2,5; -3,5)$?	8
Б9	$m{a}$ и $m{b}$ – векторы. Найти $m{a}$ $m{+}$ $m{b}$, если $m{b}$ $m{=}$ 10 , $m{a}$ + $m{b}$ $m{=}$ 19 , $m{a}$ - $m{b}$ $m{=}$ 17 .	25
Б10	Найти значение параметра a , при котором наименьшее решение неравенства $\frac{ax+4}{x} \le 8$ равно -1 .	12

Вариант № 22 / 2002

No	Задания	Ответы
A1	Указать все номера рациональных чисел данного множества: 1) $\sqrt{3\sqrt{5^2}} \cdot 25^{\frac{2}{3}}$; 2) $\frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}$; 3) $(\sqrt[5]{2})^0$; 4) $5^{\log_{\frac{1}{3}}9}$; 5) $\sqrt{19 - 8 \cdot \sqrt{3}} + \sqrt{3}$.	3,4,5
A2	Упростить выражение $\frac{8-a\cdot\sqrt{a}}{\sqrt{a}}\cdot\left(\frac{a+2\cdot\sqrt{a}+4}{2\cdot\sqrt{a}+a}\right)^{-1}$.	2 – a
A3	Которому из промежутков (0,2;0,3), (-0,3;-0,2), (1,7;1,8), (-1,8;-1,7), (-2,1;-1,9) принадлежит сумма корней или корень (если он единственный) уравнения $\frac{x+2}{4x^2+4x-8} = \frac{1}{3}$?	(1,7;1,8)
A4	Найти скорость лодки в стоячей воде (в $\kappa m/чаc$) , если за 5 часов она прошла по реке 20 κm и вернулась назад, а скорость течения 3 $\kappa m/чac$.	9
A5	Которому из промежутков $(2;4)$, $(0;2)$, $(4;6)$, $(1;2)$, $(-2;0)$ принадлежит корень уравнения $(\sqrt{3})^{5x+1} \cdot 13^{\frac{x-3}{2}} = 3 \cdot 3^{2x+1}$?	(2;4)
A6	Найти среднее арифметическое всех корней уравнения $\cos^2 x + \sin x \cos x = 1$, принадлежащих промежутку $[-\pi; \pi]$.	$-\frac{\pi}{10}$
A7	Найти сумму ординат точек пересечения прямой $-5x + 2y = 7$ и параболы $2y = x^2 + 5x - 9$.	7
A8	Найти площадь четырёхугольника, ограниченного прямыми $\frac{x}{2} - \frac{y}{4} = 3$, $\frac{x}{2} - \frac{y}{4} = 5$ и осями координат.	64
A9	Даны векторы $\pmb{AB} = \{3;5;-4\}$ и $\pmb{BC} = \{\alpha;\beta;8\}$. Точки A , B и C лежат на одной прямой. Найти $\alpha + \beta$.	-16

A10	Около равнобедренной трапеции с основаниями 4 см и 14 см описана окружность с центром, лежащим на большем основании. Найти площадь трапеции.	27 ⋅ √5
A11	Высота конуса равна 3 <i>см</i> , а угол при вершине осевого сечения равен 120°. Найти объём конуса.	27π
A12	Найти все значения параметра $a \neq 0$, при которых графики функций $y = \begin{vmatrix} x^2 + 4ax \end{vmatrix}$ и $y = 2a$ имеют только две общие точки.	$\left(\ 0\ ; \frac{1}{2}\ \right)$
Б1	Указать наименьшее целое число k , при котором дробь $\frac{12k^2+5k+12}{4k+3}$ является также целым числом.	-2
Б2	Найти наименьшее целое решение неравенства $\frac{(x-4)(x-5)}{(x+4)(x+5)} \le \frac{x+6}{x-6} \ .$	7
Б3	Найти сумму корней уравнения $ x+1 =2\cdot x-2 $.	6
Б4	Найти произведение корней уравнения $(x+1)\cdot \sqrt{x^2+4x-8} = 2(x+1)$.	-12
Б5	Найти количество целых решений неравенства $\left(tg\frac{\pi}{6}\right)^{\sqrt{2-3x}-3} < \left(\sin\frac{\pi}{6}\right)^{\sqrt{2-3x}-3}$.	3
Б6	Найти корень уравнения $\log_4(x^2-x-3) = \log_4(x^2-5x+4) - 0,5$ или сумму корней, если корень не единственный.	-5
Б7	Найти сумму всех целых чисел k , каждое из которых делится без остатка на 12 и удовлетворяет условию $-277 < k < 325$.	1224
Б8	Найти $\operatorname{ctg} \alpha$, $\operatorname{если} \frac{3\sin \alpha - 5\cos \alpha}{\sin \alpha + 3\cos \alpha} = -2$.	-5
Б9	Найти в градусах значение угла arctg(ctg 675°).	-45
Б10	Найти значение функции $y = \frac{(x-1)^2}{x-2}$ в точке максимума.	0

Вариант № 33 / 2002

No	Задания	Ответы
A1	Указать все номера рациональных чисел данного множества: 1) $\sqrt[3]{49 \cdot \sqrt{7} \cdot 7^{\frac{1}{6}}}$; 2) $(\sqrt{2})^{\frac{\log_1 121}{2}}$; 3) $\sqrt{7 + 2 \cdot \sqrt{6}} - 1$; 4) $\sqrt{\sqrt{5} - 2} \cdot \sqrt{\sqrt{5} + 2}$; 5) $(64)^{\frac{4}{9}}$.	1,2,4
A2	Упростить выражение $\frac{9x-6\cdot\sqrt{x}+1}{3x+5\cdot\sqrt{x}-2}:\frac{9x-1}{2+\sqrt{x}}$.	$\frac{1}{3 \cdot \sqrt{x} + 1}$
A3	Которому из промежутков (2,6;2,7), (1,3;1,4), (-0,9;-0,8), (-1,4;-1,3), [-4;-3,9] принадлежит сумма корней или корень (если он единственный) уравнения $\frac{4x^2 + 3x - 52}{x + 4} = x - 5$?	(2,6;2,7)
A4	Найти скорость лодки в стоячей воде (в $\kappa m/чаc$) , если за 5 часов она прошла по реке 20 κm и вернулась назад, а скорость течения 3 $\kappa m/чac$.	9

A5	Найти сумму корней уравнения $(\sqrt[5]{6^{x-1}})^{x+3} = 36^{x+1}$.	8
	Найти среднее арифметическое всех корней уравнения	
A6	$\cos^2 x + \sin x \cos x = 1$, принадлежащих промежутку $[-\pi; \pi]$.	$-\frac{\pi}{10}$
A7	Найти произведение ординат точек пересечения прямой	$-\frac{1}{2}$
A	$3x - 2y = 4$ и гиперболы $y = \frac{3}{9x - 7}$.	$-\frac{1}{2}$
A8	Найти площадь четырёхугольника, ограниченного прямыми $5x + 2y = 20$, $5x + 2y = 40$ и осями координат.	60
A9	Точки $A(4;-3;5)$, $B(2;6;7)$, $D(13;-1;3)$ являются вершинами ромба $ABCD$. Найти длину диагонали AC .	$\sqrt{170}$
A10	В равнобедренном треугольнике основание равно проведённой к нему высоте и равно 12 см. Найти радиус описанной окружности.	7,5
A11	Объём конуса равен 64π $c M^3$, а угол при вершине осевого сечения равен 120° . Найти длину образующей конуса.	8
	Найти все значения параметра a , при которых графики функций	
A12	$y = \frac{ x-7 }{x-7}$ и $y = x+a $ имеют одну общую точку.	[-8;-6)
	Указать наименьшее целое число k , при котором дробь	
Б1	$\frac{12k^2 + 5k + 23}{3k + 2}$ является также целым числом.	-9
	Найти наибольшее целое решение неравенства	
Б2	$1 - \frac{4}{(x+1)(x-3)} + \frac{4}{x-3} \le 0.$	2
Б3	Найти сумму корней уравнения $ x+1 = 2 \cdot x-2 $.	6
Б4	Найти сумму корней (или корень, если он один) уравнения $\sqrt{3x^2-9x+1}=x-2$.	3
Б5	Найти сумму целых решений неравенства $\left(\cos^2\frac{\pi}{4}\right)^{-\sqrt{2x+5}} \ge 8^{\sqrt{3-z}}$.	6
Б6	Найти сумму целых решений неравенства $\log_6(x+2) < \log_6 \frac{18}{7-x}$.	10
Б7	Найти сумму всех нечётных чисел k , каждое из которых делится без остатка на 31 и удовлетворяет условию $-404 < k < 589$.	1581
Б8	Найти значение выражения $\frac{7(\sin\alpha+2\cos\alpha)}{\cos\alpha-\sin\alpha}$, если $tg\frac{\alpha}{2}=3$.	5
Б9	Найти в градусах значение угла $\arccos(\sin(-240^\circ))$.	30
Б10	Найти значение функции $y = x + \frac{4}{x}$ в точке максимума.	-4

Вариант № 69 / 2002

Указать все номера рациональных чисел данного множества: 1) $\sqrt[4]{125 \cdot \sqrt{5}} \cdot 5^{\frac{1}{8}}$; 2) $(\sqrt{3}-1)^2$; 3) $16^{\frac{5}{4}}$; 4) $(\sqrt[4]{5})^{\log_5 16}$; 5) $\sqrt{28-10\cdot\sqrt{3}}-5$. А2 Упростить выражение $\frac{a^{-2}+a}{(\sqrt{-a})^{-1}-\sqrt{-a}}\cdot(1-a+a^2)^{-1}$. Которому из промежутков (1,95; 2,05), (1,3; 1,4), (3,3; 3,4), (0,3; 0,4), (2,3; 2,4) принадлежит сумма корней или комерия (1,95; 2,05), (1,3; 1,4), (3,3; 3,4), (1,95; 2,05), (1,95;	(1,3;1,4)
5) $\sqrt{28-10\cdot\sqrt{3}}-5$. А2 Упростить выражение $\frac{a^{-2}+a}{\left(\sqrt{-a}\right)^{-1}-\sqrt{-a}}\cdot\left(1-a+a^2\right)^{-1}$. Которому из промежутков $(1,95;2,05)$, $(1,3;1,4)$, $(3,3;3,4)$, $(0,3;0,4)$, $(2,3;2,4)$ принадлежит сумма корней или ко	$\frac{\sqrt{-a}}{a^2}$), орень (1,3; 1,4)
А2 Упростить выражение $\frac{a^{-2}+a}{\left(\sqrt{-a}\right)^{-1}-\sqrt{-a}}\cdot\left(1-a+a^2\right)^{-1}$. Которому из промежутков (1,95; 2,05), (1,3; 1,4), (3,3; 3,4), (0,3; 0,4), (2,3; 2,4) принадлежит сумма корней или ко	(1,3;1,4)
Которому из промежутков (1,95; 2,05), (1,3; 1,4), (3,3; 3,4 (0,3; 0,4), (2,3; 2,4) принадлежит сумма корней или ко	(1,3;1,4)
(0,3; 0,4), (2,3; 2,4) принадлежит сумма корней или ко	(1,3;1,4)
x-2	TACOR
Найти скорость лодки в стоячей воде (в $\kappa m/чаc$) , если за 5 ч она прошла по реке 20 κm и вернулась назад, а скорость течения 3 $\kappa m/чac$.	
А5 Найти сумму корней уравнения $(\sqrt[5]{6^{x-1}})^{x+3} = 36^{x+1}$.	8
А6 Найти среднее арифметическое всех корней уравн $\cos^2 x + \sin x \cos x = 1$, принадлежащих промежутку $[-\pi; \pi]$	_
А7 Найти произведение абсцисс точек пересечения пр $x + y = -2$ и окружности $x^2 + y^2 = \frac{18}{7}$.	ямой <u>5</u> 7
А8 Найти площадь четырёхугольника, ограниченного прям $2x + 7y = -14$, $2x + 7y = -28$ и осями координат.	иыми 21
А9 Даны векторы $AB = \{-3; 5; 11\}$ и $BC = \{6; m; n\}$. Точки A , B и C лежат на одной прямой. Найти $m-n$.	12
В прямоугольной трапеции меньшая боковая сторона равна $4 \cdot \sqrt{5}$ см. Найти длину большего основания трапеции.	
А11 Осевое сечение конуса — правильный треугольник с площ $9 \cdot \sqrt{3} \ c M^2$. Найти площадь боковой поверхности конуса.	адью 18π
Найти все значения параметра $a \neq 0$, при которых граф функций $y = \begin{vmatrix} x^2 - 3ax \end{vmatrix}$ и $y = 18a$ имеют только две об точки.	
Б1 $\frac{15k^2-2k-8}{3k-1}$ является также целым числом.	-2
Б2 Найти наибольшее целое решение неравенства $\frac{16}{x^2 - 3x} \ge x^2 - \frac{1}{x^2 - 3x}$	3x. 4
Б3 Найти сумму корней уравнения $ x+1 = 2 \cdot x-2 $.	6
Б4 Найти значение выражения $(2x_0+1)x_0$, где x_0 — ко уравнения $\frac{1}{x-\sqrt{x^2-x}}-\frac{1}{x+\sqrt{x^2-x}}=\sqrt{3}$.	орень 36

Б5	Найти сумму целых решений неравенства $\left(\operatorname{ctg}^2\frac{\pi}{3}\right)^{\sqrt{3x+14}} \geq \left(\frac{1}{27}\right)^2$.	18
Б6	Найти корень уравнения $\log_{16}(x^2-2x-4) = \log_{16}(x^2-5x-6) - 0.25$ или сумму корней,	-2
	если корень не единственный.	_
Б7	Найти сумму всех целых чисел k , каждое из которых делится без остатка на 14 и удовлетворяет условию $-239 < k < 337$.	2058
Б8	Найти $\operatorname{ctg}\alpha$, $\operatorname{если} \frac{\sin\alpha - 3\cos\alpha}{2\sin\alpha + 5\cos\alpha} = -\frac{1}{2}$.	4
Б9	Найти в градусах значение угла $\arccos(\sin(600^\circ))$.	150
Б10	Найти сумму наибольшего и наименьшего значений функции $y = x^4 - 2x^2 + 3$ на отрезке $\begin{bmatrix} 0 \ ; 2 \end{bmatrix}$.	13

ПИСЬМЕННЫЙ ЭКЗАМЕН ПО МАТЕМАТИКЕ

На письменном экзамене каждому поступающему предлагается тест, состоящий из 15 заданий, на выполнение которых отводится 180 минут. Мы приводим 30 вариантов теста вступительного экзамена 2002 г. и указываем ответы ко всем заданиям.

ВЛАДИМИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕСТ ВСТУПИТЕЛЬНОГО ЭКЗАМЕНА ПО МАТЕМАТИКЕ; 2002 г.

Вариант № 1

Bapuahi ng <u>T</u>							
Сум	има баллов	Оценка	Подпись проверяющего	Фамилия пров	еряющего		
$N_{\overline{0}}$		Усл	овия задач	Ответы	Баллы		
1	Решить нера	авенство $\frac{\log_{0.5}}{\sqrt{4}}$	$\frac{\left(1-x\right)}{-x^2} \le 0 \ .$	(-2;0]			
2		вначения k , пр $x^2 + kx + 3 = 0$	и которых сумма квадратов корней равна 19.	±5			
3	боковая гра		гольной пирамиды равна 6 см , а сплоскостью основания угол 60°.	81			
4		у промежутка, $ > 7x + 18 $.	на котором выполнено неравенство	0,5			
5		у всех двузначн 5 дают в остатке	ых натуральных чисел, которые при 1.	963			
6	Найти все [0; 2π].	корни уравне	ния $\frac{\sin x}{1 - \cos x} = 0$ на отрезке	π			
7	Решить ураг	внение $\log_3^2 (3 \cdot$	$\sqrt{x} = \log_3(9x) .$	$9;\frac{1}{9}$			
8		корда длины 13	диаметр круга в отношении 2:5, под углом 60° к диаметру. Найти	7			
9	Найти знач	ение функции	$y = 3x^3 - 7x + 19 + \frac{2}{x}$ в точке	17			
10	Биссектриса	ошении $\sqrt{3}$: 2	треугольника делит гипотенузу на . Найти косинус меньшего острого	$\frac{2}{\sqrt{7}}$			
11	Упростить	$\frac{x}{\left(\sqrt{3}+\sqrt{x+y}\right)^2}$	$\frac{x^2 + y - 1}{x^2 - (\sqrt{3x + 3y} + 1)^2}$	$-\frac{1}{2}$			
12	Найти целы	й корень уравне	ния $\sqrt{3^x - 11} = 5 - \sqrt{4 - x}$.	3			
13	-	ональные корни	$x \qquad 4x^2-5$	1; $-\frac{5}{4}$			
14		/ _ / .	M(6;1) до середины отрезка AB ,	$\sqrt{68}$			
15	Найти все з	начения парамет	ра a , при которых график функции меет с осью Ox две общие точки.	$\left(-5;-\frac{1}{2}\right)$ \cup	$-\frac{1}{2};\infty$		
_							

1.	Іредседатель	предметной	комиссии	ПО	математике
----	--------------	------------	----------	----	------------

Тест выдан

Вариант № 2

Сумма баллов Оценка Подпись проверяющего Фамилия про					
Cyn	viivia UajijiUB	Оценка	подпись проверяющего	Фамилия пров	ряющего
Nr.		T 7	100 Mg 20 Mg 10 Mg	Omport	Готт
№	Сооторуут		овия задач	Ответы	Баллы
1	Составить	уравнение ка	сательной к графику функции	7	
1	$y = x^3 - 5$	$x^2 + 4x - 7 + \frac{2}{3}$	$\frac{7}{2}$ в точке с абсциссой $x_0 = 3$.	y = -x - 7	
	паити все	_	метра <i>а</i> , при которых график	(7)	(5)
2	функции	$y = 3ax^2 - 2$	$(2a+1)x + \frac{12}{a}$ имеет с осью	$\left(-\infty; -\frac{7}{2} \right) \cup$	$\sqrt{\frac{2}{2}}, \infty$
			a	_ /	` /
		е общие точки.	() (2)	1	
3	Решить упа	авнение $\log_2(x)$	$c^3 \cdot \log_2\left(\frac{x}{4}\right) = \log_2\left(\frac{2}{x^4}\right).$	$2 \; ; \; \frac{1}{\sqrt{2}}$	
	- JP		(4) (x^4)	¹ √2	
	D	. (1	3))	$2 ; \frac{1}{\sqrt[3]{2}}$ $\frac{2}{\sqrt{5}}$	
4	Вычислить	$\sin\left(\frac{1}{2}\operatorname{arcctg}\right)$	$-\frac{1}{4}$	$\sqrt{5}$	
		,	ьной пирамиде угол между		
5	_		Найти апофему пирамиды, если	$\frac{2}{3}$	
]	-	•	охности равна $\frac{4}{3}$.	$\overline{3}$	
6	Решить ура	авнение $\frac{x}{x-2}$	$=\frac{3x-8}{2}$.	4	
7	Найти наиме	ньший корень урав	внения $ x+5 - 2x-6 = x+1$.	1	
8	Решить ура	авнение 3^{x+2} +	$3^{-x} = 10$.	0;-2	
9	Найти пепы	й корень уравне	мия $\sqrt{3x-17} + \sqrt{8-x} = \frac{x-4}{x-6}$.	7	
	тапти цолы	п корень уравнег	x-6	,	
		$\frac{1}{x}$	3/1	(3 7	
10	Решить нер	равенство $\frac{2^{\frac{1}{x}}}{\sqrt{x}}$	$\frac{-\sqrt{4}}{2} \ge 0$.	$\left(0;\frac{3}{2}\right)$	
		V N			
	D	$(2-\sqrt{3})^3+4$		4.5	
11	Вычислить	$\frac{(2-\sqrt{3})^3+4}{\sqrt{7-4\cdot\sqrt{3}}}$	•	15	
		γ/ + γ5			
12			q угол между векторами	$(-3;+\infty)$	
	` -	$\}$ и $b = \{3; 2\}$, , ,	
	_		а треугольника делит гипотенузу	7	
13	на части в	в отношении	$\sqrt{7}$:5 . Найти синус меньшего	$\sqrt{\frac{7}{32}}$	
		па треугольника		¥ 32	
			сия содержит 10 членов. Сумма		
14			ных местах, равна 50, а сумма	-5	
			ётных местах, равна 35. Найти		
	1	ен прогрессии. равнобоч	пой транании возмуча		
	Диагонали	равноооч улярны и де	*		
15			ольшее основание трапеции, если	8	
		сторона равна			
	KPROVIOR 22	сторона равна	J: V4 .		

Председатель предметной комиссии по математике

Вариант № 3

					iaнт № <u>3</u>
Cyn	мма баллов	Подпись проверяющего	Фамилия прове	еряющего	
No		Усл	ювия задач	Ответы	Баллы
1	Решить нер	$\sqrt{3}$	- x < 1	(-∞;-3)	
2	Упростить	sin 2	!α	$\frac{\sqrt{2}}{2}$	
3	Найти натур	ральные корни ур	равнения $\frac{x^2 + x}{x^2 + x + 2} = \frac{x^2 + x - 1}{2}$.	1	
4	Найти дл неравенств	пину промежу $ 11x + 31 < $	утка, на котором выполнено $ 7x+17 $.	$\frac{5}{6}$	
5			араметра a , при которых $6x + a - 7 \ge 0$ выполнено при	[8;+∞)	
6		параллелогра	вершины $A(-3;2)$, $B(-5;-1)$, мма $ABCD$. Найти координаты	(6;3)	
7	Решить нер	равенство $\frac{\log_3}{ x }$	$\frac{s(x+1)}{s(x+1)} \ge 0 .$	(-1;0]U(2;+∞)
8	на части в	_	а треугольника делит гипотенузу $\sqrt{7}:3$. Найти синус меньшего а.	$\frac{\sqrt{7}}{4}$	
9	Сторона о равна 4 сл основания	основания прав и, а угол межд	вильной треугольной пирамиды ду боковой гранью и плоскостью ен 30°. Найти площадь боковой	8	
10			вадцати нечётных натуральных ии на 5 дают в остатке 4.	2080	
11	Решить ура	авнение $x^{2 \cdot \lg^2 x \cdot }$	$-1.5 = \sqrt{10}$.	10; $\frac{1}{\sqrt{10}}$	
12		· — ·	60° , а радиус вписанного в ромб периметр ромба.	$16 \cdot \sqrt{7}$	
13	Найти $y = 20x^3 + $	интервал $+25x^4-8x^5$.	возрастания функции	$\left(-\frac{1}{2};3\right)$	
14		$\frac{\left(3-\sqrt{2}\right)^3+2}{3\cdot\sqrt{2}-5}$		-9	
15	Решить ура	авнение $3^x - 3$	1-x = 2.	1	

Председатель предметной комиссии по математике	
--	--

Тест выдан ______ Исправления в графе ответов не допускаются. Черновики работы не проверяются.

Вариант № 4

Cvn	ма бантар	Оценка	Подпись проверяющего		ant Nº 4
Сум	има баллов	Фамилия прове	еряющего		
№		Ver	Ответы	Баллы	
1	Решить ура	$3^{x+2} -$	вовия задач $3^{x+1} = 18 \cdot 27^x .$	-0,5	Davidin
	Найти	натуральны		0,5	
2				2	
	(x + 2x)	$-(x+1)^2 = 55$	·		
3	Найти угол	ів градусах ar	$\cos\frac{1}{\sqrt{28}} + \arccos\sqrt{\frac{3}{28}} .$	150	
	V	D	$x^{2}-y^{2}$	x-y	
4	Упростить	выражение $\frac{1}{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	$\frac{x^2 - y^2}{\sqrt{x} - \sqrt{2y}^2 + \left(\sqrt{2x} + \sqrt{y}\right)^2} .$	$\frac{x-y}{3}$	
			m, где M и m — наибольшее и		
5	наименьше	ее значения фу	$y = 5 + 24x + 9x^2 - 2x^3$	-3	
	на отрезке	[-2;4].			
	Найти все	 значения парам	иетра а, при которых уравнение	(1 0 1	
6	$\sqrt{a-2x}$ +	x = 0 имеет д	(-1;0]		
7		равенство $\frac{5-}{\sqrt{x}}$		(-1;3]	
		VΛ	1 1		
			т диаметр круга в отношении од углом 45° к диаметру. Найти	=0	
8	_	_	70		
	длину хорд	цы, если радиус	круга равен $25 \cdot \sqrt{2}$.		1
9	Решить ура	авнение $\lg^2(10)$	$(x^2) = \lg(x^4) + 2 .$	$\pm\sqrt{10}$; \pm	$=\frac{1}{\sqrt{10}}$
10	Решить нер	равенство $(4x^2)$	$-8x-5\big)\cdot\log_3(x+1)<0.$	$\left(-1;-\frac{1}{2}\right)$	$\left(0;\frac{5}{2}\right)$
11			ццати чётных натуральных чисел, 3 дают в остатке 2.	1180	
12	Найти все векторами	$a = \{ p-3 ; -1 \}$	$\left\{ \begin{array}{ll} p & \text{, при которых угол между} \\ 2 & \text{и } \boldsymbol{b} = \left\{ \begin{array}{ll} p \; ; \; 2 \end{array} \right\} \end{array} \right.$ острый.	$(-\infty;-1)$ U(4;+∞)
			а треугольника делит гипотенузу	<i>F</i>	
13	_		$\sqrt{5}$. Найти косинус меньшего	$\frac{\sqrt{5}}{}$	
		та треугольник	•	3	
		ень уравнения		17	
14	•	- 1	· _ · · ·	$\frac{17}{8}$	
		ащий промежу		8	
15			конуса равна $2 \cdot \sqrt{6}$ cm^2 , а его	5	
	объём раве	н 8π <i>см</i> ³. Най	ти образующую конуса.		

П	редседатель	предметной	комиссии по	математике	
---	-------------	------------	-------------	------------	--

Тест выдан ______ Исправления в графе ответов не допускаются. Черновики работы не проверяются.

Вариант № 5

Вариант № <u>5</u>									
Сум	има баллов	Оценка	Подпись проверяющего	Фамилия пров	еряющего				
Mo		Var	70DV7 00 T0V	Omporty	Голиг				
№	Найти	рациональн	овия задач ые корни уравнения	Ответы	Баллы				
1		$(-1)^2 + (2x^2 + 3x^2)$	* * *	$-2 \; ; \; \frac{1}{2}$					
2	Найти целн	ый корень ураві	8						
3	Вычислить	$\sqrt{(3-\sqrt{5})^3}$	$\overline{24} \cdot \left(1 + \sqrt{5}\right)$.	16					
4	Решить неравенство $\frac{\sqrt{2} \cdot 2^{\frac{1}{x}} - 1}{x - 5} \ge 0$.								
5	Найти все функции абсцисс дв	значения пара $y = (a-1)x^2 +$ е общие точки.	метра a , при которых график $-2(2a-4)x+4a$ имеет с осью	(-∞;1)∪($\left(1;\frac{4}{3}\right)$				
6	Решить ура	авнение $\log_2 $	$\sqrt{x} \cdot \log_2\left(\frac{x^3}{32}\right) = \log_2\left(x^5\right) - 9 .$	4;8					
7	основании отношении	делит боковую 6 : 5 , счи	ольнике биссектриса угла при сторону треугольника на части в тая от основания треугольника. овании треугольника.	<u>4</u> 5					
8		ичину $x_1^2 + x$ $3x^2 - 15x + 8 = 0$	x_{2}^{2} , где x_{1} и x_{2} — корни	$\frac{59}{3}$					
9	Найти	наибольшее		77					
10		у корней уравне щих промежутку	ния $7\sin^2 x + 3\cos^2 x \sin x = 7$, $\left(-\frac{\pi}{2}; 2\pi\right]$.	2π					
11	равна 6 · плоскостью пирамиды.	$\sqrt{3}$ <i>см</i> , а о основания пи	вильной треугольной пирамиды угол между боковой гранью и рамиды равен 30°. Найти объём	27					
12	прогрессин	о, в которой суг оследних двух	возрастающую геометрическую мма первых двух членов равна 1, равна 4. Найти второй член	$\frac{2}{3}$					
13			M, лежащей на прямой $y = x$, $A(6;1)$ и $B(-2;3)$.	(2;2)					
14		рень уравнег ащий промежу	ния $\left 10x - 3 \right - 12 = 4$, тку $\left(-\frac{3}{5}; 1 \right)$.	$-\frac{1}{2}$					
15	стороне, а боковую ст	длины основан сорону трапеци	пеции перпендикулярна её боковой ний относятся как $1:3$. Найти и, если её высота равна $\sqrt{6}$.	3					
Тест	выдан		и по математике опускаются. Черновики работы не прог	зепяются					

Вариант № 6

Cvn	има баллов	Фамилия пров	еряющего		
		Оценка		1 1	
No		Усл	овия задач	Ответы	Баллы
1		каких зн	ачениях <i>а</i> уравнение 0 имеет только отрицательные	[5;+∞)	
2	2:5, пров	ведена хорда по	т диаметр круга в отношении од углом 60° к диаметру. Найти ояние от центра круга до хорды	26	
3	является от		кружности, диаметром которой $A(4;1)$, $B(-2;9)$.	$(x-1)^2 + (y-1)^2$	$5)^2 = 25$
4	Найти $ 2x+6 +$	$\begin{vmatrix} x - 8 \end{vmatrix} = 2x + 2x + 3x + 3x + 3x + 3x + 3x + 3x +$	1 21	7	
5	2 · √6 cm		ой треугольной пирамиды равно ол 45° с плоскостью основания прамиды.	18	
6	Вычислить	$6^{\frac{x-2}{x-1}} \cdot 2^{\frac{3x}{2}} \text{mp}$	$x = \log_2 12 .$	$72 \cdot \sqrt{3}$	
7			ли на 26%, а знаменатель – на ов изменилась дробь?	увеличилась на 5%	
8	Решить нер	равенство $\frac{\sqrt{2^{-1}}}{x^2}$	$\frac{\overline{x} - 4}{+5x} \le 0 .$	(-5;-2]	
9	Упростить в	выражение $\frac{1}{\sqrt{x}}$	$\frac{xy}{+\sqrt{2y}\big)^2 - \left(\sqrt{2x} - \sqrt{y}\right)^2 + x - y}.$	$\frac{\sqrt{2xy}}{8}$	
10	Решить ура	авнение $\sqrt{2x^2}$	$\overline{+4x+3} = x^2 + 2x .$	1;-3	
11	4:5, а ди		угольной трапеции относятся как гся биссектрисой её тупого угла. па трапеции.	$2\cdot\sqrt{6}$	
12	Решить ура	авнение $9^x + 2$	$2 \cdot 3^x = 3.$	0	
13	Составить	уравнение ка $x^2 - 7x - 2 + \frac{4}{x}$	сательной к графику функции $\frac{4}{x^2}$ в точке с абсциссой $x_0 = -2$.	y = -10x + 1	
14	Решить ура	aвнение $\frac{5x^2-}{x^2}$	$\frac{12x - 9}{-9} = 3x - 6 .$	$-\frac{7}{3}$	
15	Вычислить	$\sin\left(\frac{1}{2}\arcsin\right)$		$-\frac{1}{\sqrt{3}}$	

Председатель предметной комиссии по математике

Тест выдан

Вариант № 7

Сум	има баллов	Оценка	Подпись проверяющего	Фамилия прове	еряющего
	T				
№	_	Усл	Ответы	Баллы	
1		значениях пара $1 \}$ и $\mathbf{b} = \{3;$	аметра p угол между векторами 12 $\}$ острый ?	$(-2;+\infty)$	
2	параллельн расстоянии	юй оси цили 1 2 <i>см</i> . С	см ³ пересечён плоскостью, ндра и отстоящей от неё на екущая плоскость отсекает от гу в 60°. Найти площадь сечения.	$2\cdot\sqrt{3}$	
3			н 60°, а радиус вписанного в ги периметр ромба.	$48 \cdot \sqrt{3}$	
4	$x-1>\frac{1}{ x }$	$\frac{2}{-2 }$.	уральное решение неравенства	6	
5	Решить нер	равенство $\frac{3-}{\sqrt{1-}}$	$\frac{3^{x^2}}{2x} \ge 0 .$	$\left[-1;\frac{1}{2}\right)$	
6	Вычислить	$\sqrt{\left(\sqrt{5}-1\right)^3}+$	$\overline{40} \cdot \left(\sqrt{5} - 1\right)$.	8	
7	наименьше		, где M и m — наибольшее и инкции $y = 2x^3 + 3x^2 - 36x - 4$	42	
8		т на части в о	а прямоугольного треугольника тношении $1:\sqrt{7}$. Найти синус	$\sqrt{\frac{6}{7}}$	
9	прогрессин	о, в которой сул оследних двух	в возрастающую геометрическую мма первых двух членов равна 6, равна 54. Найти первый член	1,5	
10	Решить ура	авнение $\lg^2 \left(\frac{x}{1} \right)$	$\left(\frac{2}{0}\right) = \lg(x^4) - 3.$	±10	
11			, при которых сумма квадратов $x-3=0$ равна 22.	±4	
12	Найти ср	реднее арифм	летическое корней уравнения адлежащих промежутку $\left[-\pi; \frac{\pi}{2}\right]$.	$-\frac{2\pi}{9}$	
13	Решить нер	равенство $\frac{\sqrt{x}}{3}$	$\frac{+3}{x} \ge 1$.	[1;3)	
14	Найти все	x + 4(a-1)x + 1 > 0	а, при которых неравенство	$\left[1;\frac{5}{3}\right)$	
15	Решить ура	авнение $\frac{x+8}{x+1}$	$= \frac{x+22}{x^2+5x+4} \ .$	-10	

Председатель предметной комиссии по математике

Тест выдан _

Вариант № 8

Cyn	има баллов	Оценка	Фамилия прове	еряющего			
							1
<u>No</u>		Усл	овия за	адач		Ответы	Баллы
1	Hайти $(x^2 - 6x)^2$	натуральны $-2(x-3)^2 = 8$		корни	уравнения	3	
2	Углы треуг	гольника относика, если его боль	ятся как			1	
3	Найти наи длина вект где <i>A</i> (2;3	большее значелора $a = \{5; 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 4, 5, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,$	ние пар $2p$ $\}$ ра	раметра p , авна длине в	при котором вектора AB ,	1	
4	Периметр площадь п высоту цил	осевого сечен полной поверх пиндра.	ия цили ности р	индра равен равна 6π	$\frac{8}{c^{2}}$ см , а $\frac{1}{c^{2}}$. Найти	2	
5	Упростить	выражение ($\sqrt{x+1}$	$\frac{\sqrt{y}}{y+1}^2 + \left(\sqrt{xy}\right)^2 + \left(\sqrt{xy}\right)^2$	$(x+y)^2$.	<i>x</i> + 2	
6	Решить неравенство $\frac{\sqrt{x+5}}{1-x} \le 1$.				$[-5;-1] \cup ($	$1;+\infty$)	
7	Найти все значения k , при которых корни уравнения $x^2 + 3x + k = 0$ связаны соотношением $x_1 - 3x_2 = -7$.				-4		
8	Найти все значения параметра a , при которых уравнение $\sqrt{3x^2 + a} = 2x - 1$ имеет два различных корня.					$\left(-3;-\frac{3}{4}\right]$	
9	Найти наибольшее целое решение неравенства $ x+1 < \frac{25}{x+11}$.					1	
10	Найти значение функции $y = x^3 - 11x - 5 + \frac{4}{x}$ в точке максимума.					7	
11	Один из углов треугольника равен 150°, а высота треугольника, опущенная из вершины этого угла, делит сторону на части в отношении 5 : 9 . Найти тангенс меньшего угла треугольника.					$\frac{\sqrt{3}}{9}$	
12	Разность арифметической прогрессии равна 1, а сумма первых четырёх её членов равна 8. Найти пятый член прогрессии.					4,5	
13	Решить уравнение $\log_2^2 \left(\frac{x}{4}\right) = \log_2 x - 2$.					4;8	
14	Решить неравенство $\frac{\sqrt{1-x}}{8-2^{-x}} \ge 0$.					(-3;1]	
15	Найти все $\left[-\frac{\pi}{2}; \frac{3\pi}{2}\right]$	корни уравн	ения	$\frac{\cos 2x}{1 + \lg x} = 1$	на отрезке	0;π	

Председатель предметной комиссии по математике

Тест выдан

Вариант № 9

Cva	има баллов	Оценка	Подпись про	OBENGIOINELO	Фамилия прове	engiouiero
Cyn	има баллов	Оценка	Фамилия прове	сряющего		
№		Var	ория запон		Отроти	Баппт
745	Cynnes		овия задач	anud Mariniaara*	Ответы	Баллы
1	-	•	ёртого членов а има первого и тр		7	
1		п равна 0, а су ый член прогре		стьсто равна 2.	,	
		выражение	сии.			
2	_	- ,	(2, 2)		$8v^2$	
	$\int (\sqrt{x} + 2y -$	$-\sqrt{x-2y}$) $\cdot (x$	$+\sqrt{x^2-4y^2}$).		- 7	
	Найти	наибольшиі	й корень	уравнения	-	
3	$\sqrt{3x-3}$	$\sqrt{x-2} = \sqrt{3} .$			5	
	-	· _	(5 2)		(2 1)	
4	Решить не	$\sqrt{10}$	$\frac{g_{0,5}(5x-2)}{3x^2-1} < 0$.		$\left(\frac{2}{5};\frac{1}{\sqrt{3}}\right)$	
	тешить пер	Jabene 1 Bo	$3x^2 - 1$		(5′√3)	
	Высота раз	внобедренного	треугольника, пр	оведённая к его	$\frac{\sqrt{2}}{3}$	
5	боковой ст	ороне, делит э	гу сторону на час	ти в отношении	√ 2	
3	5:4, счи	тая от вершин	ны треугольника.	Найти косинус	3	
		сновании треуг			_	
6	Решить ура	авнение $3^{x+2} +$	$3^{1-x} = 12$.		0;-1	
	Лиагональ	павнобочной	трапеции равна	$2 \cdot \sqrt{6}$ и		
7	* *	-	•	•	$6 \cdot \sqrt{2}$	
,	составляет	с основание	м угол $\frac{3\pi}{8}$. I	наити площадь	6.42	
	трапеции.					
8	Решить уравнение $\log_3^2(3x) = \log_3(3x^4)$.				1;9	
	Howmy orver		y = 46 + 44x - x	3 64 p. mayyra		
9	паити знач	вение функции	y = 40 + 44x - x	$\frac{1}{x} = \frac{1}{x}$	-50	
	минимума.					
	•		7x+2 - 3-	-x = 2x + 20	15	
10				, ,	$\frac{15}{4}$	
		ащий промежу	4			
			ности конуса рав		_	
11		осевого сечени	я равен 6 см	. Найти высоту	1	
	конуса.					
	, * .	ких значен		уравнение	г т	
12	$(a+4)x^2 +$	6x + a - 4 = 0	[-5; -4]			
	корни ?					
			, <i>B</i> (–1; 9). На		, ,	
13	точки C ,	которая делит	отрезок АВ в от		(0;7)	
	считая от т	очки A .				
1.4	Пойти сто-	т в вродилови.	$\operatorname{rctg} \frac{2}{7} - \operatorname{arctg} \frac{9}{5}$.		150	
14	гланти угол	гв градусах. а	$\frac{1 \operatorname{cig} - \operatorname{alcig} - 1}{7}$		-45°	
	Найти	натуральны	е корни	уравнения		
15		• •	•	7 I	2;4	
	(x - 4x +	$(1)^2 + (x^2 - 4x + $	-3j = 10.			

Председатель предметной комиссии по математике

Тест выдан

Вариант № 10

-			Фолития проводионого		
Сум	има баллов	Оценка	Фамилия пров	еряющего	
	ı				Т
$N_{\underline{0}}$		Усл	Ответы	Баллы	
1			а один из корней уравнения больше, а другой меньше, чем	(1;2)	
2	Решить ура	авнение 10^{2x-1}	$\cdot 2^{x+1} = 2^{2x-1} \cdot 8^x .$	0,5	
3	Углы треуг	гольника относ авна $3 \cdot \sqrt{2} +$	ятся как $1:3:8$, а его большая $\sqrt{6}$. Найти меньшую сторону	2	
4	Решить ура	авнение $\frac{x}{x-2}$	$= \frac{20 - 5x}{x^2 + x - 6} \ .$	-10	
5	Площадь б	боковой поверх	ности конуса равна 65π cm^2 , а я равен 36 cm . Найти высоту	12	
6	Найти $y = 6 + 36$		87		
7	Решить нер	равенство $\sqrt{-}$	$x^2 + 6x - 5 > 8 - 2x .$	(3;5]	
8	Вычислить	$4^{\frac{1}{x}} \cdot 6^{x+3}$ при	3		
9	Вычислить	$\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}$	2		
10	_	ность арифмет Ех членов равна	3		
11	Найти все [0°; 180°	е корни уравн].	18° ; 162°		
12	длина вект где A(2;0	большее значе ropa $a = \{3; p\}$	3		
13	Решить нер	равенство $\frac{\sqrt{\log_6}}{\log_6}$	[0;5)		
14		са острого угл т на части в о	$\frac{3}{4}$		
15		аибольшее	целое решение неравенства	4	

Пред	седатель предметной комиссии по математике	

Вариант № 11

Cyn	има баллов	Оценка	Фамилия прове	нт <u>ле тт</u> еряющего	
		3 4,555		- p	
No		Усл	овия задач	Ответы	Баллы
1	Вычислить	$(\sqrt{3}-2)\cdot\sqrt{7}$	$+4\cdot\sqrt{3}$	-1	
2	на части н		а треугольника делит гипотенузу $1:\sqrt{7}$. Найти синус меньшего а.	$\frac{1}{\sqrt{8}}$	
3	Найти $y = 13 - 53$	интервалы $x^2 + 10x + 20 \cdot 1$	возрастания функции $\ln(x-2)$.	(2;3)	
4	Найти все [0; 2π].	0;2π			
5		гырёх её членс	й прогрессии равна 2, а сумма ов равна 6. Найти первый член	$-\frac{3}{2}$	
6	взаимно п	ьной треуголь перпендикулярь сота равна 2 · ·	6		
7	Решить ура	авнение $\log_2 \gamma$	$\frac{1}{2}$; $\sqrt{2}$		
8	Решить ура	авнение $\sqrt{5-3}$	$-1 \; ; \; \frac{1}{2}$		
9		значения пара $y = \frac{a+2}{3-a}x^2 + $ ки.	(-∞;-2)∪(- ∪(3;+∞)	-2;2)L	
10		$\frac{6x^2 - 8}{x} = 3.$	-1 ; $\frac{4}{3}$		
11		авнение $4^x - 4$	$\frac{1}{2}$		
12		гольную трапе ощадь трапеци	48		
13	Решить нер	равенство $\frac{\sqrt{\log g}}{\log g}$	[0;1]U(6;7)	
14	принадлеж	ащий промежу	6x+6 - 6-12x =3x-17, TKY $(-3;-1]$.	$-\frac{5}{3}$	
15			и M , лежащей на оси Ox , $A(-2\;;1\;)$ и $B(\;8\;;11\;)$.	(9;0)	

Председатель предметной комиссии по математике

Тест выдан

Вариант № 12

Cva	има баллов Оценка Подпись проверяющего	Фамилия пров	engioniero
Cyr	подпись проверяющего	жимилия пров	улющего
No	Условия задач	Ответы	Баллы
	$3r^2 + 2r - 5$	6	
1	Условия задач Решить уравнение $\frac{3x^2 + 2x - 5}{x^2 - 1} = 5x - 1$. Найти интервалы убывания функции	$-\frac{3}{5}$	
	х — 1 Найти интервалы убывания функции	3	
2	$y = 3x^2 + 24x - 7 - 12 \cdot \ln(x+3)$	(-3;-2)	
	$y = 3x + 24x - 7 - 12 \cdot m(x + 3).$		
2	Через точку, которая делит диаметр круга в отношении	6	
3	1:5 , проведена хорда длины $8 \cdot \sqrt{2}$ под углом 30° к	6	
	диаметру. Найти радиус круга. В правильной четырёхугольной пирамиде угол между		
4	апофемами смежных боковых граней равен 60°. Найти	3	
4		3	
	высоту пирамиды, если её апофема равна $\sqrt{18}$.		
5	Вычислить $\frac{1}{\sqrt{3}-\sqrt{2}} + \frac{\sqrt{2}}{\sqrt{6}+2} - \frac{4}{\sqrt{3}-1}$.	-2	
	$\sqrt{3} - \sqrt{2}$ $\sqrt{6} + 2$ $\sqrt{3} - 1$		
	Найти корень уравнения $ 6-7x -17 = 9$,		
6		$-\frac{2}{}$	
	принадлежащий промежутку $\left[-\frac{3}{7};2\right]$.	7	
	L / /		
7	При каком значении параметра р угол между векторами	$(-\infty;-3)$	
,	$a = \{ p; 3 \}$ и $b = \{1; 1 \}$ тупой?	, , ,	
8	Решить уравнение $\log_4\left(\frac{8}{x}\right) \cdot \log_2 x - 1 = 0$.	2;4	
0	$\begin{bmatrix} 1 & \text{ещить уравнение} & \log_4 \begin{pmatrix} - \\ x \end{pmatrix} \end{bmatrix}$ $\begin{bmatrix} \log_2 x - 1 - 0 \end{bmatrix}$	2,4	
	На сколько процентов изменится произведение двух чисел,		
9	если одно из них увеличить на 15%, а другое уменьшить	Увеличится	на 1,2%
	на 12% ?	- ,	
10	Решить неравенство $\frac{\sqrt{2x+5}}{1} \le 1$.	$\left -\frac{5}{2}; -1 \right $	$[2 \cdot \infty)$
10	x+1		,[2,:0)
	Найти все значения параметра a , при которых график		
11	функции $y = a(a+1)x^2 + 2(a+1)x + 2$ не имеет общих	$\left[\left(-\infty;-1\right] \right] $	$(1; \infty)$
	точек с осью Ox .		
10	$\sqrt{8-2^x}$	(0.21	
12	Решить неравенство $\frac{\sqrt{8-2^x}}{x^2-5x} \le 0$.	(0;3]	
13	Решить уравнение $4^{x-1} = 3 + 2^{x-2}$.	2	
13		<u>-</u>	
	Найти все корни уравнения $\frac{\cos 5x + \cos x}{\cos 2x} = 2$ на отрезке	2-	
14	l e	$-\frac{2\pi}{2}$; 0	
	$\left -\pi; \frac{\pi}{2} \right $.	3	
	Биссектриса острого угла прямоугольного треугольника	$\sqrt{13}$	
15	делит катет на части в отношении $\sqrt{3}$:4. Найти синус	1	
	этого угла.	4	

этого угла.
Председатель предметной комиссии по математике _

Тест выдан

Вариант № 13

Cva	има баллов	Оценка	Фамилия прове	engiouiero	
Cyn	mid ownion	оцоппа	жыныны прово	риощего	
No		Усл	овия задач	Ответы	Баллы
1	и $y=0$		иниями $y = 6 - x$, $y = 6 - 2x$ вокруг оси Ox . Найти объём ия.	36π	
2		равенство $\frac{\log_5}{ 3 }$	/	$\left(-\frac{7}{2};-3\right]$ \cup	$\left(-\frac{1}{3};\frac{1}{3}\right)$
3	Решить ура	внение $2 \cdot 16^x$	$+3\cdot 4^x=2.$	-0,5	
4			н 60°, а радиус вписанного в Найти площадь ромба.	$40 \cdot \sqrt{3}$	
5	Найти все	значения пара $y = 4x^2 + 2(a + a)$	метра a , при которых график $(-1)x + a^2 + a - 8$ не имеет общих	$\left(-\infty;-\frac{11}{3}\right)$	ر (3;∞)
6	Найти угол	в градусах ar	$\operatorname{ctg} \frac{\sqrt{3}}{2} - \operatorname{arctg} \frac{5}{\sqrt{3}} .$	-30°	
7	Решить ура	внение $\frac{x+5}{x+2}$	-11		
8	Длины оснований прямоугольной трапеции относятся как 1:5, а диагональ является биссектрисой её тупого угла. Найти синус острого угла трапеции.			<u>3</u> 5	
9		ичину $M + 20$ е значения фун-4;4].	60		
10	перпендику	координаты /лярного векто b и имек	{8;6}		
11	Решить ура	внение $9^{\frac{1}{x}} \cdot 5^x$	2; log ₅ 3		
12	Найти ко	рень уравнен ащий промежу	$-\frac{3}{4}$		
13	Упростить	$(\sqrt{x} + \sqrt{2y})^2$	$-\frac{6}{\sqrt{xy}}$		
14	первого, а		еской прогрессии в 5 раз больше прогрессии равен 5. Найти и.	9	
15	Решить ура	внение $\sqrt{2x^2}$	$\frac{1}{x^2 + 5x + 1} = 5 - 2x^2 - 5x .$	$-3 \; ; \; \frac{1}{2}$	

Председатель предметной комиссии по математике						
	LINATICAL	TOTALI IN	TIMETIME	DOMINOCHIA DO	AMATAMATIMA	
	11110/100/	патель пи		комиссии п	Maichainc	

Тест вылан

Исправления в графе ответов не допускаются. Черновики работы не проверяются.

Вариант № 14

Cva	има баллов	Оценка	Фамилия прове	engrourero	
Cyn	тма баллов	Оценка	Фамилия пров	гряющего	
Mo		Van	ория радон	Ompozer	Болиг
<u>№</u>	11a¥		овия задач	Ответы	Баллы
1	Hайти $y = 4x^2 +$	интервалы $24x + 9 - 16 \cdot \ln x$		(-2;-1)	
2	В прямоуго	ольную трапеці	ию вписан круг радиуса 4. Найти	200	
2			ё большее основание равно 10.	3	
3	Hайти $\sqrt{x+4} + \sqrt{x+4}$	$\sqrt{-x-2} = x^2 - $	-3		
4	Вычислить	$\frac{2\cdot\sqrt{2}}{\sqrt{6}-2}+\frac{1}{\sqrt{3}}$	$\frac{3}{+\sqrt{2}} + \frac{5\cdot\sqrt{2}}{\sqrt{6}-1} .$	$7\cdot\sqrt{3}$	
5	Решить ура	авнение $3^{\frac{x}{1-x}}$.	$5^x = 4.$	2; log ₆ 2	
6			$6^{x} = 4 .$ $\cot \frac{\sqrt{3}}{4} - \arctan(5 \cdot \sqrt{3}) .$	-60°	
7	Решить ура	авнение 2^{x-1} +	-2		
8		авнение $\frac{x^2}{2x^2}$	4		
9	боковой ст 2:1, счи	внобедренного тороне, делит эт итая от вершин сновании треуг	$\frac{1}{\sqrt{6}}$		
10	Найти прогрессии	знаменатель и, если произв но 12, а сумма	$\frac{1}{3}$		
11		пину промежу $ 7x+10 <$	0,1		
12	$3 \cdot \sqrt{2}$ cm	, а боковая	тырёхугольной пирамиды равна грань составляет с плоскостью и объём пирамиды.	36	
13	$\sqrt{3x^2+a}$	=2x+1 имеет	метра a , при которых уравнение единственное решение.	$\left[-\frac{3}{4};+\infty\right)$	
14	Решить нер	равенство $\frac{x^2}{\sqrt{3^-}}$	$\frac{+6x}{x-27} \le 0 .$	[-6;-3)	
15	B(4;1)		пьные вершины $A(7;3)$, 4) параллелограмма $ABCD$. ны D .		

Председатель предметной комиссии по математике	
T	

Вариант № 15

Cvn	има баллов Оценка Подпись проверяющего	Фамилия прове	еряющего
			- p
No	Условия задач	Ответы	Баллы
1	Найти все значения параметра a , при которых уравнение $\sqrt{a-2x}=x+2$ не имеет корней.	$\left(-\infty;-4\right)$	
2	Решить неравенство $\frac{\sqrt{x+11}-3}{2^{ x }-4} \le 0.$	[-11;-2)U	(-2;2)
3	Вычислить $\frac{3 \cdot \sqrt{3}}{\sqrt{15} - \sqrt{6}} + \frac{3 \cdot \sqrt{2}}{\sqrt{10} + 2} - \frac{2}{\sqrt{5} - 2}$.	-4	
4	Даны три точки $A(1;1)$, $B(-1;0)$, $C(3;1)$. Найти длину вектора $a = AB + 2 \cdot AC$.	√ 5	
5	Найти значение функции $y = x^3 - 26x - 14 + \frac{9}{x}$ в точке максимума.	34	
6	В правильной четырёхугольной пирамиде угол между апофемами противоположных боковых граней равен 90° . Найти апофему пирамиды, если её боковое ребро равно $\sqrt{24}$.	4	
7	Решить уравнение $\log_4(2x) \cdot \log_2 x - 6 = 0$.	$8; \frac{1}{16}$	
8	Найти рациональные корни уравнения $\frac{3}{2x^2 + x - 3} + \frac{5}{(2x - 1)(x + 1)} = 2.$	-2 ; 1,5	
9	Высота равнобедренного треугольника, проведённая к его боковой стороне, делит эту сторону на части в отношении 2 : 5 , считая от вершины треугольника. Найти тангенс угла при вершине треугольника.	$\frac{3\cdot\sqrt{5}}{5}$	
10	На стороне квадрата взята точка, которая делит сторону в отношении 1 : 7 . Найти площадь квадрата, если расстояние от этой точки до точки пересечения диагоналей квадрата равно 5 .	64	
11	Решить уравнение $\sqrt{2x^2 - 4x + 3} = x^2 - 2x + 2$.	1	
12	Четыре числа составляют возрастающую геометрическую прогрессию, в которой сумма первых двух членов равна 4, а сумма последних двух равна 16. Найти первый член прогрессии.	$\frac{4}{3}$	
13	Найти все значения k , при которых корни уравнения $x^2-4x+k=0$ связаны соотношением $x_1-2x_2=1$.	3	
14	Найти корень уравнения $ 4x-7 + 3+x =2x+9$, принадлежащий промежутку $(-1;1]$.	$\frac{1}{5}$	
15	Найти все корни уравнения $\sqrt{3} \cdot (\operatorname{tg} x + \operatorname{ctg} x) = 4$ на отрезке $[-\pi; 0]$.	$-\frac{2\pi}{3}$; $-\frac{5\pi}{6}$	

Председатель предметной комиссии по математике

Гест выдан

Вариант № 16

Cvn	мма баллов	Оценка	Фамилия прове	нт л <u>ч то</u> евяющего	
Cyr	AIMA OUSISTOD	Оцепка	трово	григощег о	
No		Усл	овия задач	Ответы	Баллы
1	2 : 3 , a д трапеции.	ований прямоу циагональ явля Найти меньи пеции равна 2	4	D W W Z	
2	Решить ура	авнение $\frac{x}{2x^2 + }$	$\frac{x^2 - 9}{15x + 27} = 3x + 7 .$	$-\frac{11}{3}$	
3		е значения фун	x , где M и m — наибольшее и икции $y = x^3 - 6x^2 - 15x + 7$ на	-10	
4	на части н		а треугольника делит гипотенузу 3 : 4 . Найти синус меньшего а.	$\frac{3}{5}$	
5	равна 17,	рвых трёх чле 5 , а знаменате н геометрическ	10		
6	Решить ура	авнение \log_3^2 (3	$\frac{1}{3}$; 27		
7	Упростить	$\frac{x-5}{6x-3x^2} + \frac{4}{x^3}$	$\frac{1}{6x}$		
8	уравнения	ичину $x_1^3 + x_2^3$ $2x^2 + x - 7 = 0$	$-\frac{43}{8}$		
9	Решить нер	равенство $\frac{ x }{\log_3}$	(-5;-4)∪[-2;2]	
10	Решить нер	равенство $\sqrt{x^2}$	(-∞;-1]U	$(3;\infty)$	
11	Найти ко		16x-5 -14 =11 ,	$\frac{1}{8}$	
12	Найти все[0; 2π].	корни уравнен	$\frac{\pi}{3}$; $\frac{5\pi}{3}$		
13	Площадь б периметр с конуса.	оковой поверх осевого сечени	3		
14	$(a+3)x^2+$	$-4x + 2 - a \ge 0$	ветра a , при которых неравенство выполнено при всех x .	[-2;1]	
15		значениях пара $\{ \mathbf{b} = \{ 3q ; 1 \}$	аметра q угол между векторами $\left. \right $ тупой ?	$(-\infty;-1)$	

Председатель предметной комиссии по математике

Тест выдан

Вариант № 17

Cva	има баллов Оценка Подпись проверяющего	Фамилия пров	engrourero
Сув	има баллов Оценка Подпись проверяющего	Фамилия пров	еряющего
No	Условия задач	Ответы	Баллы
312		Ответы	Danin
1	Даны две точки $A(7;1)$ и $B(-2;4)$. Найти координаты точки C , которая делит отрезок AB в	(4;2)	
1	отношении $1:2$, считая от точки A .	(', -)	
	Длины оснований прямоугольной трапеции относятся как	1	
2	5:8, а диагональ является биссектрисой её острого угла.	$\frac{4}{5}$	
	Найти синус острого угла трапеции.	_	
3	Решить неравенство $\frac{2x+3}{3^x-4^x} \ge 0$.	$\left[-\frac{3}{3} \cdot 0 \right]$	
3	$\frac{1}{3^x - 4^x} = 0$	$\left[-\frac{3}{2};0\right)$	
	Область, ограниченная линиями $y = x$, $y = x - 2$,		
4	y = 0 и $y = 5$, вращается вокруг оси Oy . Найти объём	70π	
	полученного тела вращения.		
5	Решить уравнение $2^x - 2^{x+1} + 2^{x+2} = 6 \cdot \sqrt{2}$.	1,5	
	Четыре числа составляют возрастающую геометрическую		
6	прогрессию, в которой сумма первых двух членов равна 3,	$\frac{9}{4}$	
	а сумма последних двух равна 27. Найти второй член	4	
	прогрессии.		
	Найти все корни уравнения $\frac{2}{1+tg^2x} = \sqrt{3} \cdot \cos x$ на	π	
7	8	$\pm \frac{\pi}{6}$	
	отрезке $\left[-\pi;\pi\right]$.	Ů,	
8	Решить уравнение $(x-3)^2 + 3x - 22 = \sqrt{x^2 - 3x + 7}$.	6; -3	
9	$\frac{1}{0x} \int_{0}^{x} f(x+1) dx$	$\frac{1}{15}$	
	Вычислить $9^{\frac{1}{x}} \cdot 5^{x+1}$ при $x = -\log_5 3$.	15	
	Найти все значения параметра а, при которых график	1	
10	функции $y = (2a+1)x^2 + 2(a-1)x + a + 1$ имеет с осью	$-\frac{1}{2}$; 0; -5	
	Ox только одну общую точку.	2	
11	Вычислить $\frac{(\sqrt{5}-3)^3+40}{\sqrt{5}-1}$.	32	
11	Вычислить $\frac{\sqrt{5}-1}{\sqrt{5}-1}$	32	
	К графику функции $y = 2x^3 - 7x^2 + 4x - 9 + \frac{8}{11}$ в точке с		
1.2	К графику функции $y = 2x - 7x + 4x - 9 + -$ в точке с	4.0	
12	абсциссой $x_0 = 2$ проведена касательная. Найти	-19	
	ординату точки этой касательной, если её абсцисса $x_1 = 7$.		
	Найти наименьшее целое решение неравенства		
13	$\left \frac{7}{\sqrt{2}} \right = 1$	-3	
	$\left \frac{7}{2-x} \ge \left x+2 \right \right .$		
1.4	Найти рациональные корни уравнения	1. 5	
14	$(2x^2 + 7x + 4)^2 = 4x^2 + 14x + 11.$	$-1; -\frac{5}{2}$	
15	Острый угол ромба равен 30°, а радиус вписанного в	80	
13	ромб круга равен 5. Найти периметр ромба.	80	

Председатель предметной комиссии по математике

Тест выдан

Вариант № <u>18</u>

Сум	има баллов	Оценка	Подпись проверяющего	Фамилия прове	еряющего
<u>№</u>		Усл	Ответы	Баллы	
1	$(x^2-2x-$	$pациональна3)^2 + (x^2 - 2x -$	1 71	0;2	
2		авнение $2^x - 2$		2	
3	При каких	к значениях	а один из корней уравнения ольше, а другой меньше, чем 3.	$\left(-\frac{19}{3};-2\right)$	
4	x-10 <		целое решение неравенства	11	
5	равна 21,	5, а знаменате	нов геометрической прогрессии сль прогрессии равен 6. Найти ой прогрессии.	3	
6	Упростить	$\frac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+1\right)^2}{2}$	$\frac{(y-1)^2-2(\sqrt{x}+\sqrt{y})}{y^2-x^2}$.	$\frac{-1}{x+y}$	
7			A(-3;2) и $B(7;6)$.	(3,6;0)	
8	Решить нер	равенство $\frac{2^{x^2}}{\sqrt{x}}$	$\frac{-2}{+2} \ge 0 .$	(-2;-1]U	[1;∞)
9	Вычислить	$6^{\frac{x-1}{x}} \cdot 3^{x+1} \text{mp}$	$x = -\log_3 6.$	9	
10	наименьше		y , где M и m — наибольшее и y —	1	
11	взаимно поверхност	перпендикуляр	ной пирамиде боковые рёбра ны. Найти площадь полной если площадь её боковой	4	
12		равенство $\frac{\sqrt{x}}{x}$	<u>+2</u> ≤1.	[-2;4)U[7;+∞)
13	Упростить	выражение ct	$g\alpha - ctg 2\alpha - \frac{1}{2\sin\alpha\cos\alpha}$.	0	
14	Углы треуг сторона р треугольни		4		
15	треугольни сторону на	іка, опущенная	ыника равен 120°, а высота из вершины этого угла, делит ошении 2:5. Найти тангенсика.	$\frac{\sqrt{3}}{5}$	

l	Председатель предметной комиссии по математике	
П	Гест ві пап	

Вариант № 19

Сумма баллов Оценка Подпись проверяющего Фамилия проверяю							
		1		,			
No		Усл	овия задач	Ответы	Баллы		
1	боковой сто считая от	внобедренного роне, делит эту с вершины треугоругольника.	$2, \frac{\sqrt{11}}{}$				
2	с абсциссо	функции $y =$ ой $x_0 = 2$ очки этой каса	ти 38				
3	$\frac{24}{(x-1)(x+1)}$	$\frac{1}{2} + x^2 + x - 1$	2 = 0.	2;-3			
4	$\frac{2}{ x+3 } < \frac{1}{ x+3 }$	_	целое решение неравенсті	ва 1			
5	площадь ег	го боковой пов уса.	го сечения конуса равен 120° , верхности равна $2\pi\cdot\sqrt{3}$. Найт	ги π			
6	функции ј	точки.	1K (-5;-4)U	(-4;5)			
7	Упростить	$x + \frac{3x^2 + 36x}{x^2 + 3}$	$\frac{x+81}{x} - \frac{x^3 - 27}{x^2 - 3x} .$ $\frac{-2x}{-x} \ge 1 .$	$\frac{18}{x}$			
8	Решить нер	равенство $\frac{\sqrt{5}}{1}$	$\frac{-2x}{-x} \ge 1$.	[-2;1)			
9			ццати чётных натуральных чисе 7 дают в остатке 1.	л, 2820			
10	-	равенство $\frac{ x }{1+1}$		$\left(\frac{1}{3};4\right]$			
11		значениях пар $ b = \{ q ; 6 $	аметра q угол между векторам $\Big\}$ острый ?	пи (-2;∞)			
12	Решить ура	авнение \log_2^2	$(3x) = \log_2(x^4) + 12$.	2;0,125			
13		корни уравнен	$-\frac{7\pi}{6}$				
14	большую с равна 2·х	торону треугол $\sqrt{3} - 3$.	осятся как 1 : 4 : 7 . Найт пьника, если его меньшая сторон				
15	Решить ура	авнение $4^{\log_3 x}$	$-5 \cdot 2^{\log_3 x} + 4 = 0 .$	1;9			

Председатель предметной комиссии по математике ____

Тест выдан

Вариант № 20

Сумма баллов		Оценка	Подпись проверяющего	Фамилия пров	еряющего
				•	
No		Усл	Ответы	Баллы	
1	Решить ура	авнение \log_2^2 (8	±0,5		
2	на части в		а треугольника делит гипотенузу $\sqrt{7}:3$. Найти косинус меньшего а.	$\frac{3}{4}$	
3	Найти		ые корни уравнения	-1; 1,5	
4			узначных натуральных чисел, В дают в остатке 4.	572	
5	Через точк 2:3, пров	у, которая дел	ит диаметр круга в отношении пиной $14\cdot\sqrt{2}$ под углом 45° к	10	
6			ности конуса равна π $c M^2$, а равен $6 \cdot \sqrt{2}$ $c M$. Найти высоту	4	
7	функции		метра a , при которых график $+2(a+4)x+a$ имеет с осью	I / X \	
8			$\cot g \frac{7}{3} + \operatorname{arctg} \frac{5}{2} .$	135°	
9	принадлеж	ащий промежу	7x+14 - 5-4x =9+2x, TKY $[-10;-2]$.	$-\frac{28}{5}$	
10	Решить ура	авнение $2^{x+1} +$	$2^{2-x} = 9$.	2;-1	
11	Найти	наибольший $\sqrt{x+1} = \sqrt{5}$.	й корень уравнения	19	
12			значение функции а отрезке $[-2;4]$.	15	
13	Найти перпендику длиннее координату	координаты улярного вект а и имен у.	{3;-6}		
14	Решить нер	равенство $\frac{\sqrt{\log_0}}{\log_0}$	[-2;4)		
15	Сократить	$\frac{1}{2x^2}$ дробь $\frac{2xy-2}{2x^2}$	$\frac{x-y+1}{+x-1} \ .$	$\frac{y-1}{x+1}$	

2x + x - 1 Председатель предметной комиссии по математике ______

Тест выдан

Вариант № 21

Сум	има баллов	Оценка	Подпись проверяющего	Фамилия прове	еряющего
	ı				
No		Усл	Ответы	Баллы	
1	Найти н $ x+2 \le \frac{1}{2}$		целое решение неравенства	-3	
2			, $B(-1;3)$, $C(3;5)$. Найти гольника ABC .	$\sqrt{18}$	
3	Острый уг ромб круга	ол ромба раве равен 3. Найт	н 45°, а радиус вписанного в и периметр ромба.	$24 \cdot \sqrt{2}$	
4	Решить ура	авнение $\log_2^2 \left(\frac{1}{2} \right)$	$\left(\frac{x}{2}\right) + \log_2\left(\frac{x \cdot \sqrt{x}}{2}\right) = 0$.	1; $\sqrt{2}$	
5		_	метра a , при которых уравнение цва различных корня.	(2;4]	
6	Решить ура	авнение $\frac{x^2-9}{x}$	$\frac{x+14}{-2} = x^2 - 11x + 13 .$	10	
7	на части в		а треугольника делит гипотенузу $\sqrt{3}:2$. Найти синус меньшего а.	$\sqrt{\frac{3}{7}}$	
8	Решить нер	равенство $\frac{\log_2}{x}$	$\frac{(x+3)}{x+1} \le 0 .$	[-2;-1)	
9	Найти $\sqrt{3x-1}$ — \sim	наибольший $\sqrt{x-1} = \sqrt{2}$.	c+1 й корень уравнения	3	
10	Упростить	$\frac{x^2}{3x-18} - \frac{x^2}{x^2}$	$\frac{2x}{-5x-6} \cdot \left(1 + \frac{3x+x^2}{3+x}\right).$	$\frac{x}{3}$	
11	-	• •	цати чётных натуральных чисел, 7 дают в остатке 6.	2780	
12			, при которых корни уравнения ы соотношением $x_1 = 4x_2$.	8	
13	Найти инте	ервалы убывани	ия функции $y = \frac{16}{x+1} + 3 \cdot \ln x .$	$\left(\frac{1}{3};3\right)$	
14	периметр (боковой поверх осевого сечени	4		
15	_	корни уравн $-\pi;\frac{\pi}{2} \].$	ения $\frac{\sqrt{2}}{1 + tg^2 x} + \cos x = 0$ на	$-\frac{3\pi}{4}$	

Председатель предметной комиссии по математике

Тест выдан _____

Вариант № 22

Сумма баллов Оценка Подпись проверяющего Фамилия пров					
	a cannon	одонки	z winiwini npob	риощего	
No		Усл	Ответы	Баллы	
1		рифметической сьми её членов	-2,5		
2	Найти цель	ый корень ураві	нения $\sqrt{4^{x+3}-1} = \sqrt{3-12x}$.	-1	
3	Высота ран боковой ст 1:8, счи	внобедренного ороне, делит эт	треугольника, проведённая к его гу сторону на части в отношении ны треугольника. Найти тангенс	√80	
4	Решить нер	pавенство $\frac{3^x - x}{x - x}$	$\frac{2^x}{3} \le 0 .$	[0;3)	
5	Найти к	орень уравне ащий промежу	ения $ 7- 4-3x =2 , $	$\frac{13}{3}$	
6			$\left(\frac{x}{4}\right) = 2 - \log_2 x^7 .$	$\frac{1}{2}$; $\frac{1}{4}$	
7	Найти все	корни уравнен $\frac{\pi}{2}$; 2π .	$\frac{3\pi}{4}$		
8			при которых корни уравнения соотношением $2x_1 + x_2 = 1$.	-15	
9	Вычислить	$\frac{2}{\sqrt{5}-1}+\frac{2}{2\cdot\sqrt{3}}$	$\frac{1}{5-4} - \frac{2}{\sqrt{5}+3}$	$\frac{3\cdot\sqrt{5}}{2}$	
10		рациональна $\frac{6}{x^2 - 6x + 5}$		-1;7	
11	Прямоугол $b = \sqrt{30}$	ьный треуголь	ник с катетами $a = \sqrt{6}$ <i>см</i> и вокруг гипотенузы. Найти объём	10π	
12	$a = \{1; 2\}$	$\}$ и $b = \{2; p\}$		$(-\infty;-1)$	
13	-	-	лего и наименьшего значений резке [1;6].	$\frac{25}{8}$	
14	3:5, прог	-	елит диаметр круга в отношении линой $6 \cdot \sqrt{7}$ под углом 30° к руга.	8	
15	Найти все	е значения п		[1;4]	

Председатель предметной комиссии по математике

Тест выдан

Вариант № 23

Сум	има баллов	Оценка	Подпись проверяющего	Фамилия проверяюще	
	T	**		-	
No		Усл	Ответы	Баллы	
1		значениях <i>а</i> ко отрицательн	$(-\infty;0]$		
2		интервалы $8x^2 - 21x - 9$	*	$\left(-\frac{1}{2};\frac{7}{2}\right)$	
3	$(x^2 + x + 2)$	$(x^2 + (x^2 + x - 3))^2$		1	
4	прогрессии	я, если произве иленов равно	убывающей геометрической едение её первого, четвёртого и $\frac{1}{8}$, а сумма третьего и пятого	$\frac{3}{4}$	
5	Найти наиб	больший корені	ь уравнения $\sqrt{3x} - \sqrt{x-1} = \sqrt{3}$.	4	
6	Найти велі	ичину $\frac{1}{x_1 + 2}$ - $2x^2 - x - 7 = 0$	3		
7	Решить ура	авнение $27^{\frac{x}{x-1}}$	$\cdot 4^{x+1} = 6 .$	$-\frac{1}{2}; -\log_2\left(\frac{3}{2}\right)$	
8	Упростить	$\frac{2x^2}{x-2} + \frac{4}{x^2 - 5}$	$\frac{x}{6x+6} - \frac{4x^2}{3x-9}$.	$\frac{2x}{3}$	
9	Найти все	корни уравне	ния $\sin 2x + 2 \cdot \sqrt{3} \cdot \sin^2 x = 0$, гку $\left[-\frac{\pi}{4}; \frac{5\pi}{6} \right]$.	$0; -\frac{\pi}{6};$	$\frac{5\pi}{6}$
10	4:7, а ди		гольной трапеции относятся как ся биссектрисой её острого угла. трапеции.	$\frac{\sqrt{7}}{4}$	
11	апофемами	равен 60°.	льной пирамиде угол между Найти апофему пирамиды, если охности равна 3.	1	
12	_	ень уравнения ащий промежу	-2,8		
13	Решить нер	равенство $\frac{9^x - x^2}{x^2}$	(-4;0)U($0;+\infty$	
14	проведена х	орда под углом	диаметр круга в отношении $1:5$, 60° к диаметру. Найти длину хорды, руга до хорды равно $3\cdot\sqrt{2}$.	12	
15			нки $A(2; -1)$ до середины , $C(-7; -2)$.	$\sqrt{20}$	

Председатель предметной комиссии по математике

ест выдан _____

Вариант № 24

Cyn	има баллов	Оценка	Подпись проверяющего	Фамилия пров	еряющего
		•			
No		Усл	Ответы	Баллы	
1			$rccos \frac{3}{5} + arccos \frac{\sqrt{2}}{10}$.	135°	
2			сательной к графику функции $\frac{8}{x}$ в точке с абсциссой $x_0 = 2$.	y = -2x - 5	
3		г на части в от	а прямоугольного треугольника ношении $2:\sqrt{7}$. Найти тангенс	$\sqrt{\frac{11-4\cdot\sqrt{7}}{3}}$	$=\frac{\sqrt{7}-2}{\sqrt{3}}$
4	взаимно пе	рпендикулярні	ной пирамиде боковые рёбра ы, а высота пирамиды равна 2 <i>см</i> . коверхности пирамиды.	18	
5	Решить нер	равенство $\frac{2^x - x^2}{x^2}$	$\frac{-\sqrt{2^{x+2}}}{-2x} \le 0 .$	$(-\infty;0)$	
6		ину промежу $ 9x + 26 <$	5x + 9 .	$\frac{7}{4}$	
7		пятый член про	жой прогрессии в 4 раза больше огрессии равен 14. Найти второй	5	
8	Решить нер	равенство $x + 1$	$3 \le \sqrt{3-x}$.	$(-\infty;-1]$	
9	Найти целн	ые корни уравн	ения $\frac{3}{x^2 - x - 6} + \frac{5}{x^2 - x - 2} = 1$.	4;-3	
10	Через точк 3 : 5 , прог	у , которая дел ведена хорда п	пит диаметр круга в отношении од углом 30° к диаметру. Найти круга равен $4 \cdot \sqrt{7}$.	21	
11	Вычислить	$3^{\frac{x-1}{x}} \cdot 6^{x-1} \text{ mp}$	$x = \log_6 3$.	$\frac{1}{4}$	
12		_	метра a , при которых уравнение a единственное решение.	(-∞;3)	∪ {4}
13			$4^x = 2^{2x+1} \cdot 20^x \ .$	$-\frac{1}{2}$	
14	Упростить	$\frac{1}{\sqrt{x}+x} \cdot \frac{\sqrt{x+4}}{x+4}$	$\frac{\sqrt{x}+3}{1\cdot\sqrt{x}+3}\cdot\left(x+1+2\cdot\sqrt{x}\right).$	$\frac{1}{\sqrt{x}}$	
15			кружности, диаметром которой $A(-2;9)$, $B(6;-1)$.	$(x-2)^2 + (y-1)^2$	$(4)^2 = 41$

Председатель предметной комиссии по математике

Тест выдан

Вариант № 25

Сумма баллов		Оценка	Подпись проверяющего	Фамилия пров	еряющего
<u>№</u>			овия задач	Ответы	Баллы
1	$\frac{3x^2 + 6x}{x^2 - x + 1}$	рациональни $-\frac{x^2 - x + 1}{x^2 + 2x} = 2$		$\frac{1}{3}$; -1;	$-\frac{1}{4}$
2	Найти угол	в градусах: а	120°		
3	Решить ура	авнение 2^{x+2} —	$2^x = 6 \cdot 8^{x+1} .$	-2	
4	равна 52,5	, а знаменате.	нов геометрической прогрессии прогрессии равен 4. Найти об прогрессии.	10	
5	Решить ура	авнение $6^{\frac{x+1}{x}} \cdot 3$	$3^{1-x}=9.$	$-1; \log_3 6$	
6	Упростить	авнение $6^{\frac{x+1}{x}} \cdot 2^{\frac{3}{x}}$ $\frac{\sqrt[3]{x \cdot \sqrt{x}} + \sqrt{x}}{\sqrt{x} + \sqrt[3]{x^2}}$	$\frac{3\sqrt{x}}{2}$	1	
7	на части в		а треугольника делит гипотенузу 11:5. Найти косинус меньшего а.	5	
8	Найти суп	мму наибольш	лего и наименьшего значений $5x+1$ на отрезке $[-2;6]$.	-65	
9	отношении $B(9;-1)$	3:1, считая	C , которая делит отрезок AB в от точки A , если $Aig(1;-5ig)$,		
10	Найти все функции абсцисс дв	значения пара $y = ax^2 + 2(a^2 + b^2)$ е общие точки.	метра a , при которых график $(a-2)x+a-1$ имеет с осью	(-∞;0)∪($\left(0;\frac{4}{3}\right)$
11		целый $+\sqrt{-2x-8} = \frac{x}{9}$	корень уравнения $\frac{x^2}{9}$.	-6	
12		ень уравнения ащий промежу	$ 6x+2 - 4x-3 = -4x-6$, TKY $\left[-3; -\frac{1}{3}\right]$.	$-\frac{1}{2}$	
13	Решить нер	равенство $\frac{\sqrt{\log n}}{\sqrt{\log n}}$	$\frac{\overline{g_{0,3}(x-2)}}{2x-5} \ge 0 \ .$	$\left(\frac{5}{2};3\right]$	
14			о вписан круг радиуса 3 . Найти её меньшее основание равно 4 .	26	
15	В правил апофемами	ьной треугол равен 60°.	ньной пирамиде угол между Найти апофему пирамиды, если кности равна $4 \cdot \sqrt{3} + 12$.	2	
				1	ı

Председатель предметной комиссии по математике

Тест выдан __

Вариант № 26

Сум	има баллов	Оценка	Подпись проверяющего	Фамилия прове	
№		Усл	Ответы	Баллы	
1	_	рдинаты точки лённой от точе	$\left(\frac{4}{5};\frac{4}{5}\right)$		
2			й трапеции равны 2 и 6 c_M .	1,5	
3		равенство $\frac{\sqrt{1-x}}{x+x}$	3	$(-\infty;-5)$	[-3;1]
4	взаимно поверхност	перпендикуляр	ной пирамиде боковые рёбра ны. Найти площадь полной если площадь её боковой 3.	2	
5	Вычислить	$9^{\frac{x-3}{x}} \cdot 6^{x-2} \text{np}$	ри $x = -\log_6 27$.	$\frac{1}{3}$	
6		ичину $x_1^2 + x_2^2 + x_3^2 - 3x - 1 =$	x_{2}^{2} , где x_{1} и x_{2} — корни x_{2} .	$\frac{5}{3}$	
7			$\frac{1}{-x^2} \cdot \log_6(2x-4) \ge 0 .$	$\left[\begin{array}{c} \frac{5}{2};3 \end{array}\right]$	
8	$y = -\frac{25}{x+1}$	интервалы $-4 \cdot \ln x$.	возрастания функции	$\left(\begin{array}{c} \frac{1}{4};4 \end{array}\right)$	
9	Медиана, прямоуголи угол 30°		$\frac{\sqrt{3}}{7}$		
10		гырёх её членс	и прогрессии равна 1, а сумма ов равна —4. Найти четвёртый	0,5	
11	Найти угол	в градусах: а	$rcsin \frac{5}{\sqrt{28}} + arcsin \sqrt{\frac{27}{28}} .$	150°	
12	При каких	значениях	а один из корней уравнения больше, а другой меньше, чем	$(-\infty;-3)$	
13	неравенств	ину промежу $ 5x+16 > $	13 3		
14	Решить ура	$\frac{x^2}{3x^2-}$	$\frac{-4}{10x+8} = 2x-2 \ .$	$\frac{1}{2}$	
15	Упростить	$\frac{x^2+2x-8}{x+1} +$	$\frac{x-2}{x-4} - \frac{3x^2 - 16x + 26}{x^2 - 3x - 4} \ .$	<i>x</i> – 1	

Председатель предметной комиссии по математике

Тест выдан

Вариант № 27

Сумма баллов		Оценка	Подпись проверян	ощего	Фамилия прове	еряющего
No		Усл	Ответы	Баллы		
1	Найти	x-6 = 2x + 4	уравнения	11		
2		равенство $\frac{\sqrt{4}}{3^{\frac{1}{x}}}$	-1		(0;2]∪{-2}	
3	равна 6 сл основания поверхност	и , а угол межд пирамиды равс ги пирамиды.	вильной треугольной ку боковой гранью и п ен 60°. Найти площа;	лоскостью ць боковой	18	
4		г на части в от	а прямоугольного троношении $3:\sqrt{10}$. На		$\frac{1}{\sqrt{10}}$	
5			н 45°, а радиус впи Найти площадь ромба		$72\cdot\sqrt{2}$	
6	Найти знач		$y = x^3 - 25x + 21 + \frac{1}{2}$	8 к в точке	-21	
7	•	авнение 3^{x+1} –	$3^x = 6 \cdot 9^{x-1}$.		1	
8	Решить ура	авнение $\frac{x}{x+3}$	$=\frac{2x-6}{x^2+10x+21} \ .$		-2	
9	Решить ура	авнение $x^2 + 3$	$x - 18 + 4 \cdot \sqrt{x^2 + 3x - 4}$	$\frac{-}{6} = 0$.	-5;2	
10		$\frac{\left(2\cdot\sqrt{3}+1\right)^3-\sqrt{16+8\cdot\sqrt{3}}}{\sqrt{16+8\cdot\sqrt{3}}}$			15	
11			араметра a , при $x - a < 0$ выполнено п	_	(1;4)	
12	Вычислить	$5^{\frac{x+1}{2x}} \cdot 2^{x+3}$ mp	и $x = \log_2 5$.		$40 \cdot \sqrt{10}$	
13	Найти угол	і в градусах: а	$\operatorname{rctg}(4 \cdot \sqrt{3}) - \operatorname{arctg}\left(\frac{3 \cdot 7}{12}\right)$	$\left(\frac{\sqrt{3}}{3}\right)$.	60°	
14	Найти перпендику длиннее координату	координаты улярного векто <i>а</i> и имек У .	плоскости, в 2 раза о первую	{4;6}		
15			цати чётных натураль 7 дают в остатке 5.	ных чисел,	2900	

Председатель предметной комиссии по математике	
T	

Вариант № 28

Cyn	мма баллов Оценка Подпись проверяющего С		Фамилия проверяющего		
				_	
No	Условия задач			Ответы	Баллы
1	Найти длину промежутка, на котором выполнено неравенство $ 6x+17 < 4x+10 $.		0,8		
2	Решить неравенство $\frac{x-4}{\log_2(x-2)} \le 0$.			(3;4]	
3	Сумма шестого и седьмого членов арифметической прогрессии равна 20, а сумма второго и пятого равна 8. Найти второй член прогрессии.			1	
4	Решить ура	авнение 3^{1+x} —	$3^{2-x} = 26$.	2	
5	В правильн	ой треугольной лярны. Найти а	2		
6	Найти цели	ый корень урав	нения $\log_2(x-3) = \sqrt{6-x}$.	5	
7	Найти все отрезке	7	ения $2\cos x \cot x - 3 = 0$ на	$\frac{\pi}{6}$; $\frac{5\pi}{6}$	
8	Длины оснований прямоугольной трапеции относятся как $3:5$, а диагональ является биссектрисой острого угла трапеции. Найти меньшую диагональ трапеции, если высота трапеции равна $\sqrt{70}$.			14	
9	Решить уравнение $\log_9 x \cdot \log_3 (27x) + 1 = 0$.			$\frac{1}{3}$; $\frac{1}{9}$	
10	$y = -\frac{32}{x+2}$	интервалы $\frac{1}{2} - 3 \cdot \ln x$.	возрастания функции	$\left(\frac{2}{3};6\right)$	
11	Найти целы	е корни уравнені	$2x^2 + x - 4$ $2x^2 + x + 3$	-2;1	
12		2 : 1 (от верши Выразить вектор	BC параллелограмма $ABCD$ в ины B). Обозначим $f = AB$ и AN через векторы f и g в виде	$f+\frac{2}{3}g$	
13	Hайти все $a^3x^2 + 2(a^3x^2 + a^3x^2 + a^3x^2$	$(x-3)x + \frac{4}{a} \le 0$	(-∞;-3]		
14	основании отношении	делит боковую	ольнике биссектриса угла при сторону треугольника на части в от основания треугольника. Найти реугольника.	$\frac{\sqrt{7}}{3}$	
15	Вычислить	$\sqrt{\left(2\cdot\sqrt{2}+1\right)^3}$	$+8\cdot\left(1-\sqrt{2}\right)$.	$-\sqrt{11}$	

Председатель предметной комиссии по математике

Тест выдан

Вариант № 29

Сум	Сумма баллов Оценка Подпись проверяющего		Фамилия проверяющего		
№				Ответы	Баллы
1	Вычислить $\sqrt{(\sqrt{3} + \sqrt{2})^3 - 2 \cdot \sqrt{2}} \cdot \sqrt{\sqrt{3} - \sqrt{2}}$.		3		
2	3:5, а ди		гольной трапеции относятся как гся биссектрисой её тупого угла. та трапеции.	$\frac{\sqrt{21}}{2}$	
3	Найти все значения параметра a , при которых неравенство $\frac{1}{a}x^2 + 2(a+2)x + 9a > 0$ выполнено при			(0;1)	
4	$\frac{4}{x^2 - 6x + 9}$	$\frac{9}{9} + \frac{9}{x^2 - 6x + 5}$	е корни уравнения = 1 .	2;4;7	
5	Найти	наибольший $\sqrt{x-1} = \sqrt{5}$.	й корень уравнения	6	
6	равна 6 сл	и, а угол межд пирамиды раве	вильной треугольной пирамиды ду боковой гранью и плоскостью н 60°. Найти объём пирамиды.	9.√3	
7	Диагонали равнобочной трапеции взаимно перпендикулярны и делятся точкой пересечения в отношении 3 : 4 . Найти большее основание трапеции, если её боковая сторона равна 10 .			$8 \cdot \sqrt{2}$	
8	Найти сумму первых двадцати нечётных натуральных чисел, которые при делении на 7 дают в остатке 5.			2760	
9	Решить нер	равенство $\frac{\log}{\sqrt{\log n}}$	$\frac{2(5-x)}{g_2(x-1)} \ge 0 .$	(2;4]	
10	Решить ура	авнение 5^{2x-1} ·	$3^{x+4} = 45^{x+1} .$	2	
11	Упростить	выражение (s	$\frac{\sin \alpha - \sin \beta)(\sin \alpha + \sin \beta)}{\sin(\alpha - \beta)\sin(\alpha + \beta)}.$	1	
12		паибольшее $\frac{3}{6} < 6 - x$.	целое решение неравенства	-1	
13			; -2) , $B(4;0)$, $C(-2;8)$ и ну средней линии трапеции.	15	
14	Вычислить	$3^{\frac{x+2}{x}} \cdot 2^{x+1} \text{np}$	ри $x = -\log_2 3$.	$\frac{1}{2}$	
15	Hайти $y = 8x^3 + 1$	интервалы $13x^4 - 4x^5$.	возрастания функции	$\left(-\frac{2}{5};3\right)$	

Председатель предметной комиссии по математике	
--	--

Тест выдан _____ Исправления в графе ответов не допускаются. Черновики работы не проверяются.

Вариант № 30

Сум	Сумма баллов Оценка Подпись проверяющего		Фамилия проверяющего		
№	Условия задач			Ответы	Баллы
1	Решить уравнение $2^{\frac{x+2}{x}} \cdot 3^{x-1} = 12$.			2; log ₃ 2	
2	Найти все значения параметра a , при которых график функции $y = \frac{x^2}{a} + 2(2a-3)x + 9a$ имеет с осью абсцисс две общие точки.			$(-\infty;0) \cup (3;+\infty)$	
3	прогрессии	наменатель и, у которой пр вно 192, разы вна 4.	$\frac{4}{3}$		
4	Длины оснований прямоугольной трапеции относятся как 2:3, а диагональ является биссектрисой её тупого угла. Найти синус острого угла трапеции.			$\frac{\sqrt{8}}{3}$	
5	Найти корень уравнения $ x-1 + 2x+3 =2x+14$, принадлежащий промежутку $[-5;-2]$.			$-\frac{16}{5}$	
6	Решить ура	авнение $\frac{x+2}{x+4}$	$=\frac{5x+30}{x^2+3x-4} \ .$	8	
7	Найти координаты точки M , лежащей на оси Oy и равноудалённой от точек $A(6;-1)$ и $B(-2;3)$.			(0;-3)	
8	Упростить $\frac{x \cdot \sqrt{3}}{\sqrt{x} - 1} - \frac{x}{\sqrt{3x} + \sqrt{3}} - \frac{2 \cdot \sqrt{x} + 4x}{\sqrt{3}(x - 1)}$.			$\sqrt{\frac{4x}{3}}$	
9		интервалы $^2 + 8x + 16 \cdot \ln($	возрастания функции $(x-2)$.	(2;3)	
10		_	н 45°, а радиус вписанного в айти площадь ромба.	$24 \cdot \sqrt{2}$	
11	площадь ег объём цили	го полной пове индра.		3π	
12	Решить нер	равенство $\sqrt{9}$ -	$-x^2 \cdot \log_2(x+1) \ge 0 .$	[0;3]	
13	Найти все $\left[-\pi; \frac{\pi}{2}\right]$	корни уравне	ния $\frac{\sin 2x}{1 + \cos 2x} = 1$ на отрезке	$\frac{\pi}{4}$; $-\frac{3\pi}{4}$	
14	Решить нег	равенство 4-2	$x \le \sqrt{x+2}$.	$[2;+\infty)$	
15			$= 2 \cdot (0,3)^x + 3$.	$\log_{0,3} 3$	

Председатель предметной комиссии по математике

Тест выдан _____

ОГЛАВЛЕНИЕ

Алгебраические уравнения	
Уравнения с модулем	
Системы уравнений	
Упрощение выражений	
Прогрессии	
Арифметика	
Теорема Виета	
Неравенства	
Векторы	
Тригонометрия	
Планиметрия	
Стереометрия	
Показательные и логарифмические уравнения и неравенства	
Производные	94
Задачи с параметрами	
Варианты централизованного тестирования по математике	
Письменный экзамен по математике	

Издание учебное

КАЛЕБИН Александр Викторович КСЕНОФОНТОВ Рудольф Сергеевич

МАТЕМАТИКА

Пособие для поступающих в ВлГУ

Ответственный за выпуск – директор подготовительных курсов Ю.Г. Ястребова Рукопись печатается в авторской редакции

Изд. лиц. № 020275. Подписано в печать 02.04.03. Формат $60\times84/16$. Бумага для множит. техники. Гарнитура Times. Печать офсетная. Усл. печ. л. 8,37. Уч.-изд. 8,95. Тираж 1000 экз. Заказ

Редакционно-издательский комплекс Владимирского государственного университета 600000, г. Владимир, ул. Горького, 87.