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Foreword

Various effective mathematical methods are used rather intensively in
modern scientific researches. Behavior of complex systems including nonlinear
systems may be described in general by means of integro-differentials equations.
In spite of wide usage of computers and numerical methods the solution in ana-
lytical form gives more opportunities for researches.

The calculus of variations is nearer mathematical method. It gives oppor-
tunities to solve many optimization problems. The search of optimums is the fi-
nal purpose or one of possible intermediate results.

Both integral equations and calculus of variations are universal methods
and can be used not only in radio electronics but in other branches of technique.
Every scientist must become proficient in these branches.

B coBpeMEeHHBIX HAYYHBIX HCCIEIOBAaHUAX M pa3padOTKax Bce HIMPE HC-
NOJB3YIOTCs pa3yindHble d(Q(eKTUBHBIE MaTeMaTudeckue MeTojbl. [loBeneHue
CIIOKHBIX CHCTEM, BKJIFOUasl HEJIMHEHHBIE CUCTEMBI, OTIMCHIBACTCS B OOIIEM CITy-
Yyae ¢ MOMOIIbI0 HHTErpo-auddepeHnnanbHbXx ypaBHeHuin. Hecmorpst Ha ToO,
YTO Pa3IMYHBbIC YaCTHBIC PEUICHHUS yAACTCS MOJIyYUTh C MOMOIIBIO YUCICHHBIX
METOJIOB ¥ IPUMEHEHHSI KOMITBIOTEPOB, PEIICHNE B aHATUTHYECKON (hopme aeT
ropaszo 0oJbIlIe BOZMOXHOCTEH JIJIs1 HCCIIEOBAHUS.

bau3kuM 1Mo mMareMaTHYeCKOMY ammapaTy SBISETCS BapUAllMOHHOE HC-
quciaeHne. Ero MeTopl Jar0T BO3MOKHOCTH PEIICHUST MHOTHX ONTHMH3AIHOH-
HBIX 3a1a4. [louck u HaxOXKAEHHE DKCTPEMYMOB 3a4acTyIO SIBJISIETCS aHAJIOTOM
pEIIeHUsT 3aJla4dl WU BBICTYNAET KaK OJMH U3 BAXKHBIX MPOMEXKYTOUHBIX pe-
3yJIbTaTOB.

W unTeTrpanbHple ypaBHEHUS, U BApUAIIMOHHOE UCUMCIICHHUE - TOCTATOYHO
YHHUBEPCAIbHBIE METOJBI U MOTY HCIIOJb30BATHCS HE TOJBKO B PAJUOIIICKTPO-
HHUKE, HO U B JIPYTHX 00JAacTAX TEXHUKUA. YMEHHE MX HCIOJIB30BATh JIOJDKHO
BXOJMTh B HAYYHBI MHCTPYMCHTApHII MCCIICAOBATENICH M HAayYHBIX PaOOTHH-
KOB.
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1. INTEGRAL EQUATIONS

Integral equation is a equation, where a unknown function is used as
argument of integral.

1.1. Linear integral equations
Suppose:
f () is a known function,

@(t) is a unknown function we want to find.

If the unknown function in the integral is linear we say that the integral
equation is linear.

Classic view of the linear integral equation is:
b
Q1) = A[k(1,S)p(S)dS + f (1),
a

where A is a parameter defining a family of solutions of the integral equation;
k(t,S) is a integral equation kernel.

Function f(¢) existsinrange a <t <bh.
Function k(¢,S) exists in range:

a<t<b;
a<S<b.

1.2. Kinds of a linear integral equation

1.2.1. Fredholm’s equation

General view of 1% kind of Fredholm’s integral equation is:
[fk(t,S)go(S)dS =f(?) .
General view of 2™ kiand of Fredholm’s integral equation is:
P(0) = A[K(S)p(S)dS + 1(0).
a

a and b may be finite or infinite.

Solution of the integral equation exists if following conditions are
satisfied:

6



1) f(?) is continuous in range a, b and
b
JIf @) dt < +e0,
a

2) k(t,S) is continuous in ranges
a<t<b;
{a <S<b;
and

b
([t $) < +e0.

If equation kernels satisfy above conditions, then we say that those
kernels are Fredholm’s. If f(t) =0, everywhere in range (a, b), then the

integral equation is said to be homogeneous:
b
0= (1) +A[k(1,S)e(S)dS .
a

In other case, the equation is heterogeneous.

1.2.2. Volterra’s equations

Common view of 1* kind of Fredholm’s equation:
t
[k(#,8)p(S)dS = 1 ().
a

Common view of 2™ kind of Fredholm’s equation:

o)+ i}k(t,S)(p(S)dS =f(1).

If £(¢) =0 then the equation is said to be homogeneous. Under some

restrictions, Volterr’s equations can be considered as Fredholm’s equations. If
we change the kernel following way
k(t,S), S< t}

H(t,S)=
.5) {O , S>t

then we may get Fredholm’s equation:

b
pt)=A[H,S)p(S)dS + f(¢).



1.3. Kinds of a non-linear integral equations

1.3.1. Urysohn’s integral equation
b
(1) = [klt.S.0(S)lS .
a

The kernel includes the unknown function, assume the function K(x,y,z) is
continuous for all its arguments.

1.3.2. Gammershtein’s equation
b
o(1) = [k(t,9)F[S,(S)[S .

a
where k(¢,S) is Fredholm’s kernel.

1.3.3. Liapunov-Likhtenshtein’s equation
These integrals include essentially non linear functions. For example:

o(t)= )+ jk (t,S)p(S)dS + 1 j jk (t,S,2)p(S)p(2)dSdz

aa
The equation may include members with even greater non-linear.

1.3.4. Volterra’s non-linear integral equation
t
o(t) = [klt.S.0(S)}S .

K(x,y,z) is continuous for all its arguments.

Examples.
L g(x)=—— I e f(y)dy.
«/_
This is 1* kind of Fredholm’s integral equation with following kernel:

ixy
k(x,) ==

N

View of its solution (got by Fourier in 1811) is:

() = }: g (x)dx.

2. Solution of a common integral equation leads to Volterra’s non-linear
integral equation, for example (Cauchy problem):




for boundary condition x(a)=x

dx(t)
dt

= F[t, x(1)].

0"
Integrate both part of that expression for ¢, and we get:

x(t)= X, + jF [2,x(t)]dt .

This expression is 2™ kind of Fredholm’s integral equation.
3. General solution of linear n-th order linear differantial equation.

‘; tx +a (0) le tff bt (OX()=F ().
Initial conditions are:
x(a)=c,;
x'(a) =c;;

(n-1) _
X (@)=c .
This task comes to linear integral equation; suppose for n=2:

d’x +a, (1)@ +a, [t)x(t)=F ().

dt? dt
_ d?x _ L -
Assume: =~ Z=0(t), x(0)=Cy, X(0)=C;
dt?
dx 1t
E—(j)gp(S)dSJrCl.
We know that:
t ot t 1 ¢ -
[defdt...[ f(t)dt = [(t—S)"" £(S)dsS.
0.0 0 (n—=1)l
n times
t
Hence: x(t)= j(t—S)gD(S)dS+C1t+CO.
0

After we substituted that expression in the original differential equation:

(p(t)+ﬂal (0)+a, (1Nt~ S)p(SHS = F(t)~ C,a (6)- C, ta, (6)- C,ya, (o).
0



After defining:

k(1,8)=la (6)+ a, (e} - 5));
f(t)=F(1)-Ca (1)~ Cra,(t)-C.a, (),
we get 2" kind of Volterra’s integral equation:

pl0)= [kl SWplS)+ 1 1)
0

Solution of that gives to us the unknown function.

In many cases, kernel k(z,5)=k(z-S) is proportional to the different of the
arguments, then Volterra’s equation is named integral equation like convolution,
Abel’s integral equation:

If the unknown function is contained both under a sign of derivative and
under sign of integral, then this equation is said to be integro-differentual
equation (IDE).

1.4. Fredholm’s methods

In the beginning of the 20-th century, Fredholm completely investigated
integro-differential equations.
Solution of the equation:

pl0)=2]klt, SIS )+ 110,

is considered as analog of the solution of n-order system of linear equations to
contain n unknown variables. In result, the solution comes approximate and
depends on n. The more n, the more precisely solution.
Solution consists of several stages.
Replace the integral with finite sum.
Divide the whole range [a,b] to n equal parts. Length of those parts is:

s=t-a
n

10



Into each part j we choose some point S;. We get a set of functions
o(S;))=¢;. We aren’t looking for continuous function, we are finding a set of
discrete values goj.

n
ol)= A3 k(1S Jp 5+ /1),
j=1
1s in the same range that S, because we can select #,=S;

gp(sjj - zélk(si,sj jgoj& + f(sjj |
Define:

y

18,)= 1, K{(S.8, | =k, :

n
PEAOX k@ Ty

j=1 i
where n is the amount of linear algebraic equations.
Rewrite in more usual representation:
n
(ol.—/wz kl.jgoj =/, -
j=1
Determinant of this system is:
1-Adk,, —Adk, - —Adk ;
k. 1-Adk, - —Ak,
D (/1)2 21 22 2n7) polynomial relative to A.
— Aok — Aok e 1=k .
nl n2 nn

If D, ( /‘L) -+ (), the system has solution for any f; and has solution integral

equation for any f(?). Solving it, we get a set of @=¢(S;), which is piecewise-
linear approximation the unknown function ¢,S)). If D,(4)=0, this case is a
special.

Fredholm’s resolvent
We have a set of ¢(S;). Substituting this set in the original equation we get:

olf)= ﬂél k(r, s, )go[sj )5 1),

11



We can represent the acquired solution of the equation in the following
general view:

,8,5,...8 4
ot fiye 22 D, |

where Q is result of one way of computing of the solution of the system.

When n—o, and kernel k(z,S) is continuous and absolute term is

f(t):Q(t,Sl...Sn,/i)—>lj)D(t,S,/’L)f(S)dS.

D (2)> D).
Expression of Fredholm’s resolvent is function:
D(t,S, )
D(4)

Using this resolvent we get final solution in compact form:

b
ot)= f(t)+ A[R(,S,A)f(S)S.

R(¢,8,4) =

Resolvent doesn’t depend on absolute term, but resolvent is defining only
the kernel. Resolvent is used in cases when we want to investigate a response of
the same object to many variants of different forces (f(S)).

D(4) and D(t,s,/) are found by constructing their for different degrees A
and applying limit conversion for n—co.

Defining K(S;, S;)=Kjj, we have:

1=A6K,, ... —A5K,
D = Ay e K|
ISK, o 1-A5K
Ky +e K K,
~aoy T et Bl sy
Kn1 an. Knn+8

12



|
where & = ——.
Ao
F (&) is determinant of the matrix and is power function to & with the top

power is n. Consequently it can be expanded into Taylor series:

F(e)=F(0)+ F'l(!O) £+ F"Z(!O) g2+ ...+—F(I;)!(O) e,
dF O (e)

FD) =
de

,for £ =0.

Differenting the determinant, it comes to the sum of determinants, but its
order is decreasing by one.

Kll + & KIZ Kln 1 K12 K13
§ K, K,+¢ K, |=|0 K,+¢ K, |+
&
K, K, K.+¢ |0 K, K, ,+¢
K11+£ 0 Kln K ,+e K, 0
+K,, 1 K, +1K,, K,+e 0=
K31 0 K33 +& K31 K32 1
Ky, Kyte Ky Ky+e Ky Ky te
(more usually is):
_1 % % Ko 7€ Ko
2~ K
al=1a2=1"* g1a2 ala?
(¢is equal to zero)
m
D (A)=1+ % (=40)" ,
o m

13



Kal 1+g KalaZ KaZam
n n |K K K _ +¢ K
*[z Y a2al 27 a2 a2am ]’
al aom=1"
+&
amal amom

al=1
where K (z,S) is a trace of the kernel.

Fredholm showed that for n — o0.

Kalal Kala2
i i Ka2al Ka2Ka2
al=1 am=1
omaol ala?
alal ala?
:ﬁ‘) Ka2a1 aZKa2
aa
Kamal Ka1a2

n n b
5 Kamé:ElK(S 18 19— K9S,

a2om oM 5 C
m

aZam da,..da ,

omaom

0 _1\m
where D(A)= Y %Cm/lm is Fredholm’s determinant.
-1 "

Repeating the same reasoning, we can get following expressions:

D(,5,2)=x(-1)" 2B (t.5):

K@S)  K(a,)
b b
B (t,8)=]..] If(_al_»f)___fi(_al_,itl_)_....
K(a, ,S) K(a
Note that:

14

K(t,am)
K(a,a )

dal...da ;
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b
C = jBn_l(t,t)dt;

BOZK(t,S),

where D(¢,S, A)is a minor of Fredholm’s determinant.

D(t,S, A
R(t,S,A) = b5, 4) is the resolvent which doesn’t depend on the
D(4)

absolute term, and is defined with the kernel of the equation.
All cases are considered for D(A) # 0. Values of A satisfy condition

D(A) # 0 to be named a regular. Values of A satisfy condition D(A) =0 to

be named a characteristic.
There is a homogeneous integral equation:

b
o(t)=A[K(t,S)p(S)dS + f(t) comes from heterogeneous:
a

b
o(t) = f(t) + A[R(t,S, ) £(S)dS for fit)=0.

Consider two cases:
1. A isaregular — D( 1) # 0, then p(¢ ) =0-
2. Ais a characteristic— D( A ) — (). In this case we can get the solution
t#0.

Example.

The kernel of the integral equation is given:
K(t,S)=¢"".
Construct its resolvent satisfying following conditions:
0<t<1;0<S8<1l;a=0;b=1.
Solve C; and B;:

_ _ oS
Co_lﬂ Bo(tQS)_e ’

1
C = gBO(Otl,al)dal =1;

1 eteS ete—al ) 1 . e—S e—al
B (1,8)=] g | da =e [e ¢ |da, =0;
0ee ™ e%e @ 0 le e ¢

15



1
C, =£Bl(al,al)d0(1 =0.

Other Bk’Ck =0.

Therefore: DA)=1-4;
D(t,S,A)=¢""5;
et—S
R, S, 1) = :
( ) )
A tis
In case A=, solution is: @(t) = f(¢)+ 12 [e ™ f(S)dS.

40

1.5. Integral equation with singular kernel

If the kernel of the equation is a singular, then the solution of the equation
1s even easily.
Expression of the singular kernels is:

k1, S)= éaj(t)b.(S).

J

Supposing, @ and b is linear indepented functions. In this case, 2™ kind of
Fredholm’s integreal equation can be presented as:

o)=21 % a (09 (S)o(S)is +7(0)=2 % a (0] (SVolS) 1 0)-
) 21 C.a (1)+ () (15.1)

b
where C_ = [b. (S)p(S)dS .
a

Solution of the integral equation comes to determinating of unknown
constants C;.
Multiply both sides of the equation by b; and integrate respect to ¢:

foupion = [ £+ 2 % € ylajhien
a . 4 _ J= a _

—_— —_—

C; f; kj

16



Cl :fl +ﬂ,]§1 C]kjl’

; C.=f +A5Chk.
Cl.=fi+lZCjkl.j;:> 2=/ ng Ji2
j=1

n
C =/ +4 Z Cjkjn.
j=1
This expression appropriates for all indexes. Solution of the system gives
a able to determinate C;.

Cl_ _ﬂjélcjkij =f;i=1+n.

1

If the system can not be solved, then original integral equation is unsolved

too.
1—/1k11 —ﬂklz —x%kln;
—k 1- Ak, - Ak, ;
p(a)=| 2 22 2n
- /Iknl — /Iknz e 1= ﬁ,knn.

If D=0, then find a solution as usually, i.e. find values of coefficients C;.
When the coefficients are computed, we substitute their in the equation
(5.1.), then we get unknown function ¢(z).

Example.
p(t)=1+ /1}(1 ~8)p(S)dS ;

0

k(t,S)=t—-S; a,(t)=t; a,(t)=1; b,(S)=1; b,(S)=-S;

ot)=1+ zzi @(S)dS + zi (— S)p(S)dS ;

C =[o(8)dS; C, =](-S)p(S)dS;
0 0
p(t)=1+ACt+ AC,.
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Multiply both sides of this equation by bl and by bz, then integrate

respect to ¢:

olt)dt = jdz +AC, jtdt + /Ij dt;
0 0 0

OQ_.._. Ot_.,_:

(- Dolt)dt = Jl'(— t)dt + AC, Jl' (-2t + Ac, i (= 1)dt.
& (1 —%) - AC, =1;

<
CI£+ 1+i C, :—l.
3 2 2

S

A
D(1)= =1+=.
A A
A P 12
3 2
This integral equation has solution anyway, because D=0 for all real A.
12 6+ A

! 12+ﬂf’( 2__12)+,12’
6(2 =2t — A
)= .
() 12+ 2

For these equation resolvent is a rational function.

1.6. The usage of singular kernels for approximate solving integral
equations

Assume, we have some integral equation with non degenerate kernel
k(t,S).

plt)= 2 [ k(2. S)p(S)ds + 1(0)

In the integrating range, non degenerate kernel is substituted approximate
singular kernel. In this case, approximate solution is enough close to truly
solution. The more close approximation, the more correct solution.

In the most cases, power polynomial or trigonometrical functions are used
as approximation.

18



Example.
1
o(0)= [e1 - Jp(S)ds + ¢ — 1.
0

Exact solution is (o(t)z 1. Get approximate solution @, () for
approximate kernel.

32 443
g 087 i%s
2 6

2

ky (,8)=—t
Approximate solution:
o(t)=e' —1-0,5t* —0,17> —0,041*.

In the range [0;1], the error respect to exact solution is just 0,8%.
1.7. Method of sequential approximation («compressed representations»)

We make sequence of functions. First function is any. Further we make
next function from previous, etc.

Following conditionals must be satisfied:

1) In the square a<t,S<b kernel k(%,S) must be continuous and constrained.

2) Declare.
MO = max ‘k(t,S)( .
t,Sea+b
Bellow conditional must be satisfied:
1
A<—.
M, (b - a)

If all those conditionals are satisfied, then series of sequential
approximations is constructed using following rule:

o (=TS (S)dS + £(r)

The more number of iteration n, the more accuracy solution.

Example.

Solve the integral equation using considered method.
S5 11
P(t)==t+—[tSp(S)dS .
6 2
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Kernel K(z,S) =1¢S is continuous function:

max, o [K(ES)=1=M.
Check we can apply above method:
1 L
—1>—=A.

M 0 (b—a) 2
Both conditionals are satisfied.
Choose first function: @, (¢) = 0. Further:

) =21+L1Sp (S)ds =1
= T 6

5 tl 5 5 1
N=>1+L1525d5 =21+ ):
PyD)= ity IS SaS =+ )

5 1 1 1 1
¢n(t):gt(1+g+6—2+...+6n_1)=f(1—6—n);
p(t)=1m @ =t.
n—owo N

The speed of convergence greatly depends of start approximation. Good
choice of approximation can reduce time of solving.

1.8. Using of sequential approximations method for solving 2" kind of
Volterra’s integral equations

t
(1) = A[K(t,S)p(S)dS + f(¢) is 2" kind of Volterra’s integral equation.
a
That kind of equations may be considered as particular case of

Fredholm’s integral equation, if K(¢,8)=0 for § >¢. Different is
comparison with A to be not necessary (A is any).

Example.
Find unknown function @, satisfying equation:

t
p(1)=t— [t = S)p(S)dsS.
20



Solution.

Assume: @, =0 then ¢ (1) =t;
t ZL3
g02(t):t—£(t—S)SdS:t—§;
3,5 7 =1
t l‘ t
P, ()=t ="t =t ()T
3' 5! 7' (2n 1)'
@(t) = lim Q. =sint.
Nn—>0
Example:

With the help of a examined method to slove an integral equation:
5 11
p(t)==t+—[tSp(S)dS .
6 2

Kernel K(¢,8) =1tS - function continuous

max, . [K(tS)=1=M
We will to correct the using method:
1 L
—1>—=A.

Mo(b—a) 2

Both conditions are satisfied:

The firest function : ¢, (¢) = 0.

) =21+L1Sp (S)ds =1
SR 20 %o 6

5 t1.5 5 1
H=—t+—|S=8dS=—t(1+-);
(pz() 6 Z(I) 6 6( 6)
5 1 1 1 1
H="t1+—+5+..+ =t(1-—);
0, (0= 2tk bt =il )
o(t) = hm(p =t.
n—>0

The speed of convergence strongly depends on initial approximation. The
successful selection of approximation can reduce time of the solution.

21



1.9. Application of the method Successive approximationses for the
solution of integral equations Volterra of 2 kind

t
(1) = A[K(t,S)p(S)dS + f(¢) - integral equations Volterra of 2 kind.

The similar equations can be considered as a particular case of Fredholm

equations.
If K(¢,S) =0 whenS > ¢. The difference is, that the matching with 4

Is not necessary (ﬂ, - anyone).

Example:

Find a unknown function #, satisfying an equation:

p(1)=1=[(t=S)p(S)dS.

Solution:
Let's assume: @, =0 then ¢ (t) =t;
t l«3
@, ()=t=[(t=8)SdS =1—-—;
u 3!
3 5 7 2n-1
£t N
D=t——F———+.
“n 0= 357! +D (2n 1)'
@(t) = lim Q. =sint.
n—»a0

Application of a method of the approximated solutions for the solution of
some kinds of non-linear integral equations:
We have an equation:

b
o(1) = A[K[1,S,0(S)ldS + £ (1)

Conditions of applicability of a method:
1) f(¢) Should be a continuous function, K (¢, S,®(S)). Should be a

continuous function on all three arguments.
2) The kernel should to satisfy the conditions the (Lipschitz):

K(t,5.Z,)-K(1,5. zl)‘ < L‘Zz - zl‘.
L - The constant of the (Lipschitz), which satisfying the condition.
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1
A<
L(b—a)"
L usually take minimumly:

. mmpqzsz Kaswzﬂ
min_ ‘Z Z‘

Then the solution can also be received by a successive approximations by
the formula:

b
0 ()= A[K[t.S.0,()dS + (1)
initial approximation @,(t) - anyone.

Example:

Solve an integral equation of a kind

tS
t)=— I;
(1) ﬂ1+¢)(s)+

1 1
AN<———==,L =1
H<L(b—a) 27

The necessary conditions are satisfied:

A
goo(t)zl; gpl(t)ZE jlmdSJrl:l; goz(t)zl; (p3(t):1.

Solution: @,(t)=1.

If kernel £(7,S,z)- has a restricted derivative on z.
That L can be selected from a condition:

k <1
dZ a<t,S<b,

—00<z<+00

1.10. Solution of a system of integral equations

There are cases, when it is required to find some unknowns of functions,
which:

1) Are determined by integral relations.

2) Are determined connected among themselves.
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Writing unknowns of functions, are named as a system of integral
equations:

(p1<r>=ﬂj§:1k1 (5% (5)as + 1, ()

on)=2 % k. (.5)p (S)aS+ £ (0)

From an interval a<t<'b Pass to an interval a<t<a+N(b-a).
From a function set fl(t) : 'fN (t),a <t < b Pass to "a unified"

function F(2):
F(t)= fi[t —(i-1)(b-a)].
From a set @,...¢, Also pass to <<unified>> @(1):
o(0)= o, (i~ 1o - a)].

On an interval:

a+(i-1)\b-a)<t<a+ib-a)
From set kj; pass to:

6 0.5)= ki~ (=1\b-a). S = (j~1Yb-a)].

when:

{a+(i—1)(b—a)£t<a+i(b—a);
a+(j-1)pb-a)<S<a+ jb-a)

Then it is possible to write by one equation all of systems:

CD(t)z/1a+N(bk_Ca%t,S)CD(S)dS+F(t).

Further equation is solve by one of known ways.
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1.11. Using of the linear operators

Operator: This any operation which transforming elements of one set to
units of other set.

E, > E,.
The operator A is named linear, if two conditions satisfied:
1) A(x + y) = A(x)+ A(y).
2) Alax)=aA(x);, a - const.

b
y(t) = Ik(t, S )x(S )dS - the integral operator of the Fredholm above x.
a

The combination of the linear operators will (derivate-oOpa3zyert) a vector
space of the operators.

The operator transforming elements of set in it self (E—F) is named as a
unity operator and is meant.

Ix— x If the return operator exists, the use him to the source operator
should give a single operator: 4~ A=1.

The operator [+A - always has the return operator.

S=(I+ A)_l;
S(I+4)=1.
The decomposition is fair(Under certain conditions).
S=(I+A)" ' =T-A+ A2 -+ 4" -4+ ...

It will be used for the solution of integral equations.
Let's consider an integral equation of the (Fredholm) of 2 kind:

b
p()= A[k(e.S)p(S)dS + £(z)
a
Let's designate linear operation:

Ap=(k(t,S)p(S)dS.

In the operator form an initial integral equation:
=g+ f.
Sent Ag to the left and carrying ¢ out brackets:
(1-24)p=f.
Under certain conditions on the norm of the operator A the solution of an
integral equation looks like:
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p=(1-24)"7.

The characteristics is known:

=f+ﬂAf+2,2A2f+...+lnAnf+...(Neumann) series.

For this decomposition it is necessary:
1) A series should be convergent.
2) That the inequality was executed.

1
A< :
max k(¢,S)|(b-a)
t,Sea+b
Let's consider degrees of the operator:

A2 f = A(4F) = TA(c s)ﬁk(s, ) f(f)dr}dS k(S (S, )/ (e )dsd e =

ada

_t Fk(t, K. z')dS}f(r)dz' =k (1.5)7(s)ds,

alLa

when: kz( ) k( )k(S ,z')dS - repeated kernel similarly.

b
[kl
Af = ]f

{ K(t.$)K (S, T)dS:| f(r)dr:lfKS,(x,S) £(S)dS:;

Q'-—.Q“

b
K (t.8)= C{K(t,S)Kz(S,r)dr;
K (1.8)= ZfK(t,S)Kn_l(S, 7)dr;

A f = [fKn (t,S)f(S)dS.
then:

p(t)=f(@)+ /I?Kl(t,S)f(S)dS + /lz?Kz(t,S)f(S)dS +

+ /13?1(3 (t,8)f(S)dS +...= f(£)+ z[f [Kl (t,8)+ 2K, (1,S)+ K, (1,S)+ ]x
x f(c;)dS. '
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It can be write, as:

b
p(t)=f)+A[R(t,S, A1) f(S)dS - ﬁndingqp(t) through a resolving.

The resolving is determined as follows:
R(t,S,2) =K (6,8)+ 2K, (1,8)+ XK (t,5) +...
It satisfying to such properties:

b
R(t,S,0)=K(t,S)+A[K(t,7)R(r,S,A)d7;

b
R(t,S,1)=K(t,S)+ A| K(r,S)R(t,7,A)dr.
a
For a resolving following expression also are fair:
b
R(t,S,4)~R(t.S.4)= (4 - 1) j R(t,7,A)R(z,S,A,)dz:
R(1,5,0)= K(5,5);
b
ORWS.A) T Rt 2, R(z, S, Ay
dA g

The received results are applicable so for equations Volterra.

Example:

1. Solve an integral equation:

1
o(1) = A[iSp(S)dS + f (1) ;
0

K(t,S)=tS ,a=0, b=1;
max|K(¢,5)=1 npn 0<7,8<I,

The conditions of applicability will be executed.
Let's find sequence of iterated kernels:

Kl(t,S):tS;
1 1 fs
Kz(t,S) =[K(t,7)K(z,S)dr = jl‘Z’Td‘L’Zg;
0 0
tS
K3(t>S) :3_2;
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tS

Kn (#,5) = 3n—1 ;
Ao A X 3tS
R(t,S,A)=ts+—tS t Sttt St —
3 3 3" 3-4
Thus, the general solution of an input equation looks like:
L3S

o(t)= f(t)+ {m 7(8)ds .

2. Solve an integral equation:
t
p(t)=e' + [ p(S)dS ;
0

A=1:
K (t,8)=¢"";

¢
K, (t,5)= jet_TeT_Sdr ' (t-5);
S

_ 5=
K (1,8)=e S5 "
ne’ (n=1) °
oyl
R(t,S,1) =™ +...+et_S%+...+ =275,
n.

t
p(t)=¢€ + I > 7S 4§ = €' - the solution of an integral equation.
0

1.12. Integral equations with a kernel having a weak feature

The similar equations have a kind of core:

K(,5)="1E5).
(-8
O<a<l.
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J’Q ds = (1)),

Let's con31der an appropriate equation Volterra. A general view of an
equation:

(equation Abel J.

H(, S)

p(t) = f(t)+f (8)ds,

a<t<b,6 S<t,
when: ¢ = — Square of a kernel — nonintegrable.

However to solve an equation it is possible. For the solution will use
following procedures:
1. Evaluate iterated kernel:

K, (t,5); K,(&S8),urn
LH(t,7)H(z,S)
s(t=0)*(t-8)"

K (t,8)=(t=S8)"""F,1S);
K, (6,8)=(t—=S)y*F,(t,S).

Let's repeat calculation n of time while the nonintegrable component
becomes integrated:

K (t,5)=] = (1 —S)1‘2“F2(z,5);

n(l-a)>1.

2. Input equation is lead to an integral equation with iterated kernels. By

contraction of both parts with a function AK(2,5) The integral operator of a
kind is used for this purpose to both parts of an equation:

z}K(z, S)(-)dS..
Then: ’

ﬁjK(r, S)p(S)dS = sz(t, S)/(S)dS + zsz(z, S)[?K(S, D)o(r)d ]
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t t
xdS = A[K(1,8)f(S)dS + 2 [ K, (1,S)p(S)dS . (1.12.1)

But from an input equation:
t
AJK (8, S)p(S)dS = p(t) - f(2).
a
Let's putitin (1.12.1):

t
(1) =2 [ K (6, S)p(S)dS + £, (1)

L0 =fO)+A[K(,8)f(S)dS.

It is similarly possible to receive:

t
()= 2 [ K (t,S)p(S)dS + (1),

where £, = £, () + AJK(2,8)1,(S)dS .

we will proceed until reach n, which have found on 1-m a stage. Thus:

pt)=A"[K (t,)p(S)dS+ f (1),

kernel of this equation K, - integrated.
The function f;, can be found, therefore obtained equation is decided by
usual methods.

1.13. An equation such as a convolution

It is such integral equations, which kerne depends on a difference of
arguments. They look like the following:

ol6) =2 [Kle=Sp(S)dS + ()

1.13.1. Using Fourier transform generally
For the solution of equations such as a convolution the Fourier transform
in the following form will be used:
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[ (e,

—00

Flw)=

@\H
3

1= [Flo)e™ do
—0Q0
The convolution of functions is following:

0= [ 7070kt = 1,21,

* - The denotation of a convolution.
The integral operator of the Fourier we shall signify F(*).

F(w)=F[f(t)]= Ff.
The Fourier transform from a convolution of functions is equal (In view

of a constant factor) To product of separate Fourier transforms from each
function:

Flf = f1=~2zF[£] Fl1]

Let's consider an equation:

o(t) = AJk(t = S)p(S)dS + £ (2)

Also is applicable to it a Fourier transform:
Designate: F[(D]ZCD; F[f]ZF; F[k]ZK.

Then after a Fourier transform:
D(w)= ﬂ.«/ﬂK(a))CD(a)) + F(w),
now it is possible to find CD(a)):
F(o)
Dlw)= .
(@) 1- V27K (@)
Having taken reconversion of the Fourier, we receive a required function:
( ) ]cat
do.

olt)= \/_ I L 1- 227K (o)

It is possible to use other path.
Let R(t , /1)-This reconversion of the Fourier from a following function:
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K@)
1- 27K (@)’
1 % K(CO) ot
R(t,1)= ' dew.
2) ﬂ_{ol—z\/ﬂK(a))e “
Then the solution can be found by the formula:
plt)=1(0)+ 4 TR(t- . 2)(5)ds.

1.13.2. Application of a method convolution for the solution of integral
equations of 1-st kind

Let it is necessary to solve an equation:

[k(e-S)p(s)as = /(1)

Is applicable a Fourier transform to both parts and we use properties of a
convolution.

After transformation:

V27K (0)d(0) = F(0)
#lt)= : TF(CO s

The Laplace transformation is pos31ble also to apply as well as Fourier

transform, but it is necessary always at the solution to check up a range of
definition.

We have found that:

Example:
p(t)=1t+ }sin(t - S)p(S)dS
L{*}- The Laplace transformation. ’
It 1s known:
L= Leini)= 5 Ligl=a(p)

Having applied to an equation a Laplace transformation, we shall receive:
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1 1
O(p)=—5+ ; = O(p)=—5+—
4l 2 o
Solution:
e
(p(t)=t+§.

1.13.3. Solution of a system of integral equations

Let we have a system N of integral equations Volterra of a following
kind:

ot)= 1)+ A3 [k (c=S)p (S)ds; i=1+n
Jj=10

Is applicable to all equations of this system a Laplace transformation:
n
©.(p)=F(p)+ A Xk (p)0 (p)
j=l
Solution this system of algebraic equations as a set of the imagery and
finding from them the originals, we shall receive the solution:

@ (p)=o.(1)
1.13.4. Solution of non-linear integral equations

The method is applicable and for some non-linear integral equations. For
example:

o(t)= /1(}) o(S)p(t - S)ds + £(z).

This non-linear equation such as a convolution. Is applicable a Laplace
transformation to both parts of this equation:

D(p)=20*(p)+ F(p).

This quadratic equation, its solution:

_ —1+1-44F(p)

®(p)= >

Having taken reconversion of the Laplace, we shall receive ¢(?).
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1.13.5. Solution of integro-differential equations such as a convolution

Following integro-differential equation let is given:

d" (t) dnl () d" (S)
AP0, P +a¢()+zjk( ){T}B 1)

dt" de"! m=00
Let's designate a set of the initial conditions:
' ' n—l1 -1
0(0)=0,; ¢'(0)=g; ... o""(0)= o,

Using the following property of a Laplace transformation (for an arbitrary
function ¢):

k k-1 k=2 1 k=3 k-1
—=2p"0(p)-p" 9,0 o, P e (0([, )

Is applicable this property to our equation:
! _ m—1
gkm (t=S)p™ (S)dS =k (p)[p’"@(p)— N cog q-

Now equation looks like the following:

®(p)- [p +ap" 4. +a Zk (p)p }F(p)-

m=0
From here will find a required function:
F
®(p)= 2
p+ap by, +a+2k()

m=0
The reconversion gives a required function.

1.13.6. Transformation Mennuna

Let there is a certain function / (t) and for it justly following:
o0
[ () dt < +oo.
0

o - arbitrary number:
Such function knows transformation Meutuna:
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F(S)=] /() ar,

Reconversion transformation

1 o+ ]OO
f)==—— [ F(S)ds, ¢>0.
27 &~ joo
The transformation Mennuna establishes unambiguous interconnection
between two by functions. The integral takes on a complex integrated plane on a

vertical axis.

Example:

Let's consider a gamma-function. With the help of transformation
Meunna.

+0o0
0(S)= [ et ds;
0
1 c+ joo
et =1 TS Sds; ¢ 0.
2 . joo
Transformation Mennuna in many respects similar on a Laplace
transformation:

CD(p) Laplace transformation >go(t);

g p=5;

O(S)e——fe).
In this case between functions ¢(?) and f(?) there is an interconnection:

o(t)=1le7")

1.13.7. Application of transformation Mennuna for the solution of integral
equations

Using convolution:

{I e ( jcf} F($)D(S);
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F(S)=M{f()};
D(S) = Mip(t)}.

This property will be used for the solution of integral equations of a kind:
X dt
p(x)=f(x)+ | K(;)(D(f)j, (1.13.1)
0

The condition of applicability is, that the functions should admit
transformation Memuna.

Let's designate transformation Memnuna from J(x) through

M {f (x )} = F(S) , and transformation Mennuna from K(2) a5
M{K(2)}=K(S).

Functions ©'(%) and K(5) should have general area of an analyticity.
Using transformation Memnuna to both parts of an equation (1.13.1).

D(S) = F(S) + K(S)D(S);

D(S) = &
1-K(S)"

By inverse of transformation we are finding ¢(?).

Example:

Let there is an integral equation of a kind:

X

ax 17 T, dt
p(x)=e " +— [ e 'p()—, a>0.

2 t

Let's find transformation Mennuna separately from each component:

-ax _+OO —ax_ S-1 ;5 _ —SJroo -z S-14 _ F(S)

M =[e " xTdx=a" [ ez dz=
0 0

S i F(S) , Re{S}>0.

Replace:
M{%e_x} = %F(S) = K(S); Re{S}>0

The areas of an analyticity coincide:

D(S) = Lg) + %F(S)CD(S) ;
04
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r(S)

sl 1 :
a {1 2F(S)}

By inverse of transformation (Mennuna) we are finding ¢(z).

D(S) =

1.14. Symmetrical integral equations

Symmetrical the integral equations are named for which kernels justly:

K(t,S)=K(S,1).

Example:
K(t,S)=1>S?.

If a kernel complex- owes will be executed:
K(t,8)=K(S,1).

Let such function is a kernel of an equation:

b
p(t) = A[K(t,8)p(S)dS+ f(1).

b
Ap = [K(1,8)@(S)dS - The linear operator under a function P

a

If f(¢) =0, that respective integral equation would become uniformly
Thus it is possible to write down following : @ = A4 @ . Such uniformly
equation has restricted number of the solutions . These solutions represent a set

of some functions {(DC } They are named as eigenfunctions and correspond to

own numbers of a kernel- defined values A.

The symmetrical kernel should have the next characteristics:

1. Every kernel should have minimum nonzero own number. And all own
numbers are real.

2. To each own number there can correspond some eigenfunctions.
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3. The eigenfunctions from different sets always are orthogonal among
themselves, though inside a set, they are optionally orthogonal.

In each set quantity of functions n¢ can be estimated from a following
inequality:

2bb )
n, <A [[|K(,8) drsS .

For their further using they are necessary for orthogonalizing. For all that
will be used the procedure of orthogonalization I"'pama-IlImusra.

At the first stage there are own numbers and eigenfunctions of an
equation:

p=AA4¢.
At the second stage achieve, that the inside sets of a function among
themselves too orthogonal.

A(1), B(1)

The functions are called orthogonal, if:

?A(r)B(r)dt =0.

The functions from a set appropriate to each own number subject to a
procedure of orthogonalization. The procedure consists of several stages:

1. Choosing the first function, ¥/, = @, (1):
A0

C()l(t) = b—
/jwf(z)dt

b
2.y, =0, O)—0,Of 0,00, O)d

v, ()

a)z(t) = b—
MAGY
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We are finding the seconded function ®, (¢t) from a new set.
b b

3.y, =9, ()- o, (t)ja)l_ O, ()t — o, [ @ @ .dt;
a a

w, (1)

o)==
Mwﬁom

We are finding the seconded function w,(¢) from another set.

- a)3(t).

b b b
V=0, )~ (t)({ @ (), ()dt - 0)2{[ @, dt wk—l{l O _ Pyt

v, ()

o ()= .
/jwi(ﬂdt

We will continue for the moment finding the last function from this set.

For finding the function justly:

b
[ a)l,a)jdt =0 - conditions orthogonal property.
a

b
Ia)l,zdt =1 - normalized conditions.
a

For improvements we will use the next exchange:
(A #0).
_1

Let's divide an input equation on A, we shall designate H= /1, and also

¢)=-V, £

Our integral equation will following kind:

(e, Sp(5)as - pagle)= g0)

Or in the statement form:
Ap—pup=g.
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1.15. Integral equations, which can be led to symmetrical

Some integral equations can be led to symmetrical and used for further
computations.
For example, the equation:

ol0)= ATK(1.S)p(S)p(S)dS + /(1)

where k 1s a real symmetrical kernel.

It is assumed that the function p(S ) >0 in [Cl,b]. By multiplying both of
the parts by +/ pit ’ and introducing a designation:

L(t,8) = k(t, Y pO)p(S): w(t) = pD(@)
W(e)= 4] Lle, S)¥(S)ds + PO ().

This is a standard form of integral equation with symmetrical kernel.
lP(t ) and later (D(l‘ ) can be found by solving it.

1.16. 1°' kind Volterra equations

[K(#,8)p(S)dS = f(t).

Differentiability of all functions in equation is assumed. It is necessary for
continuous solution that f(a) =0. To solve the equation need to compute the
derivative of the function with respect to ¢. The result is:

Lo 0
K(t,t)p(t)+ J 5[’((“ )lp(S)dS = FAGL
Assumed, that K(z,¢) # 0.

Designations are as follows: %K(t, S)= K; (z,S)and %f(t) = ft' (1);
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4
() + JK(r ,S) o(S)dS = 1, (® |
Kt K(z,1)
The result is a second kind equation, what can be solved using regular
ways. It could happen, that K(¢,¢) =0, then the computation yields to the

second kind equation again.
t

0 d
1= [K(t,9)]p(S)dS = .

a
In such a case both parts are differentiable with respect to z.

2 "
K (6. D) + jM (8)dS = f, (©).

If Kt (t,t) # 0, then division by K'(2,7) is leading to the second kind

equation. If K'(¢,%) =0 anyway, the procedure has to be repeated again.

1.17. 1 kind Fredholm equations with symmetrical kernel

T(e,S)o()ds = £(e) (L17.1)

First kind Fredholm equation might have no solutions even in case of a
“good” kernel. For instance, suppose the kernel be a power function with a finite

number of terms:
B -1
k(t,S)=a (S)" +a (S)" " +..+a (S).

It is easy to show that after a substitution into an integral it yields:
b b b

" [a (S)p(S)dS + 1" [a (S)p(S)dS +...+ [a_(S)p(S)dS =
a a a

=t"b + tm_lbl + ...+ bm is a power function with a finite number of terms.

So, if for instance f (l‘) = sin ¢, then left part will never yield to sin ¢ with
any coefficients if the number of m is finite. Therefore such an equation has no

solution.
It is possible to try out to find a solution for symmetrical kernels using the

Hilbert-Schmidt theorem. Then it is required that f(¢#) can be decomposed with
respect to eigenfunctions of the kernel, i.e.
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1 1c

f)=2agp, (1), (1.172)

b
where coefficients are: a.= [f (t)qoic (t)dt.
a

Hilbert and Schmidt suggested to find a solution in the form of
decomposed kernel’s eigenfunctions but with another coefficients.

olt)=2co, (¢) (1.17.3)

1 IC

If the equation (1.17.3) is substituted into a first kind Fredholm equation
(1.17.1) and compared to (1.17.2) then it yields to:

C,
—L =qa., where A. are self-numbers.
l 1

I
So, the final solution:

o(t)=Xa Lo (¢)

i i"ic

1.18. Usage of a sequential approximation method to solve some of the
first kind Fredholm’s integral equations

Let ﬂ'min be a minimal absolute eigenvalue of the kernel K(z,S). If

0<|2/<22
min

, then a solution could be found as an iteration procedure in the

following form:

o(t)=lim ¢ (1),

n—»0

where:
o (t)=¢ (0)+ /1{ OE [fk(z, S, (S)dS}

Starting function @ (f ) can be taken as optional.
In this case the solving algorithm is represented as follows:

D k@ES)> {4 toA s

n

2) Selection of @, (t ) and A;
3) Computing iterations.
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1.19. Execute function method

Assumed, that the kernel & is symmetrical. Besides, it should be one of the
generating functions. Function G(t ,Z) is known as generating function for a

system of initial functions g;(z), i.e.
Gltz) { g (zhg, () .

if it can be represented as follows:
o0
Glt,z)= 3 C g (21"
n=0 n—n
Each of the functions g(z) is orthogonal:
b
lg. (z)gj (z)dz=0, i=].
a
The solution could be found in the form of:
o0
olt)=% a g (1) (1.19.1)
n=0

After the substitution of the kernel and the sought function into the
integral and transformation:
b b al @
(e SWoS)S =1 £ €2, (5K % a,e,(5)]as -

0 00 b o0
:IEOCnt L 4, j gn(S)gk(S)dS}:EOCnt aG .,

b
where Gn = | g’f (S)dS .
a

By computing the derivative of the function f (t) k times and substituting

=0, a_ can be found:

o £(2)
é)[k = Ckakak!
=0

There will be only one coefficient in decomposition, for instance:
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_ 2, 3
we)=b, +bt+bt” +bt +..

() — 2 — ] -
Y'(e)=b +2bt+3bt" +... | _, =b;

0 1
V(1) =2b,
....................... etc
So,
(k] )(
t
] S ®)_,
k )
Ckak.
After substituting these coefficients into (1.19.1), it will be like:
0-57" Y
PTG c ST

1.20. Non-Fredholm integral equations

Kernels corresponding to the condition:
bb
[Tlk(z, S ) dtdS < +oo.
ad

were overviewed before.
If this condition is false, then continuous areas of numbers and

corresponding joint of continuous functions are conformed to the kernel, but not
a set of eigenvalues as before.

For example (Picard equation):
D _
p()=4 J"
-D

Let’s check if it is a Fredholm equation.

S p(S)dS .

[ K (¢,S)| dedS = 1 [Te_zt_SdS}dt:

—00 —00 —00

0 t 00 0
[ [ [ e 25gs + je_z(S_t)dS}dt: [dt-1.
t

—00

—0| —o0 —Q0
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It is not a Fredholm type of equation.
The solution for this equation is:

_ rt —rt
?, (1) = ce +ce

r=~1-24,1>0.

The collection of eigenvalues forms a continuous set.
Have a look at the dual couple of functions: continuous and integratable
function ¢(?) and its cosine transform ¢;(@):

+00
@ (@)= ,— f{o(x) cos wxdx ;
7T o

+00
o(x) = 2 | ¢, (@) cos wxdx .
T o

After forming a function y(x) out of them and proceeding to other
variables:

w(x)=@(x)+ ?, (x)= \/%Ojo[(pl 1)+ (p(t)]cos wxdt = \/% j w(t)cos xtdt.
0 0

The function y(x) is an integral equation’s eigenfunction:
o0
w(t)=A[w(t)cosxtdt,
0

and it corresponds to the eigenvalue:

PR
T

|2
As y(x) might be optional, so if 4 = ,|— then the integral equation has
T

an infinite number of eigenfunctions. This case could take place as:
[[I K |* dxdt = [ [cos” xdxdt =.
00 00

1.21. Singular integral equations

The singular integral equation is known as integral equation where an
unknown function stands under the singular integral.
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Assume the function f(x) is unlimited at the neighbourhood of x, (f—~>o if
X—>Xp).
Cauchy’s main value is known as a limit (if it exists):

xg—¢ b
lim [ f(x)dx + | f(x)dx
¢—>0 a xgt$

It means that O<é<min{x;—a,b—x,}.

All integrals in the meaning of this value are known as special or singular
integrals.

Designation that is used for them is:

b
V.p.] f(x)dx.

For instance:

b
J dx ,ce[a,b}

X—C
a

We had been discussing the use of such integrals earlier: integral
equations with weak peculiarity kernel.

Now, let’s have a look at the important case from radioengineering point
of view.

1.22. Hilbert transform

The integral Fourier transform:
+0o0
f(x)= [la(t)cos xt + b(t)sin xt]dt .
0
The coefficients can be determined using the following formulas:

a(t) = %Tof (u)cosutdu ;
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b(t)= %T} f(u)sinutdu .

Integral Fourier transform can be considered as a limit (when y—0) of the

expression 1im U (x, y), where:
y—0

o0
U(x,y) = [[a(t)cosxt + b(t)sin xt e dL.
0
This integral could be treated as a real part of more complicated one:

dD(z) :Of[a(r)— jb(z)]ef"“‘y’dzzof[a(z)— jb(t)]cosxt+ jsinxdle Y dt=
0 0

:Ojo[a(t)cosxt+b(t)sinxt]e_ytdt—jof[b(t)cosxt—a(t)sinxt]e_ytdt=
0 0

=U(x,y)+jV(x,y),

where V(x,y) is an imaginary part of the complex function @(x,y).
The limit of the function V(x,y) can be found as (if y—0):

o0
g(x) =V (x,0) = [[b(t)cos xt — a(t)sin xt]dt .
0
The function g(x) is expressed from f{x). After a substitution:
| 0 .
g(x)=— jdt{ff(u)sm [(u - x)t]dx}.
T o 0
This integral is conjugated to Fourier integral transform.

By repeating the procedure we can get an initial expression but it will be
negative:

1(x)= —lofdz{of g(u)sin|(u - x)t]du}.
To (o

After a several formal transforms:

A | oo o0 A
g(¥)= lim 1 jdt{ jsin[(u—x)t]f(u)du}zi [ f(u)[ lim [sin{ [(u—x)t]dt}du}:
T

A—=07 (g | _op —0 A—0()
w —_— —
L g O

ﬂi_)oo_oo u—x
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The integral can be divided into two parts:

2 1—cos A(u—x T 1-cos A(u—x
jLmeo AU gy = § LA gy
N Il—cos A(u _x)f(u)du.
. —
Then, substitute ¢ by u —x = t. So, the second integral in a sum will be:
X 1_ _ 0
i 1 cosf(u x)f( i = f 1- COSﬂIf(x+t)dt.
—00
The first integral:
jImeostu=) g g, IO o iy
X u—x 0
After changing the sign of the expression (¢ = — 1):
0 0
1—cosA(—¢ 1—cosit
O ey = O fenyi=
+00 B +00
(0.0)
B f 1- cosﬂtf(x )t
Finally,
1 1—cosAt
g)= lim — [ ——===[f(x+1)—f(x—D)ldt.
A>T 0

A part of the integral containing cos(lt) approaches zero for considerably
smooth functions f{x) as proved by Hilbert.
So,

-

ey L LG o0,
0

1
T t

1 ® g(x+t)—g(x—1)
flx) = -] d
2 t
This duality was noticed for the first time by Hilbert. So, two functions

linked by such a transform are known as Hilbert transform.
More often they are used in another form:
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g(x) = 1—V.p. | S (1) dt ;
T X

Fay =Ly, 20 4
T _w b

1.23. Usage of Hilbert transform for integral equations solving

Each of two Hilbert formulas can be considered as a first kind integral

equation. Then another formulae will be a solution to that integral equation.
Let:

r)=nlp@l=Lrp | 2Py,

Be a Hilbert transform of the function ¢. This method is used to solve
equations in the form of:

o(x)- Mf(idy 1(x).

Remembering upper designation the symbolic form will be as follows:

o(x)—Art|p]= f(x). (1.23.1)

By applying the Hilbert transform to the both sides of the equation we
will get:

Hlp]+ Azp=H][f}
(Consider that H{H[p]} = —¢.)
By substituting H[(p] into (1.23.1):

Q— /17zH[f]+ /127r2g0 = f(x).

So, ¢ will be:
oli+ 2277 )= £ (x)+ a1/
o) L) 2]

1+ 2272

; 1+ 2272 #0.
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The Hilbert transform is applicable in more complicated cases also, when
kernel looks like:

k(x,y)=

Sometimes the Hilbert transform is used in the form of:

w()= v go(f)ag(%xjdt;

27
T

+ky(x, p)

ole) =~ p.+;”xy(t)czg(f‘7xjdt.

They are used if there is a ctg function in the equation. The way of
solving is the same.

1.24. Nonlinear integral equations

Solving nonlinear integral equations is much difficult. Solution of the
integral equation in the form of:

qo(r)=z?k[r,s,co(s)]dsw(r),

was discussed earlier.
Consider the Gammerstein integral equation:

o(0)= A [ k(e S)W[S. (8 )ldS + £(0).

where k(t, S ), ¥(s,z) are known functions,

¢(s) 1s sought function.
Condition:

? \P(x,y) < M‘min

has to be true. It is a minimal absolute value of the kernel’s k(z,s) eigenvalue.
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The solution for this integral equation also can be found using the

sequential approximation method. The function ?, is optional, even it is

possible to construct an approximation series:

0, (x) = A1 k(x, S)¥[s, g, (5 + £(x)

0, (x)= A1 k(x, 5[50 ()5 + 1 (x)

0,(x)= A[k(x, S B[S, 0, (SIS + £ ()
0 (¥)=Afk(x,S)efs.0 (5)kas+ r(x)

p(x)= lim ¢ (x)

n—» 0
1.25. Usage of degenerated kernels for Gammerstein equation solving

If the kernel 1s degenerated then it could be represented as follows:
m
k(t» S) = Elal.(t)bl.(S),

so, the initial integral equation in this case looks like:

0l0)= 154,010, (5)¥15.p(S 5 + /1),

1

and is known as Gammerstein equation.
Designating:

m
o(t)= /Iglai(t)ci + 1), (1.25.1)
b
where: C. = fbl, (S)P[S, 0(S)as.
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By substituting (1.25.1) into the initial equation:
b m
fbj(S)w(S, Yeca (S)+ f(8))dS = ¢ j=1+m.
g i—1 i1

Functions ¥( ) are known, so the integral can be solved. If the solution of
the new formed nonlinear algebraic equation system exists, it means that a set of
coefficients {CIA +an1} exists also. By substituting them into a corresponding
< A

equation it can be converted into a true identity ¢(¢) = Zci a, )+ f(). It
i=l

could be, that there are not only one set of the coefficients {CIA + ci} so, in this

case we have several solutions ¢(¢) for the integral equation.

Examples.

1. The initial integral equation in the form of:
! 2 2
p(t)=A[t"Sp~(t)dt,
0

where K (¢,S) =S is a degenerated kernel consisted of one member. So,

there is only one coefficient c exists.

Loy
¢ = [Sp? (5)ds:
0
(1) = Act*;

1 242
c=[c2254(8)dS =< ; |
0

Easy to notice that this algebraic equation has two solutions (A£0).

Cl=0;
e =2
2 22

So, the integral equation has two solutions also:
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@) =0;
6
P, (1) =—-.
2 22
2. The initial equation:

o(t) = }a(t)a(S)go(S) sin( (5 )st.
0 (S)

a

(a(t) > 0 in interval ¢ from 0 to 1).

By computing similar transforms, the equations with respect to coefficient
¢ can be found.

1
1=[a*(S)sincdS;
0

1
1=sinc[a*(S)ds.
0

Two variants are possible:

1
a) faz(S )dS <1 — the solution does not exist.
0

1
b) [a?(S)dS >1.
0

: |
then: sSInC=1———;

[a*(S)dS
0

- . 1 3
arcsimce = T + 27

[a*(S)dS
0

1

T — arcsinl— +27mn

[a*(S)dS
0

C

There is an infinite number of ¢, so there is an infinite number of ¢(¢) also.
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3. The initial equation:

o(t) :1+ﬂ,}(p2(S)dS.
0

1
Assume: c= fgoz ($)ds;
0

then: p(t)=1+1c.

Substituting it into the initial equation results:
2 +(2A-1Dc+1=0.

Expression to find c:

1-24++1-44

c= :
207
Finally:
¢(t)_1+«/1—4/1_
Y S
1-+1-44
py()="

It is possible for the Gammerstein equation with nondegenerated kernel to
find a degenerated kernel that will approximate nondegenerated kernel in an
integration interval rather precisely. In this case the solution of integral equation
with degenerated kernel is an approximate solution of the integral equation with

nondegenerated kernel.
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2. CALCULUS OF VARIATIONS

Calculus of variations is the field of mathematics researching extremums
of functions and functionals. If a solutions of extremum is found with any
conditions, such problems is named as conditional.

2.1. The finding of function extremums

Let necessary to find a function extremum:
Z = f(x],..05%,).
Available additional conditions require formalization, i.e. transformation
to a set of functions with respect to x represented as:

((DI(XI,...,)C”) =0
%) (xl,...,xn) =0 !

on conditions that m<n.
This is a default target setting. Such problems are solved using a couple of

methods.

Method 1.

1. From one (any) connection equation, one of variables is expressed

x| <= @(X,5e0X,).

Acquired X, is substituted in fand in @,...,,.

2. From another equation, X, <— ¢, is expressed and substituted in f,
@3...0,,, etc. The same way repeating m times. f(X,,,,,---,X,) is aquired

depeding on n-m arguments, and the conditions are none.
3. Find conditionless extremum of f and substitute in connection equation

with reverse order.
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2.2. The method of lagrange multiplier for finding function extremums

Application condition:

1. Functions f(x,+x,) and ¢(x,+x,) must be continuous and its partial

derivatives must exist on all arguments.
do,

2. In whole range of definition x , rank of matrix with elements x and

size [nxm] must be greater than m.
On method using:
a) compose Lagrange function represented as:

m
D= f+249;,
i=1
where A. are undefined Lagrange multipliers (unknown coefficients).

b) compose n equations represented as:

X,
J OX,
2 .
\Of?x"
and m equations represented as:
((91(x1'°°xn)_ 0;
) (pz(xl...xn)— 0;

Thus, we have m+n equations and m+n variables. Then, solve this
system. Points, at these a derivative of function f on all arguments X,...x 1is
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equal to zero, are named stationary points. If only single solution exists, then
corresponding extremum is said as a global extremum. If several solutions exist,
then the function has several local extremums. Aquired sets x point to extremum
coordinates. After then, necessary check each extremum. At that three case are
possible at each point:

1) Maximum.

2) Minimum.

3) Saddle point.

The checking is processed as the following:

Compose quadratic form:

2 L8 OO V..V .
d“d=7 3 Ax;Axp| (x{ +Xx, ) - system solution
i=1k=10%;OX}, X=X,
X=X,
xn:xnv

If at some small neighborhood is:
d’® > 0 - then there is a maximum;
d’® < 0 - then there is a minimum.

If d*@ may be greater than zero and less than zero, then there is a saddle

point.

Example 1.
A function is given:

z :(x—1)2 +(y+1)2.
Find extremum with the following condition:
(o(x,y)=x+y—1 =0

In the first, we are finding a unconditional extremum:

=2(x-1)=0; x" =1

SN

=2(y+1)=0; »'=-1
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Now, find a conditional extremum.
Express y from the condition:

y=l-x
z:(x—l)2 +(2—x)2;

=2(x-1)+2(2-x)=0; x' =15 y ' =-0,5;

SN

Zmin = 1/ 2
The presence of the condition leads to other value of extremum and to
other coordinate of extremum.

Example 2. (Lagrange multiplier method).
f(x,p,2) = xyz;
(pl(x,y,z)=x+y—z—3=0;
0,(x,y,2)=x-y-z-8=0;
Compose Lagrange function:

D(x,y,z)=xyz+ A (x+y-z-3)+ A, (x—y-z-8),

D
—=yz+ A4 +4, =0;
P V. 1 2
D
—=xz+ A4, -4, =0;
@y
3 D
—=xy—A -4, =0;
Py V=4 2
x+y—z-3=0;
x—y—-z—-8=0;
Solving that, we get:
U S TR RO | P 3
32 32 4 2 4 32

Determine a kind of the found point.
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o NN R N

A2 ij}2 22 =0;
oo _ 0 _ 20 _
ay O aax O e

d*® = 2xdydz + 2 ydxdy + 2zdxdy |
From connection condition:
dx+dy—dz=0;
dx—dy—dz=0;
dy=0; dx=dz;
d*®d =2 yva’x2 :
d%b=4}§}h2=—&u2<a

The quadratic form is greater than zero regardless to the sign of x, that
means a maximum placed at the investigated point.

2.3. Functional

Assume, some class M of functions y(x) is given. If each function
y(x) € M is accordance to some number J by some rule, then it is said a
functional J is defined in the class M.

J =Jyx)]
The class M, where this functional is defined, is named as a domain of

functional.

Example 1.
Assume that M is a collection of all continuous function at range [0,1].

Following define integral is a functional:

me)]:j)y(x)dx;
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when: y(x)=c > J=¢

when: y(x)=e* - J=e-1;
when: y(x) =cosmx — J=0.
Example 2.

Assume that M is a class of functions having a continuous derivative at

range [a, b] and let x, € [a,b], then the following is considered as a functional:
J=y(x) a=1 b=3 xo=2;
when: y(x) =x? > J= 4;

when: y(x) = ln(l +x) o> J= %

2.4. Variations

A variation (increment) of 0y being a argument of y(x) of a functional

J [y(x)] is a difference between a couple of functional, when both functions are

included to class M.

& = y(x)— y(xo).

If the function y can be derivatived k-times, then degree of the variation is

(&)%) = & B (x) = y0)(x) - y ) (x, )
It’s said that functions y(x) and y,(x) are close in terms of zero order, if

the condition, that ‘ y(x)— N (x)( is small, is satisfied. Geometrically it means

that at this range the functions are close by arguments. There is the closeness of
first order, if not only a difference between theirs is small, but a difference
between their derivations is small too.

y(x) =2 ()
y'(x)— 3! (x)( - small.

The closeness of k-th order — the condition is added:
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‘y(K)(x)— yl(K)(x)( - small.

(and all differences of lower orders are small too).
If the closeness of k-th order is given, then there is the closeness of
previous order.

Example.

sin2

There are the curves y(x) = and y (x)=0. Consider theirs ar

range [0, 77]. We can claim these are close in term of zero order when n are

great.
. 2 ‘
@) -y @)= x‘ ———0.
In terms of first order there is not the closeness, because at point:
‘e 2
n? ,

y'(x) — yi (x)‘ = n‘cos n’x
this expression can be maked arbitrary large by n growing.
Distance between curves y = f(x), y; = fj(x) at range a+b

(consider both functions as continuous) is a positive number 0, which is equal

b

maximum modulus of difference between them.

Example.
There are the functions y = x and y; = x%a+b=0+1.
¥
¥
|
i
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p1(x)=y—y Zx—xz;

d
EPL _1-2x;
dx
1-2x=0.
Maximal distance at point:
1
X =—
2 >
it 1 1t Yo, 1
it is eual to =—.
4

Distance of n-th order between curves is the most of maxima of following

values:

-,
-1

............

U
atrange [a,b].

fO - 19w).

/ﬂﬂﬂﬂm]mwm%

0<k<n asx<h
¢ neighborhood of n-th order of a curve y(x) at range [a,b] is a collection of
curves f1(x), distance of n-th order from original curve y(x) is less than & .

= p, (). fi(x)] < &.

Neighborhood of zero order is a strong neighborhood. Neighborhood of
first order is a weak neighborhood. Physically meaning of a strong
neighborhood is a set of continuous curves, which can be drawn in a belt with
width 2¢ about a curve y=f(x).
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A functional J[y(x)] in M class of functions is continuous, when
Y = yo(x) in terms of the closeness of n-th order, if for any & we can select

such number 77 > 0 to satisfy condition:

If o, [y(x), v (x)] < 75 then |J[y(x)]— J[yo (x)] < &

In the other case, it 1s discontinuous. A functional is linear, if all
properties of linear operators are right.

2.5. The simplest problem of calculus of variations

The functional is given:
x2

JIyl= [ F(x,y,y)dx,

x1
where F'is a unknown function,
y 1s a unknown piecewise-smooth function.
It needs to find minimum of this functional among all piecewise-smooth
functions y.
Conditions:

1. Function y(x) must connect points y;=y(X;) and y,=y»( X, ).

2. F(x,y, y') must be continuous in all three arguments (x, y, y'), and

all derivatives must be continuous up to third order too.
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Minimum (maximum) of functional J[y], reached in a strong (weak)
neighborhood of function yy(x) is named as a strong (weak) minimum

(maximum) of functional J[y]. A extremum of functional J[y] at whole set of

functions y, where it defined, is a absolute extremum.

2.6. The required condition of extremum.
First and second variation of functional

Assume 77(x)is a piecewise-smooth function, which is satisfied for the

condition:
n(xy) =1n(x;)=0.
Introduce a function:
y(x) = y(x) +an(x),

where ¢ is a unknown parameter.

Then a set of all possible functions V(x) is owned by a weak
neighborhood of function y.

Functional:
x2

JIP1= | F(x,5,y )dx.
x1
by conditions:

F(X) = y(x)) =y }
V(x3) = y(x3) =y,
is a function of the parameter « .
x2
JIV1= | F(x,y+an,y +an )dx = D(a).
x1
Shown that @(«) has minimum when o = 0.

For this the following conditions are required:

0d(a) =0, when a =0,
ox
2

0" D(a) >0, when a=0
oo’
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After differenting @(x) by the parameter a:

oD 2| 0 - 0 ~
—=[| =Fx7,3 +——F(x,7,5 )n|dc=0. (2.6.1)
oa x1 6)/ 6(3/)

A derivative 8_ at point & = 0 is named as first variation of functional
(04

J[ ] and labeled as:

Py e
do

Corresponding derivative is named as second variation.
5%J = 4o
do’®
Found function y give minumum (maximum) J[ y], if:
oJ =0
02J >0 — minimum .
02J <0 — maximum

a=0

a=0

If integrate expression (6.1.) by apart, then we’ll get:

2 OF tOF
&= '—j dx |n'dx=0.
o 00y oy
This expression must be satisfied for any 7. From this the Euler-Lagrange
integral equation is following:

X
F, - IFydx =C.
Xy
After differenting, we get:
(OF _p OF

— Fy', —=F ,)
o(y") oy 7
d
Fy —E(Fyv): 0 (262)
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Expression (2.6.2.) is one of basic equation of calculus of variation. It is
just as first finding extremum.

Smooth function y(x) being a solution of this equation is named as the
extremal. The extremal is named as Lagrange curve also. The extremal is
satisfied for (2.6.2.), also satisfied for the following equation:

d
Llr-yF,]-F =o0.
dx 4

Besides a detailed representation is used:

y"Fy,y, +y'F,, +F,. —F, =0.

b

fry = dfiy'{d(dyvf’}

d| d
Fyy ==~ lE
dy | d(y")
F(x,y,y)=F(X,Y,Z).
Although, arguments are connected each to other, but, while it is
differenting with respect to one of arguments, others arguments are considered

as constants.

Notes.
1. This formula gives solution to two constants, and these are

determinated from boundary conditions.
2. For specified boundary conditions, equation has no solution or has

infinite number of solutions.

Example.
1) The functional is given:

2
I = ]l 23 e, when y(1) = 0, y@) = - 1
1

F(x,y,y")=y"*-2xy;
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d

F ., = F=2y',
Yod(y)
d d ! ", _8F_ . "__ . J— .
a(Fy,)za(zy)=2y . F, _5_—2)@ —2x-2y"=0; y+x=0;
3

y=—%+C1x+C2.

Substitute boundary conditions:

2) Find extremum of the functional:
3
T@)= |G-y
1

Boundary conditions:

y()=1, y(3)=4,5.
Euler equation is as the following:

3x-2y=0;
y(x)=1,5x.

Aquired extremal isn’t satisfied the first boundary condition. It means that

the problem could not be solved.
Find a extremal of following functional:

T = T 2y e,

0

w0y =1; yCm = 1.
Euler equation is:
yu + y — O .

General solution is:
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y(x)=C| cosx+ C,sinx;
y=cosx+Csinx.

All these functions serve as extremal for any C. In other words, there is
infinite number of solutions.

2.7. Veierstrasse-erdman theorem

Assume, that y(x) is solution of Euler equation:

d
F,—F,=0.
Yy dx Yy

If F has partial devirative up to second inclusive, then at all points where

5 # 0, function y(x) has continuous second derivative, and it means, at
'

oy
2
this point, break is not present. If 5= 0, then at this point, break is
o(»)
present. Lines composed of extremal piecewises, satisfying condition

2
0°F

5 # (), are named as broken extremal.
1

o(»")

Legandr condition. At all points of line y(x) supplying extremal to functional J,
the following condition must be satisfied:

If Fp (x, v, y') > 0 - minimum;
If Fp (x, y,y') <0 - maximum;

X SXS Xy

Veierstrasse condition: 1f y is minimum (maximum), then:
F(X,y,Z)—F(x,y,y')_(Z _y’)Fy'(xayay')Z 0, (= 0),

for any z at all points of this range.
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2.8. Cased of simplifying or defiation of euler equation
Respects to function F (x, ¥, y') different cases are possible.

The case Nel.
F is independent to y . In this case, Euler equation is represented as:

F,(x,y)=0.
Here, cases often are appeared, when due to combination of boundary
conditions equation is unsolved.

Example.

7
Ie)= [ren= )i 50)=0.5{ | =7

0 2
Euler equation is:
2x-2y=0, y=x.

For this initial conditions, equation has solution, but for other, e.g.,

/4
_ =1
y<0)—o,y(2) ,

equation has no solution.

The case No2.
F depends to y' linearly.

F(x,y, y') = M(x, y)+ N(x,y)y'.
Euler equation is turned to more simple:
oM (x,y) oN(x.y)_,
oy ox '
After derivation, it is turned from differential to algebraical equation.
Some cases are possible, when in some area this equation is equal to zero
identically. It means, that in limits of this area function J[y] is constant, and
variation problem is meaningless.
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Example.
b

Jy(x)]=] (y2 + 2yy'x)dx;

oM ON oM ON
e e
oy ox oy X
The case Ne3.
F depends to y only. In this case, Euler equation is represented as:
y|'Fy|yV: O .

General solution can be taked:
y=Cx+0C, -all possible straight lines.

Here Cy, C, are arbitrary constants.

Example.

Find extremum of functional (line length between given points).

Tyl = e 2 (e

Wa)=4; y(b)=B;

y"(x)zO; y=Cx+0C,; y=

(shortest length between two points is straight line).

The case No4.
Fis independent to y.
F=F(x,".
In this case, Euler equation is turned to:
d ! !
aFy' (x, y ): 0; Fy' (x, Y ): C . arbitrary constant.

We got common first order differential equation.
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Example.

Two points are given A(1,3), B(2,3). Among all possible curves

connecting these 2 points, find such points among extremum of the following
functional can be reached:

Jh0ﬂ=?y%ﬂb+X3V@ﬂ#-

In this case, Euler equation is:

d Vo 4 2 )~ o
;gf;@;yyzq y Q+2x)J=o,

X

1+2x2yE:C; yH:CLEI;
2x
C 1-C
y(x)=—1+C2; C = >
X

Use 1nitial conditions:

3=C,+C;
C
5=—L+0C,.
2
hence:
4
y(x)=7--.
X
The case No5.
F is independent to x explicitly:
F=F(y,).

taking into account, that:
d dy d dy' d
—F = _y_ ) + l

dx 7 dxdy dx dy'

In this case, the equation is:

Fy = Fyyy=Fyyy"=0.

Fyr = yEyy + Y.
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Multiply by y:
' '2 " ' .
VEy =Y Fyy =Y Fyy =0

d . dy da\y' da\y'  dy Al .
E(F—yFy.):aFy+ c(lx)Fy'_ C(Zx)Fy,—yaFy,y—y%Fy.y,:O,
d
~\F-y'F,)=0,
dx< 4 y)

where I'— y'F,, = C, - arbitrary constant.
This equation is solved using separation of variables.
Example. Consider a problem:
There i1s a gas flow, and a solid is moving within it. What shape of the

solid is it putted minimal pressure?

A* If gas density is small enough and
we are too far from acoustic speed, then

. i hade is equal to angle of reflection.
MR p=2,0V2 sin? @,

S B ) p — gas density, V' — molecules speed
\l } ¥V . relative to the solid, 6§ — angle of tangent

naTok to generatrix and horizontal.

d dl =(1+ y')% dx; r=y(x).
A force puts on ring with width dx:
dF =2 pV? sin® 9[2@(1 +y7 ) |sin ady
Full force is putting along axis OX:
/
F = _[dF .
0

Y .

sin6?=(1+y'2)% =)

We shall find a simplified solution, substituting:
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Then, a drag is:
/
F =d4rpV? [y ydx; y(0)=0; y(I)=R.
0
Euler equation is:

»” —3%(yy'2)= 0.

Multiply both sides by y’ Left side is become a derivative from
expression y y. Integrate the following expression:

3 Cl, _ A
y y—C,y—%,y—(ClﬁCz) »

X

%
substituting initial conditions: JV = R 7 - Contour putting minimal

pressure to solid is a parabola with the power - 3/4.

2.9. Invariance of euler equation

If functional like:

Jy]= ?F(x,y,y')dx,

is turned by substituting independent variable x or simultaneously x and y, then
extremal is solving using Euler equation as usual, but it consists of turned
equation.
Assume x and y are function of new variables.
x=x(U,V); y=yU,V).
Also, assume that the mutual independence of these functions condition is
satisfied.

ou’ oVl o
I
ou’ ov
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Then after the substituting:

oy N oy oV ]
' ~ aU 6V aU 8)6 5x 8V _
(o= | 00V G R 0 o -
i oUu oV o

=[oU,V,V")dU.

OU,V,V') - is some new function.

There 1s a formula to find new extremal.

d
O, ——Dy =0.
rTau Y

Example.
Find extremum of the following functional:

Jy]= h:j)z (e_xy'2 —e*y? )dx.

Euler equation for integrand is:

y'—y'+e*y =0.
Do substitute the variables (x =InU; y =V"). Then, original functional
1s turned to:
(U202 mUp2)dU (0 0
J]= j(e‘n Uy —e""v )—= j(V' -V )dU.
0 u 0
For such functional, Euler equation is more simpler:

V'+V =0;
V=CicosU +C,sinU.

Do reverse substituting:

y=Cjcose’ +C,sine”.

Constants are determinated from initial conditions.
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2.10. Variation problems in parametric form

In many practical applications, parametric definition of lines is necessary
to be used to make calculations simpler.

{x=¢0),
y=yl)

Assumed, that @ and w are continuous and have at least piecewise
continuous derivatives. It is necessary both derivatives to be not turned to zero
together, that is need the following condition to be satisfied:

P +y'? = 0.
Each line allow infinite number of parametric representations.
For instance, ellipse can be defined using different kinds of parametric

equations:
X =acost,
. - <t<

y = bsint; nEtem,
a(l—zz)

x=——7"

) l+z
bz — 00 <z <40,
1+z%

In the case of incorrect way, we can find untrue extremum of functional.
In this case, extreamal can be depended from parametric representation instead
of y. In order to prevent this, it is necessary and enough integrand to do not
contain ¢ in explicit form. It is necessary the following condition is satisfied.

F(x,y,kx',ky') = kF(x,y,x',y'), k is constant.
If a line L is defined using the following system:
{x = gle);
y=y(t)
where ¢ 1s changing in range f; <¢ <{; and the line L delivers extremum J,

then ¢ and y are satisfied the following Euler equations:
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dx  dt| dx'
dF d dF}:O

9

(dF d _dF}

dy dt| dy

The equations allow to find functions (D(t ) and l//(l‘ ) Each of those
equations is consequence of other equation. For this situation, Veierstrasse form
of Euler equation is exist also:

1 Fye=Fay Flex'x'_Fy'y':Fy'X'

3 >

o 2 - 2 1
r Fl(x'2+y'2 2 Y L

where r 1s radius of curvature of extremal.

b

Example.
Find extremal of functional:
X5
0,0
Turn to parametric form:
{x = x(t);
v =)
Transform integrand in such a way as to exclude depending from ¢.
2
dy
2 12 o dyY 2 \dx) dx 2y )V
yy“Tdx=y°|—| dc=y —dt=y x'dt=y"—-dt.
dx dx )\ dt x'? x'
dt

Consider the first Euler equation:

12 12 2 .42
Fx:i(yzy J:O; Fx':d[yzyv]:_y?; ;

dx'




y? =2./Cx+C,.
It must pass through corresponding boundary points (x,,19)=(0,0). Hence,

C, =0 and we get:
y2
v =l
X

where y,, X, are point coordinates.

This is parabola equation.
2.11. Summarizing of the simplest problem of calculus of variation

2.11.1. Formulas depend on high order derivatives

Minimization of functional like below:

J[y(x)]= ?F[x,y,y‘,...,y(")]dx.

%o
Function F must be differentiable with respect to all variables n+2 times.
Boundary conditions are set:

KY(XO):J’M (y(xl):yl;
J"(xo)=y'o; y'(xl):y'l;

J yn(xo)z yno; J yvv(xl):ynl;
\y(n_l)(xo ) = y(()n_l); ky(n_l)(xl ) = yl(n_l)-

Suppose, boundary conditions are given for both edges. Extremals are
defined using Euler- Poisson equation:

JIZ(x1,%5..x5)] = j'...j'F(xl,xz,...xN,Z,p,pz,...,pN)dxldxz...de .
D D
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Example.
Find extremal of functional:

1 2
J[y(x)] = j(720x y— y")dx.
0
Boundary conditions are there:

¥(0)=0:)'(0)=1;
y(1)=0; y'(1)=1.
Euler-Poisson equation is represented as:
d2
720x2 n —2(_2_)/”) ~0: ymr _ 360x2;
X
_ .6 3 2
y=x +Cix° +Crx" +C3x+Cy.
Substitute boundary conditions:
C,=-2;C,=0; C,=1; C,=0 and with respect to they

y(x) = x®—2x? +x.
2.11.2. Functionals depend on m functions

Assume, m functions y(x), y2(x),..., ym(x) are considered.
Boundary conditions must be defined with respect to all functions. Mark
them in the following way:

0 1
V(o) =y v ) = vk =1+m.
Extremum of functional is necessary to find:

x1

J[ylym] = IF(xayla"'aym9y19"'aym)dx-
x0

For this, a system of 2" order differential equations need to be solved.
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( d

Fvy1 —aFyi :0,

Fy1 —iF, =0;
) dx

F —iF, =0
L Ymodx Y

Example.
Find extremum of functional:

2
J[y(x),z(x)] = j‘(y'2 22 427 )dx .
1

Boundary conditions are below:
vy =1; ¥»(2)=2;z(1)=0; z(2) = 1.

The system of differential equations for this functional is represented as:

y": O;
z—z"=0.

Solving the system, we get:
y=6X + Cys
{z =c,e’ —c,e”.
For a set ¢ we can get the following expressions:
c =1;
cy, =0;
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Desired extremal is:
y=X
_ sh(x—1)
skl

In general case, boundary conditions may to be not enough to determinate
all constants c. In this case, some c in solution are arbitrary.

2.11.3. Functionals depend on functions of several independent variables

a) In the first, consider functionals depend on functions from 2 variables.
Assume, a function Z(x, y) depends on 2 variables. Physically meaning
of Z(x, y)is some arbitrary surface. Such way, corresponding functional can be

written as:

J[Z(x,y)]= HF(x v,z ZJZC Z‘Z/jdxdy

Problem has solution, if function F is able to be derivatived three time
with respect to all its arguments. Suppose desired function Z in area D is
continuous together with its derivatives upto 2™ order (inclusive). Assume, area
D has edge I'. Here, we are forced to define boundary conditions at all area 7.
Surface Z(x,y) provides extremum of functional, if it is satisfied Euler-

Ostrogradski equation:

JRR | S |

° ox oy 1

here 0z oz
where: p=—:;qg=—.
P ox 1 oy

0 0z op 0q

&{Fp}szx+F ax+F D Fy, L

E{Fq}:quJrFq oz +Fpap+qu %

ox oy oy oy

This equation is used to solve extremals.
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Example.
Find extremum of functional like:

T2 = n( j [gyj dudy.

2 2
F(xsy929PDQ)=p —q .

Hence, we easy find Euler-Ostrogradski equation:

o o
— 2 (2p)——(-2¢)=0;
ax( p) ay( q)

Integrand is:

0%z 0%z
2 20
ox~ 0y
Further, we find solution in common way.
b) Assume, desired function Z is function depending on N variables:
Z =7Z(X1,X5,0, X7 )

We have functional:

JIZ(x1,%5..x5)] = j..._[F(xl,xz,...xN,z,p,p2,...,pN)dxldxz...de :

D D
0z
=—— k=1+n.
Pk ox,
Euler-Ostrogradski equation is:
"0
F.—->—F, (=0
: ,Zléx { Pi }
In detailed representation:
op;
F, - + F £)=0.
Z( p,Pi+ Fpp o )

I
In this case, /" isn’t line, but it is some multidimensional bound of
multidimensional area.
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2.12. Variation problems with conditional extremum

Variation problem, which is solving extremum of functional with
additional conditions to desired function, is named as variation problem with
conditional extremum.

2.12.1.Isoperimetric problem

Two functions are given: F'(x,y,)'), G(x,y,»"). Supposing that they
have continuous partial derivatives for 1% and 2" order in considered range

Xg <x<x, for any y andy'. Assume, functional K[y] is defined using

the following expression:
x1
K(yl= [G(x,y,y)dx =1, (2.12.1)
x0
where [ 1s given value.
For these conditions, it is necessary to determinate extremum of

functional J .
x1
Jy]= [F(x,y,y")dx —> extr. (2.12.2)
x0
To solve this problem, Euler theorem is used:
If a curve y = y(x) provides conditional extremum to functional:

x1

JIyl= [F(x,y,y")dx,
x0
with condition
x1
K[y]: jG(x,y,y')dle, y(x0)2y09 y(xl):ylﬂ
x0

and y(x) is not extremal of functional K[ y], then such constant A exists, that

a curve y(x) is conditionless extremal of new functional L:

x1
L= [[F(x,,y")dx+AG(x,y, Y )dx
x0
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Example.
}F

1
¥4

[

Line connects points A and B.
y(=a)=y(a)=0.
Length of line is given: ma</ <2a.
It is required to find function y(x) in order to maximal area embraced by

curve /.

Solution.
The problem comes to finding extremum of expression:

b
Jy(x)]= I y(x)dx with condtions;

a

y(-=a)=y(0)=0,

and with additional condition

a
K[yl= [J1+y?dx=1.
—a

Compose auxilary function:

H=F+1G=y+AJl+1?.

We get new functional:

a
L= jH(x,y,y')dx.
—a

Euler equation is:

_ 88 —



d A

— =1.
dx ll_i_va
Further:
ﬂ/ '
24 =X+ Cl‘

After transformation, we get:

(x+¢ )2 +(y+cy )2 =A% _is equation of piece of circle.
2.12.2. The rule of mutuality of isoperimetric problems

Extremal y; satisfying conditions:

J[y] —> extr;
K[y] = const,

is congruent with extremal y, satisfying conditions:

K[y, ]1— extr;
J[y,]1= const.

2.12.3. Isoperimetric problems with several conditions

If piecewise smooth function y(x) provides conditional extremum of

functional J [ y] with the following conditions:

(']1[)/] = 11;
) Jlyl=1;
—————— [ =1,— are assigned values.
\Jk[J’] =1
x1
(Jl[y] = IF}(X,y,y')dX).
x0
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then a set of constants {/Il- }, i=0=+k, 1(2) + /1% +...+ /1% =1, exists in such a

way, that a curve y provides conditionless extremum of functional:

x1
L= J.(X’OFO +/11F1 ‘|‘le2 +...+/Ika)dx.
x0

2.12.4. Isoperimetric problems for a set of functions

Isoperimetric problem is named in that case, if it is required to find
extremum of functional:

x1

IV = [F( Y10 ¥aeVns V1o VoV,
x0

with conditions:
.

x1
IGI (X, 1oV, s Yyoony, )X =1
x0

x1
) IGZ (x,yl...yn,yl'...y,'1 Ydx =1,;
x0

x1
[G, vy, yiy)de =1,

Lx0

[;=1,,— are assigned values.
(Continuous requirements are the same)
To find solution a functional is composed:

x1 m
DLy +y,]= | (FO + Z%‘Gijdx-
x0 i=1
It is solved as usually (finding conditionless extremum).
Constants 4 and C is determinated using boundary and isoperimetric
conditions.
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Example.
Find extremal of functional like that:

Jy(x),Z(x)]= } (y'2 122 —4xz'-4z)dx;
0

¥(0)=0, z(0)=0;
y(h=1 zD=l,

with additional condition:

1
j(y'2 —xy‘—z‘2 )dx =2.
0

Compose auxilary functional:

1
@ = [y +2* ~4xz' — 4z + A(y'* —xy'—2'* )]dx.
0
Corresponding Euler equations are there:

a4 2y'+24y'-Ax) = 0;
dx

—4 - i(2z’—4x —24z')=0.
dx

Solution is:

-

Ax® +2c¢,x
y(x) = TCy5
41+ A)
<
CiX
z(x) = ——+c,.
| 2(1-2)
Taking into account boundary conditions, we get the following:

c :$,02 =0,c,=2(1-4), c, =0.

1

After the substituting:
A +(BA+4)x
41+4)

y(x) =

z(x) =x.
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After repeated using isoperimetric condition:

%(23/12 +464+24)=48(1V +24+1).

Hence:
10
C1r
: 12 : L .
(Other root is A, = —— - is not satisfied original isoperimetric condition).
Finally:
7x—5x°
(X) = ———;
4 2
z(x) = x.

2.12.5. Lagrange problem

(It is problem for conditional extemum also)
Target setting.

Find functions yy,¥5,..., ¥, providing extremum of functional, with
boundary conditions:
vi(xo)=yj0: y;(x)=y;: j=1+n.
Additional conditions do not concern to functional of desired functions,

but they concern to relations between these original functions, and are
represented as:

-

01 = (06159207, = 0;
) (02 :¢2(x9y19y29"'9yn):0;
................................. m<n.

\¢m = ¢m(x9y19y29'"9yn): 0

To find solution the following theorem is used.
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Theorem: Functions Yy, Vs,..., V,, implemting extremum of functional J with

a set of conditions ¢,, i=I-+m, are satisfied Euler equations for modifed
the following functional, if multipliers A;(x), i=1-m are choosen accordingly:

X m
J = I{F + Z/Ii(x)goi}dx.
X, i=1
(Here A; — are not constant already, but they are functions from x)

@=0 can be considered as Euler equations for functional J', if arguments of
the functional are considered not only functions ), (x)+ Y, (x), but and

additional functions A, (x)+ A, (x) too. Mark:

m
F+> o = CI)(x, Piseos Vo V' sees ¥ )
i=1

Then, functions y;(x), and functions A;(x) are determinated from joint
solution of the following system of equations:

d .
d —Ed)y.j =0; (]:1...n);

Vi

0, (%, ,502,)=0; (i=1..m),

(n+m equations for n+m desired unknown functions )

Example.
The surface, satisfying the following equation, is given:

15x-7y+2z-22=0.
At that two points: 4A(1;-1;0); B(2;1;-1) are given. Find equation of curve
with minimal length connecting these points.

Solution.
At any surface, satisfying equation (p(x, y,z) =0, length between points

A(x0,Y0,20); B(x1,y1,21) are determinated using formula:

X
[ = _f\/l + y'2 +2'% dx; y=y(x),; z=z(x) — are projection
%o
of line connecting these points at corresponding coordinate planes.
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Compose auxilary functional like that:

2
J5 = [+ 32422 + A(x)15x = Ty + 2 = 22)]dx.
1
According Euler equations are below:

AWk —E— |0

dx| 1+ y?+z"

Ax)1-L z = 0.

dx /1+yv2+zv2

After transformation:

i y'=7z' _ 0.

dx \/1 + 24z

yoiz Cy; z'=7y'-15;
\/1 + y'2 +2'2

y(X) = C3x+ C2, C;=2; C,=-3;
y(x)z 2x-3;
z(x):l—x.

We get equation of right line, connecting two points at the surface (the
surface is defined by isoperimetric condition).

/I(x)z 0.

Length / is equal: 1=A6.
Shortest line at given surface and connecting two specified points is
named as a geodesic line.
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2.13. Variation tasks with moving boundary

This is class of the tasks when Limits of integral in function are not
constants.

2.13.1. The simple task with moving boundary
Let F (x, v, y') - Thrice differentiable function on all arguments and in

plane XOY two curves are given:

y=o(x)
y=y(x)

Let's consider functional:

J]= [ Fxp,))dx.
v
Given functional determined will be considered in a class of curve y(x)
What is the ends lay on these lines ¢(x) and w(x). Thus y;=¢(xo), yi=w(x;),but x,
and x;_ unknown. It is required to find extremum initial functional
For solution we shall use the following theorem, Let the curve y (X) gives
extremum of function:

Jv]=[F(x, p, y')dx.
v
Among all curves, two given lines ¢ (X) and w (X) connecting two any
point. Then y (X) is extremum and on its ends 4 (x0, 0, z0); B(x1, y1, z1).
Conditions transversally a kind are satisfied:

|7 +((ﬂ'—y')Fyv] =0;

X=Xq
' ' —
h%{w—yﬂquJ—O
These conditions were used for find extremum. The solution with use of
the theorem 1is carried out by the following sequence of actions:
1. To write and solve appropriate equation Eiler a usual way. Consider

moving boundary, thus we find y = f(x,c,,c,), ¢, ¢2- const.
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2. Using two equations transversal and two new equations
J(xq,¢1,¢2) = @(xp);
S (xp,e0,6)=w(x,).
We find the system from four equations with four unknown const:
C1,Cy, X5 X7

3. Solution this system we are finding the const ¢;,¢,, X, X].

Example:
Find the shortest distance between two lines which are given by the

following equations:

y=x2,x—y=5.

Solution.
We are finding the value of extremum function:

x1
J = j 1+ y'" dx;
x0

o(x) = x%;
w(x)=x-95.
Solve initial equation Eiler, Including boundary points as though fixed:
y=cx+c,.

The condition transversally for this situation has the following kind:

—

J1+” +(2x—y’)—y =0, mpux=ux,;

[ Y
1+y” +(1-y")——— =0, IpH X = X;;
w/1+y'2

— 2.

=

cx, +c =x,—95;

y'=cyp;
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Ji+cl +(2x, - 1)c—1=0;
Ji+el +(1-¢, )0—12:0;

1+c,
3
cg=-L c,=—;
1 27
P P
T g

Extremum it is achieved on function y = —x + 3/4. Thus the minimal

23{/8md 19\/_

1/2

distance is equal:

2.13.2. A task for three measured spaces

For this task line located in measured spaces, i.e we need to find

functional kind:
x1

Jy,z]= [F(x,y,z,y',2")dx.
x0

Let even one of boundary points (x0, y0, z0) or B (x1, yI, zI) moves on

the given curve.
Then extremum of function may be achieved only on curves satisfying
system of equations FEiler.

(d
Fy == F, =0;
F-2E o
L dx
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For simplicity we shall consider, that point 4 is fixed motionlessly, and
the point B may move over a curve which is set by system of the equations.

{y = (x);
z=y(x);
A(xg,0,29), B(x,y,2).

In this case the condition transversal will become:
F+(p-)F, +(y'—2Z)F, =0, whenx=x,.

If also the point A moves over a curve it means, that position of a point 4
can be determined system:

{y = p(x);
z =y(x).

The condition transversally for a point 4 looks like:

F—(p-y)F, +(W-Z")F., =0, whenx=x,.

Example.
Find the shortest distance from a point M (x,,y,,Z,) up to the straight

line any way focused in space given by system of the equations:
y=mx+p;
Z=nx+gq.

Solution

The problem is reduced to search of integral:

x1
Jy,z]= j\/1+y'2+z'2dx.
x0
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When the condition that x; Moves on a line described by system:
@(x) = mx + p;
w(x)=nx+gq.

The common solution for (13.1) in this case looks like:

(2.13.1)

y=cx+c,;
z=cx+c,.

For the right border of a condition transversally:

JI2 422 4+ (m— ) =2 +(1-2)—————==0, whenx=x,_

1+ y'2+z'2 1+ y'2 427

Let's take into account, that: y'=c¢;,z'=c;.
Substituting it in a condition transversal, we receive 1+ mc; + nc; = 0.
It is necessary take into account that unknown extremum should pass
through point M (X, yq,Z2g)-
So we find new system of equations:
Yo =Xy +Cy;
Zy =C3X, +C,.
Other end moves over a straight line, the point means *i. It is connected
by system:
¢, X, +c¢, =mx, + p;
{c3x1 +c, =nx, +q.

Xl,cl,Cz,C3,

Thus, there are 5 equations and 5 unknown €4, Solving

these equations, we receive:

_ Xg +m(yg —p)+n(zo—9q)

1+n* +m?

mxq +mn(zo —q)—(1+n”) vy - p)
m(yo — p)+n(zg —q) — (m* +n*)x,

X1

C1:
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_ mxg +mn(y, — p)—(1+m”)(z, —q)
3T :
m(y, = p)+n(z, —q) = (m" +n”)x,
C2 and C4 not necessarily to find.
Answer:

minJ[y,z] = \/XS +(y,—p)° -

Let one of points is fixed - A(x, V¢, zq ), other point may move on some

xXo tm(y, — p)+n(z, —q)
1+n*+m? '

surface which equation is set by the equation, In this case the condition
transversal becomes:

[F-y'F, + (co'x—Z')sz]x_xl =0;
0.

! —
|7, +Fp,] =
This conditions together with the equation % ~ (D(x » ) ) enable to find two
arbitrary constant in equation Elier, other two constant can determine from
conditions extremum by fixed point A.

Example.
The point 4 (1,1,1) is given, the sphere which surface is described by the

2, .2, .2 _ . .
equation is given * TV TZ = I To find the shortest distance from a point up

to sphere.

Solution.
The task is reduced to research on extremum following functional:

1
J[y,z]= j\/l +y? 422 dx.
X
Extremum in a general view it is given by the following system of the
equations:

y=Cx+0C,;
z=Cx+C,.
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From a condition of passage extremum through a point 4 (1,1,1), we shall

receive:

C,+C,=1.

The condition transversally will become:

{Q+Q:k

12

Jl+y24z? -2 + Y —z'| z
| \/lﬂ-y'z+z’2 [\/l—xz —y? \/m
) r () ] o

+ .
_\/1+y'2+z'2 \/1+y'2+z'2 \/l—x2 —y?
From the condition transversally we find the following:
{q—QM:Q
Cizi =Gy, =0.

1

where: x1,),,z;. coordinate of point B.
»n=Cx +Cy;
z, =Cix, +C,.
Cl =1; C2 =O;C3 :1;C4 =O.

It follows that:

9

Pl

Having substituted it in the equation of sphere, we shall find:

=X
= X.
x2+y2+22=1;

XIZ +y12 +212 =1;

1
X1 =Y =21 = iﬁ.
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I 1 1
A : B =T =T = |
nswer 1( 3 ﬁj
1 1
Jiin = [N1+1+1dx = [3dx =~/3 -1
1 1
3 3

2.14. Geodesic distance

Geodesic distance: Length of a geodetic line between two given points(J-
length).

Furthermore, a geodetic line in curvilinear space sometimes name J - a
straight line.

Example.

The points A (0, 0) and B (1, 1) were given to be on some curvilinear
surface, the distance on a surface is determined by expression:

B
Jyl=[y* - yax.
A

It is required to find geodetic length between these points on a plane.
Solution.

Geodetic distance - the minimal distance, i.e. min J /y/, boundary
conditions: coordinates A and B.

We work out equation Diinepa:
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2y7y =L@yt =0
dx
14 ! d !
W'y =0=—().
dx

From this equation we can write down yy' = C = const .

After some transformations:

y2 :CI'X+C2-

Using boundary conditions:

{y(x =0)=0;

yx=1)=1
C, =1C, =0.
Thus ,the equation extremum:
¥ =xy=+x.
From this it follows that:
J(4,B)=0,25;

geodesic length= 0,25.

The geodetic distance between a point and a line is determined more
difficultly. Here it is necessary to observe simultaneously two conditions:

B
1) min [F(x,y,)")dx.
A

2) That point in which our geodetic line and the given line are mutually

perpendicular gets out.

Geodetic distance between a point and a line - L - distance lengthways
extremum, connecting a point and line L in that place where extremum and line
L are crossed perpendicularly.

Geodetic circle (J - a circle) - the line, which all points are on identical
distance from the given point.
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2.15. Explosive problems

F(x,y,

Earlier determined function y ) As twice differentiable on x.

Parameter of it was a condition F) # 0.
However there is a class of problems which at such severe constraints
have no the decision, but at mitigation of conditions well are solved.

Thus such methods allow to find extremum functional as piecewise
continuous function.

2.15.1. Explosive problems of the first sort

Let's consider some functional:

Jly]= [F(x.p,y)dx.

Xo

Boundary condition: Let all allowable decisions satisfy to conditions:

{y (x0) = Yo;
y(x) =y

But except for it we admit, that the required decision y (x) may have a
break in some point x, < C < x;. This break may be only there.

Where it is carried out:

Fiy = 0.

For search of the decision we shall take advantage of condition
Beiiepmitpacca - Opamana:
F, =F, =0;
Y lx=C-0 Y lx=C+0 ’

(F _y’Fy')‘)eC—o _(F_y'Fy’)‘ =0.

X=C+0
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If C - a point of a break from the different sides from a point C function y
may be expressed by various formulas.

C—0and C + 0 - pieces of function Yy on the different sides from a break.
Except for it, itself extremum it should be continuous.

y(x—>C-0)=y(x—>C+0).

Set of these conditions allows to find extremum and coordinates of a point
of a break C.

Example.
It is given functional:
2 2 2
Jyl1=[('" =y )dx.
0

Find extremal:
Fyryf =2 >0; Fyf = 2y'- means, in this example the solution can be found

and as smooth function.

Example.
It is given functional:
2 4 2
JIy1=J(" =6y )dx.
0

Boundary conditions:
1(0)=0; »(2) =0.
F = 12y"—12 - points quite may find.

Fy’y’:O-

Means, at extremum presence of breaks in any point is possible.
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Let's search extremum as a broken line.

Sub integral function depends only from ' . From here the solution will
be direct lines y = Clx + C2.

In the field of smooth functions the decision one: y = 0.
y(O):OZC]'O+C2:>C2:O;
y2)=0=C;-2+C, = (C,=0)=C;=0.

Therefore in the given task the not trivial decision is possible only among
extremum with a break.

F - it is identical in both parts, that y. and y.. There will be direct lines, but with
the factors:

v, =px+q;(x, <x<C);
y.=mx+n;(C<x<x).

m, n, p, q, C —unknown.

If we substitute boundary condition then n = 0; q = -2p.

{ y_ = mx;
Y, = px+2).
At the same time extremum it should be continuous in point C:

Vo=V
y.(x=C0)=y,(x=C)=mC=p(C-2).

Using condition Beiiepuirpacca — OpamMana:

13 ’.
F,=4y" -12y%
F-y'F, =-3y"+6y"".

It is possible to notice y_ =m; ), = p.

Let's substitute it in condition B-D. We shall receive:
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4m> —12n=4p> +12p;
—3m+6n>=-3p*+6p°.

After transformation:

{(m—p)-(m2 +mp+p*—3)=0;
(m* = p*)-(m* + p* =2)=0.

e — — 2 2 _ _
From the second equation "* = P>M = —P>M tp _2.Ifm_p,
extremum has a continuous derivative and earlier this variant is rejected. It is

means, both equations can be divided on "~ 7.
m*+m-p+p>+3=0;
(m+p)-(m* + p*)=2.

This system has more simple solution:

The equations of system 2 are received when” = 7P, Also are neglected.

The system 1 has two solutions:
lim=~3;p=—3
2:m= —J?T; p=A3.

Taking into consideration, that " = ~7 . And substituting in conditions

y-(C)=2,(C) we receive C= 1.

There are two sought extremum. Completely equal in rights:
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y, = «/gx; 0<x<];
' -\/g(x—2);1£x£2;

—«/gx; 0<x<1;
Yu =

Bx-2)1<x<2.

2.15.2. Explosive problems of the second sort

X5
J = [F(x,y,y")dx; y(x) = w; y(x) = ;.

X
Problems of the second sort - when function F has break.

Let this break lengthways ¥ = P(¢) - a curve. Let on the one hand from

! !/
result £1057:5) with another £2(%:¥:3) _1f the solution exists, it too consists

of pieces extremum. Thus both extremums have the general point on a line of
break.

X1<c<xy; x=c;y=d().

For determination of a sought broken line extremum we receive two

Cl,CZ,C3,

equations Elier. They contain four constants 4. Also it is necessary to

find unknown C where meet 2 extremumes.

Two boundary condition:

y(x) =y, 0(x2) = 2
Y, (=) = Do),
Y, (x =c¢)=D(c).
Condition on a joint:

F+(@' - YRy

= F + (@' - y)F,,|

x=c—0 x=c+0’
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2.15.3. Explosive problems for extremum from several functions

F(X, Y15 Y250V Vs Vasee V) -

If sub integral function F' is continuous on all arguments and has private
derivatives up to the third order for realization of broken lines extremum y a
condition should be satisfied Beitepmtpacca — Opamana.

or| o]
o e .

5, OF 5, OF
F_Zyl ' xO—OZF_Zyi '

o Oy, i=1 i 1,40

2.16. One-sided variations

JIyl= IF (x,y,y")dx; (%) =n; ¥(x) = yy.

X

To find extremum it functional under certain conditions. If earlier the
condition was set by the equation, now an inequality:

y—¢(x)=0.

At such formulation required extremumwill consist of pieces of borders and

#(*) and from pieces extremum y. In points of a joint #(*) and y the basic
extremum and may have explosive points.

[F(xayay,)_F(x9y9¢’)_(¢I_yl)Fy'(xayay’)Jx:xc :Oa

X, - factor of a point of a joint.

Ifin X Fyv # O, that extremum concerns border ¢

Example.
A (-29 3)7 B (2a 3)
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Find the shortest way between 4 and B which lays below a parabola

J = ? 1+y'2dx =min;
-2
y<x’;
y(=2)=3;
y(2)=3;
y=C, +C,x;
1

Fy’y' = [1_|_y12]3/2 # 0.

In a point of a contact of ordinate of a parabola and ordinates of straight
lines coincide:

2.
{Cl +C,x, =x_;

C, =2x,;
C, +2C, =3;
—2x-1, —-2<x<-]
y=4 x%, 1<x <
2x—1, I1<x<L2

In a case of more complex borders the mobile ends are used.
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