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Foreword 
 
Various effective mathematical methods are used rather intensively in 

modern scientific researches. Behavior of complex systems including nonlinear 
systems may be described in general by means of integro-differentials equations. 
In spite of wide usage of computers and numerical methods the solution in ana-
lytical form gives more opportunities for researches. 

The calculus of variations is nearer mathematical method. It gives oppor-
tunities to solve many optimization problems. The search of optimums is the fi-
nal purpose or one of possible intermediate results. 

Both integral equations and calculus of variations are universal methods 
and can be used not only in radio electronics but in other branches of technique. 
Every scientist must become proficient in these branches. 

В современных научных исследованиях и разработках все шире ис-
пользуются различные эффективные математические методы. Поведение 
сложных систем, включая нелинейные системы, описывается в общем слу-
чае с помощью интегро-дифференциальных уравнений. Несмотря на то, 
что различные частные решения удается получить с помощью численных 
методов и применения компьютеров, решение в аналитической форме дает 
гораздо больше возможностей для исследования. 

Близким по математическому аппарату является вариационное ис-
числение. Его методы дают возможности решения многих оптимизацион-
ных задач. Поиск и нахождение экстремумов зачастую является аналогом 
решения задачи или выступает как один из важных промежуточных ре-
зультатов. 

И интегральные уравнения, и вариационное исчисление - достаточно 
универсальные методы и могу использоваться не только в радиоэлектро-
нике, но и  в других областях техники. Умение их использовать должно 
входить в научный инструментарий исследователей и научных работни-
ков.  
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1. INTEGRAL EQUATIONS 
 

Integral equation is a equation, where a unknown function is used as 
argument of integral.                       

    
1.1. Linear integral equations 

Suppose: 
)(tf  is a known function, 
)(tϕ  is a unknown function we want to find. 

 
If the unknown function in the integral is linear we say that the integral 

equation is linear. 
Classic view of the linear integral equation is: 

∫ +=
b

a
tfdSSStkt )()(),()( ϕλϕ , 

where λ  is a parameter  defining a family of solutions of  the integral equation; 
),( Stk  is a integral equation kernel. 
Function )(tf  exists in range bta ≤≤ . 
Function ),( Stk  exists in range: 

⎩
⎨
⎧

≤≤
≤≤

.
;
bSa

bta
 

 

1.2. Kinds of a linear integral equation 

1.2.1. Fredholm’s equation 
 

General view of 1st kind of Fredholm’s integral equation is: 

∫ =
b

a
tfdSSStk )()(),( ϕ  . 

General view of 2nd kind of Fredholm’s integral equation is: 

∫ +=
b

a
tfdSSStkt )()(),()( ϕλϕ , 

а and b may be finite or infinite. 
Solution of the integral equation exists if following conditions are 

satisfied: 
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1)  f(t) is continuous in range a, b and  

+∞<∫ dttf
b

a

2)( , 

2) ),( Stk  is continuous in ranges 

⎩
⎨
⎧

≤≤
≤≤

;
;
bSa

bta
 

and 

+∞<∫ ∫
b

a
Stk 2),( . 

If equation kernels satisfy above conditions, then we say that those 
kernels are Fredholm’s. If 0)( ≡tf , everywhere in range (a, b), then the 
integral equation is said to be homogeneous: 

∫+=
b

a
dSSStkt )(),()(0 ϕλϕ . 

In other case, the equation is heterogeneous. 
 

1.2.2. Volterra’s equations 
Common view of 1st kind of Fredholm’s equation: 

∫ =
t

a
tfdSSStk )()(),( ϕ . 

Common view of 2nd kind of Fredholm’s equation: 
 

)()(),()( tfdSSStkt
t

a
=∫+ ϕλϕ . 

If 0)( ≡tf  then the equation is said to be homogeneous. Under some 
restrictions, Volterr’s equations can be considered as Fredholm’s equations. If 
we change the kernel following way  

⎭
⎬
⎫

⎩
⎨
⎧

>
≤

=
tS
tSStk

StH
,0

),,(
),( , 

then we may get Fredholm’s equation: 

∫ +=
b

a
tfdSSStHt )()(),()( ϕλϕ . 
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1.3. Kinds of a non-linear integral equations 

1.3.1. Urysohn’s integral equation 

[ ]∫=
b

a
dSSStkt )(,,)( ϕϕ . 

The kernel includes the unknown function, assume the function К(x,y,z) is 
continuous for all its arguments. 
1.3.2. Gammershtein’s equation 

[ ]∫=
b

a
dSSSFStkt )(,),()( ϕϕ , 

where ),( Stk  is Fredholm’s kernel. 

1.3.3. Liapunov-Likhtenshtein’s equation 
These integrals include essentially non-linear functions. For example:  

dSdzzSzStkdSSStktft
b

a

b

a

b

a
)()(),,()(),()()( 21 ϕϕµϕλϕ ∫ ∫ ∫++= . 

The equation may include members with even greater non-linear.  
1.3.4. Volterra’s non-linear integral equation 

[ ]∫=
t

a
dSSStkt )(,,)( ϕϕ . 

К(x,y,z) is continuous for all its arguments. 
 
Examples. 

1.  ∫=
∞+

∞−
dyyfexg jxy )(

2
1)(
π

. 

This is 1st kind of Fredholm’s integral equation with following kernel: 

π2
),(

ixyeyxk = . 

View of  its solution (got by Fourier in 1811) is: 

∫=
∞+

∞−

− dxxgey ixy )(
2
1)(
π

ϕ . 

 
2.  Solution of a common integral equation leads to Volterra’s non-linear 
integral equation, for example (Cauchy problem): 
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)](,[)( txtF
dt

tdx
= . 

for boundary condition 0)( xax = . 
Integrate both part of that expression for t, and we get: 

∫+=
t

a
dttxtFxtx )](,[)( 0 . 

This expression is 2nd kind of Fredholm’s integral equation. 
3. General solution of linear n-th order linear differantial equation. 

)()()(...)(
1

1

1 tFtxta
dt

xdta
dt

xd
nn

n

n

n
=+++

−

−
. 

Initial conditions are: 

.)(

;)('
;)(

1
)1(

...
1

0

−
− =

=

=

n
n cax

cax

cax

 

This task comes to linear integral equation; suppose for n=2:      

( ) ( ) ( ) ( )tFtxtadt
dxta

dt
xd =++ 212

2
. 

Assume:         ( )t
dt

xd ϕ=
2

2
 ,  x(0)=C0, x/(0)=C1; 

( ) 1
0

CdSSdt
dx t

+∫= ϕ . 

We know that: 

( ) ( ) ( ) ( )∫ −
−

=∫∫∫
−

t nttt
dSSfSt

n
dttfdtdt

0

1

000 !1
1… . 

 

Hence:          ( ) ( ) ( ) 01
0

CtCdSSSttx
t

++∫ −= ϕ . 

After we substituted that expression in the original differential equation: 

( ) ( ) ( )( )[ ] ( ) ( ) ( ) ( ) ( )taCttaCtaCtFdSSSttatat
t

202111
0

21 −−−=∫ −++ ϕϕ . 

n times 
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After defining: 
 

( ) ( ) ( )( )[ ]SttataStk −+−= 21, ; 

( ) ( ) ( ) ( ) ( )taCttaCtaCtFtf
202111

−−−= , 

we get 2nd kind of Volterra’s integral equation:  

( ) ( ) ( ) ( )tfSStkt
t

+∫=
0

, ϕϕ . 

Solution of that gives to us the unknown function. 
In many cases, kernel k(t,S)=k(t-S) is proportional to the different of the 

arguments, then Volterra’s equation is named integral equation like convolution, 
Abel’s integral equation:  

( ) ( )
∫ −

=
x

dS
Sx

Sxf
0

ϕ . 

 
If the unknown function is contained both under a sign of derivative and 

under sign of integral, then this equation is said to be integro-differentual 
equation (IDE). 
 

1.4. Fredholm’s methods 

In the beginning of the 20-th century, Fredholm completely investigated 
integro-differential equations.  

Solution of the equation: 

( ) ( ) ( ) ( )tfSStkt
b

a
+∫= ϕλϕ , , 

is considered as analog of the solution of n-order system of linear equations to 
contain n unknown variables. In result, the solution comes approximate and 
depends on n. The more n, the more precisely solution. 

Solution consists of several stages. 
Replace the integral with finite sum. 

Divide the whole range [a,b] to n equal parts. Length of those parts is:  

n
ab −

=δ . 
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Into each part j we choose some point Sj. We get a set of functions 
ϕ(Sj)=ϕj. We aren’t looking for continuous function, we are finding a set of 
discrete values jϕ . 

 ( ) ( )tfStkt
n

j
jj +∑≅

=
⎟
⎠
⎞

⎜
⎝
⎛

1
, δϕλϕ , 

is in the same range that S, because we can select ti=Si 

⎟
⎠
⎞

⎜
⎝
⎛

=
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +∑= j

n

j
jjij SfSSkS

1
, δϕλϕ . 

Define:  
( ) ii fSf =  , ijji kSSk =⎟

⎠
⎞

⎜
⎝
⎛ ,  ; 

 

nifk i
n

j
jiji ÷=
+∑≅

⎪
⎪
⎭

⎪⎪
⎬

⎫

= 1   

                
1

#

ϕλδϕ
, 

where n is the amount of linear algebraic equations. 
Rewrite in more usual representation: 

i
n

j
jiji fk =∑−

=1
ϕλδϕ  . 

Determinant of this system is: 

( )

.1

;1
;1

21

22221

11211

nnnn

n

n

n

kkk

kkk
kkk

D

λδλδλδ

λδλδ
λδλδλδ

λ

−−−

−−−
−−−

=

"
""""

"
"

- polynomial relative to λ. 

If ( ) 0Dn ≠λ , the system has solution for any fi and has solution integral 

equation for any f(t). Solving it, we get a set of ϕj=ϕj(Sj), which is piecewise-
linear approximation the unknown function ϕj(Sj). If Dn(λ)=0, this case is a 
special. 
Fredholm’s resolvent 

We have a set of ϕ(Sj). Substituting this set in the original equation we get: 

( ) ( )tfSStkt
n

j
jj +∑≅

=
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

1
, δϕλϕ . 



 12

We can represent the acquired solution of the equation in the following 
general view: 

( ) ( )
( )

( )λ
λ

λϕ
n

n
D

SSStQ
tft

,,, 21 …
+≅ , 

where Q is result of one way of computing of the solution of the system. 
When n→∞, and kernel k(t,S) is continuous and absolute term is  

f(t): ( ) ( ) ( )∫→
b

a
n dSSfStDSStQ λλ ,,,, 1… . 

( ) ( )λλ DDn → . 

Expression of Fredholm’s resolvent is function: 

( ) ( )
( )λ

λλ
D

StDStR ,,,, = . 

Using this resolvent we get final solution in compact form:  

( ) ( ) ( ) ( )∫+=
b

a
dSSfStRtft λλϕ ,, . 

Resolvent doesn’t depend on absolute term, but resolvent is defining only 
the kernel. Resolvent is used in cases when we want to investigate a response of 
the same object to many variants of different forces (f(S)). 

D(λ) and D(t,s,λ) are found by constructing their for different degrees λ 
and applying limit conversion for n→∞. 

Defining  K(Si, Si)=Kij, we have: 
 

),()(

....

....
....

)(

1....

....
....1

)(

21

22221

11211

1

221

111

ελδ

ε

ε
ε

λδ

λδλδ

λδλδ
λδλδ

λ

Fn

KKK

KKK
KKK

KK

KK
KK

D

nnnn

n

n

n

nnn

n

n

n

−=

+
−−−−−−−−−−−−−

+
+

−=

=

−−
−−−−−−−−−−−−

−−
−−

=
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where 
λδ

ε 1
−= . 

)(εF  is determinant of the matrix and is power function to ε with the top 
power is n. Consequently it can be expanded into Taylor series: 

n
n

n
FFFFF εεεε !

)0(...!2
)0("

!1
)0(')0()(

)(
2 ++++= ; 

A
AA
ε

ε
d

dFF )()(
)0()( = , for 0=ε . 

 
Differenting the determinant, it comes to the sum of determinants, but its 

order is decreasing by one. 
 

+
+

+=
+

+
+

∂
∂

ε
ε

ε
ε

ε

ε
3332

2322

1312

333231

22221

11211

0
0
1

KK
KK
KK

KKK
KKK
KKK

n

n

 

 

+
+

+
+

ε

ε

3331

221

111

0
1
0

KK
KK

KK

n

n
=+

+

1
0
0

3231

2221

1211

KK
KK

KK
ε

ε
 

 

+
+

+
=

ε
ε

3311

2311
KK

KK
++

+
ε

ε

3331

1311
KK

KK
=+

+
ε

ε

2221

1211
KK

KK
 

(more usually is): 

∑ ∑
+

=
= =

3

11

3

12 2121

2121
2
1

α α αααα

αααα ε
KK
KK

. 

(ε is equal to zero) 

∑
−+=

=

n

m

m

n mD
1 !

)(1)( λδλ * 
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* ];

....

....
....

...[

211

22212

22111

1 1
ε

ε
ε

αααααα

αααααα

αααααα

α α
+

−−−−−−−−−−−−−−−−−−
+

+

∑ ∑
=

mmm

m

m
n n

m
KKK

KKKK
KKK

 

 

∫∑ ∑=
= =

⎯⎯⎯ →⎯
∞→

b

a

n

α

n

j nαα K(S,S)dS)δjSjK(SδK
11 1

21 , 

 
where ),( StK  is a trace of the kernel. 

 
Fredholm showed that for ∞→n . 

 

∑ ∑
= =

n n

m11 1
...

α α

mmm

m

mαα

KKK

KKKK
KKK

αααααα

αααααα

αααα

....

....
....

211

22212

22111

−−−−−−−−−−−−−−−−
=→ m

m Cδ  

      m

mmm

m

m
b

a

b

a
dd

KKK

KKKK
KKK

αα

αααααα

αααααα

αααααα

...

....

....
....

1

211

22212

22111

−−−−−−−−−−−−−−−−∫ ∫= , 

where m
m

m

m
CmD λλ ∑

−=
∞

=1 !
)1()( is Fredholm’s determinant. 

Repeating the same reasoning, we can get following expressions: 

),(!)1(),,( StBmStD m

mm∑ −= λλ ; 

m

mmmm

m

m
b

a

b

a
m dd

KKSK

KKSK
tKtKStK

StB αα

ααααα

ααααα
αα

...

)(....,(),(

),(....),(),(
),(....),(),(

...),( 1

1

1111

2

−−−−−−−−−−−−−−−−−−−−−∫ ∫= ; 

Note that: 
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∫=
−

b

a
nn dtttBC ),(1

; 

),(0 StKB = , 
where ),,( λStD is a minor of Fredholm’s determinant. 
 

)(
),,(),,(

λ
λλ

D
StDStR =  is the resolvent which doesn’t depend on the 

absolute term, and is defined with the kernel of the equation. 
All cases are considered for 0)( ≠λD . Values of λ  satisfy condition  

0)( ≠λD  to be named a regular. Values of λ  satisfy condition 0)( =λD  to 
be named a characteristic. 

There is a homogeneous integral equation: 

∫ +=
b

a
tfdSSStKt )()(),()( ϕλϕ  comes from heterogeneous: 

∫+=
b

a
dSSfStRtft )(),,()()( λλϕ  for  f(t)=0. 

Consider two cases: 
1.  λ  is a regular 0)(D ≠→ λ , then 0)t( ≡ϕ . 
2.  λ is a characteristic 0)(D =→ λ . In this case we can get the solution    

0≠t . 
 
Example. 

The kernel of the integral equation is given: 
steStK −=),( . 

Construct its resolvent satisfying following conditions: 
10 ≤≤ t ; 10 ≤≤ S ; 1;0 == ba . 

Solve Ci and Bi: 
SteStBC −== ),(,1 00 ; 

∫ ==
1

0
11101 1),( ααα dBC ; 

t
S

tSt
ed

eeee

eeee
StB =∫=

−−

−

1

1

0 111

1

1 ),( α
ααα

α
01

1

0 1

1
1 =∫ −−

−−

α
α

α
α d

ee

ee
e

S

S
; 
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∫ ==
1

0
11112 0),( ααα dBC . 

Other 0, =
kk

CB . 

Therefore:        λλ −= 1)(D ; 
SteStD −=),,( λ ; 

λ
λ

−
=

−

1
),,(

SteStR . 

In case  λ≠1, solution is: ∫
−

+= −
1

0
)(

1
)()( dSSfetft St

λ
λϕ . 

 
1.5. Integral equation with singular kernel 

If the kernel of the equation is a singular, then the solution of the equation 
is even easily. 

Expression of the singular kernels is: 

( ) ( ) ( )∑=
=

n

j jj SbtaStk
1

, . 

Supposing, а and b is linear indepented functions. In this case, 2nd kind of  
Fredholm’s integreal equation can be presented as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =+∑ ∫=∫ +∑=
==

tfSSbtatfdSSSbtat
n

j

b

a
jj

b

a

n

j jj 11
ϕλϕλϕ  

                                             ( ) ( )tftaC
n

j jj +∑=
=1

λ ,                                 (1.5.1.) 

where ( ) ( )∫=
b

a
jj dSSSbC ϕ . 

Solution of the integral equation comes to determinating of unknown 
constants Cj. 

Multiply both sides of the equation by bj and integrate respect to t: 
 

( ) ( ) ( ) ( ) ( ) ( )∑ ∫+∫=∫
=

n

j

ijk

b

a

if

b

a

iC

b

a
dttibtjajCdttibtfdttibt

1 �� 
�� 	��� 
�� 	��� 
�� 	�

λϕ ; 



 17

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

=

=

=

∑+=

∑+=

∑+=

⇒∑+=

n

j
jnjn

n

j
jj

n

j
jj

n

j
ijjii

kCf

kCfC

kCfC

kCfC

1
n

1
222

1
111

1

.C

                 

;

;

    ;  

λ

λ

λ

λ
#

 

This expression appropriates for all indexes. Solution of the system gives 
a able to determinate Ci . 

nifkCC i

n

j ijji ÷==∑−
=

1  ; 
1

λ . 

If the system can not be solved, then original integral equation is unsolved 
too. 

( )

.121

;222121

;112111

nnknknk

nkkk
nkkk

D

λλλ

λλ
λλλ

λ

−−−

−−−
−−−

=

"
""""

"
"

 

If D≠0, then find a solution as usually, i.e. find values of coefficients Сi . 
When the coefficients are computed, we substitute their in the equation 

(5.1.), then we get unknown function ϕ(t). 
 
Example.                             

( ) ( ) ( )∫ −+=
1

0
1 dSSStt ϕλϕ ; 

( ) ( ) ( ) ( ) ( ) ;  ;1  ;1  ;  ;, 2121 SSbSbtattaStStk −====−=  
 

( ) ( ) ( ) ( ) ; 1
1

0

1

0
∫∫ −++= dSSSdSStt ϕλϕλϕ  

( ) ( ) ( ) ;    ;
1

0

1

0
21 ∫∫ −== dSSSCdSSC ϕϕ  

( ) .1 21 CtCt λλϕ ++=  
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Multiply both sides of this equation by 1b  and by 2b , then integrate 

respect to t: 

( )

( ) ( ) ( ) ( ) ( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

−+−+−=−

++=

∫ ∫∫∫

∫∫∫∫
1

0

1

0
2

1

0

2
1

1

0

1

0

1

0
1

1

0

1

0

.1

;

dttCdttCdttdtt

dttdtCdtdtt

λλϕ

λλϕ

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−=⎟
⎠
⎞

⎜
⎝
⎛ ++

=−⎟
⎠
⎞

⎜
⎝
⎛ −

.
2
1

2
1

3

;1
2

1

21

21

CC

CC

λλ

λλ

 

( ) .
12

1

2
1;      

3

;
2

1 2λ
λλ

λλ

λ +=
+

−−
=D  

This integral equation has solution anyway, because D≠0 for all real λ. 

;
12
6    ;

12
12

2221 λ
λ

λ +
+

−=
+

= CC  

( ) ( ) .
12

226
2λ

λλϕ
+

−−
=

tt  

For these equation resolvent is a rational function. 
 

1.6. The usage of singular kernels for approximate solving integral 
equations 

 
Assume, we have some integral equation with non degenerate kernel 

k(t,S). 

( ) ( ) ( ) ( )., tfdSSStkt
b

a
+∫= ϕλϕ  

In the integrating range, non degenerate kernel is substituted approximate 
singular kernel. In this case, approximate solution is enough close to truly 
solution. The more close approximation, the more correct solution.  

In the most cases, power polynomial or trigonometrical functions are used 
as approximation. 
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Example.  

( ) ( ) ( ) .1
1

0
tedSSett ttS −+∫ −= ϕϕ  

Exact solution is ( ) .1≡tϕ  Get approximate solution ϕapp(t) for 
approximate kernel. 

( )
6

34

2

232, StStStStbk −−−= . 

Approximate solution: 
( ) .04,017,05,0 432 ttttet t −−−−=ϕ  

In the range [0;1], the error respect to exact solution is just 0,8%. 
 

1.7. Method of sequential approximation («compressed representations») 
 

We make sequence of functions. First function is any. Further we make 
next function from previous, etc. 

Following conditionals must be satisfied: 
1) In the square a≤t,S≤b kernel k(t,S) must be continuous and constrained. 
2) Declare. 

( )Stk
baSt

M ,
,

max0 ÷∈
= .  

Bellow conditional must be satisfied: 

( ) .1

0 abM −
<λ  

If all those conditionals are satisfied, then series of sequential 
approximations is constructed using following rule: 

( ) ( ) ( ) ( ).,1 tfdSSStkt
b

a
nn +∫=

+
ϕλϕ  

The more number of iteration n, the more accuracy solution. 
 
Example. 

Solve the integral equation using considered method. 

∫+=
1

0
)(

2
1

6
5)( dSStStt ϕϕ . 
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Kernel tSStK =),(  is continuous function: 

01,0,
1),(max MStK

St
==

∈
. 

Check we can apply above method: 

λ=>−
− 2

1
)(

1

0

L
abM

. 

Both conditionals are satisfied. 
Choose first function:  0)(0 =tϕ . Further: 

∫ =+=
1

0
01 6

5)(
26

5)( tdSSSttt ϕϕ ; 

)
6
11(

6
5

6
5

26
5)(

1

0
2 +∫ =+= tSdSStttϕ ; 

)
6
11()

6
1...

6
1

6
11(

6
5)( 12 nnn ttt −=++++= −ϕ ; 

tt nn
==

∞→
ϕϕ lim)( . 

The speed of convergence greatly depends of start approximation. Good 
choice of approximation can reduce time of solving. 

 

1.8. Using of sequential approximations method for solving 2nd kind of 
Volterra’s integral equations  

 

)()(),()( tfdSSStKt
t

a
+∫= ϕλϕ  is 2nd kind of Volterra’s integral equation. 

That kind of equations may be considered as particular case of 
Fredholm’s integral equation, if  0),( =StK  for tS > . Different is 
comparison with λ  to be not necessary (λ is any). 
 
Example. 

Find unknown function ϕ , satisfying equation: 

∫ −−=
t

a
dSSSttt )()()( ϕϕ . 
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Solution. 
Assume:                  00 =ϕ  then tt =)(1ϕ ; 

!3
)()(

3

2
ttSdSSttt

t

a
−=∫ −−=ϕ ; 

)!12(
)1(...

!7!5!3
)(

12
1

753

−
−++−+−=

−
−

n
tttttt

n
n

n
ϕ ; 

tt nn
sinlim)( ==

∞→
ϕϕ . 

Example: 
With the help of a examined method to slove an integral equation: 

∫+=
1

0
)(

2
1

6
5)( dSStStt ϕϕ . 

Kernel tSStK =),(  - function continuous 

01,0,
1),(max MStK

St
==

∈
. 

We will to correct the using method: 

λ=>−
− 2

1
)(

1

0

L
abM

. 

Both conditions are satisfied: 
 

The firest function : 0)(0 =tϕ . 

∫ =+=
1

0
01 6

5)(
26

5)( tdSSSttt ϕϕ ; 

)
6
11(

6
5

6
5

26
5)(

1

0
2 +∫ =+= tSdSStttϕ ; 

)
6
11()

6
1...

6
1

6
11(

6
5)( 12 nnn ttt −=++++= −ϕ ; 

tt nn
==

∞→
ϕϕ lim)( . 

The speed of convergence strongly depends on initial approximation. The 
successful selection of approximation can reduce time of the solution. 
 



 22

1.9. Application of the method Successive approximationses for the 
solution of integral equations Volterra of 2 kind 

 

)()(),()( tfdSSStKt
t

a
+∫= ϕλϕ - integral equations Volterra of 2 kind. 

The similar equations can be considered as a particular case of Fredholm 
equations. 

If 0),( =StK  when tS > . The difference is, that the matching with λ  
Is not necessary (λ  - anyone). 
 
Example: 

 Find a unknown function ϕ , satisfying an equation: 

∫ −−=
t

a
dSSSttt )()()( ϕϕ . 

Solution: 
Let's assume:             00 =ϕ  then tt =)(1ϕ ; 

!3
)()(

3

2
ttSdSSttt

t

a
−=∫ −−=ϕ ; 

)!12(
)1(...

!7!5!3
)(

12
1

753

−
−++−+−=

−
−

n
tttttt

n
n

nϕ ; 

tt nn
sinlim)( ==

∞→
ϕϕ . 

Application of a method of the approximated solutions for the solution of 
some kinds  of non-linear integral equations: 

We have an equation: 

[ ]∫ +=
b

a
tfdSSStKt )()(,,)( ϕλϕ . 

Conditions of applicability of a method: 
1)  )(tf     Should be a continuous function, ))(,,( SStK ϕ . Should be a 

continuous function on all three arguments. 
2) The kernel  should to satisfy the conditions the (Lipschitz):  

1212 ),,(),,( ZZLZStKZStK −≤− . 

L - The constant of the (Lipschitz), which satisfying  the condition. 
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)(
1

abL −
<λ . 

L usually take minimumly: 

12

12
min

),,(,,(
min

ZZ

ZStKZStK
L

−

−
= . 

Then the solution can also be received by a successive approximations by 
the formula: 

[ ]∫ +=+

b

a
nn tfdSSStKt )()(,,)(1 ϕλϕ . 

initial approximation )t(0ϕ  - anyone. 
 

Example: 
Solve an integral equation of a kind: 

∫ +
+

=
−

1

1
2 1

)(13
1)(

S
tSt
ϕ

ϕ ; 

( ) 1,
2
11

min ==
−

< L
abL

λ . 

The necessary conditions are satisfied: 

( ) ( ) ( ) ( ) .1t   ;1  ;11
113

1  ;1 32

1

1
10 ===+∫

+
==

−
ϕϕϕϕ tdStStt  

 
Solution:                                      .1)(0 =tϕ  

If kernel  k(t,S,z)- has a restricted derivative on z. 
That L can be selected from a condition: 

.L
dz
dk

z
,bS,ta

≤
+∞<<∞−

≤≤

 

                  
1.10. Solution of a system of integral equations 

 
There are cases, when it is required to find some unknowns of functions, 

which: 
1) Are determined by integral relations. 
2) Are determined connected among themselves. 
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Writing unknowns of functions, are named as a system of integral 
equations: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

+∑
=

=

∑
=

+=

+∑
=

=

.
1

,

1
;2,22

;11
,11

tNf
n

j
dSSjStNjktN

n

j
tfdSSjStjkt

tf
n

j
dSSjStjkt

ϕλϕ

ϕλϕ

ϕλϕ

"""""""""""""""
 

From an interval a≤ t≤ b Pass to an interval a≤ t≤ а+N(b-а). 
From a  function set ( ) ( )tftf N…1 , bta ≤≤  Pass to "a unified" 

function F(t): 
[ ]))(1()( abitftF

i
−−−= . 

From a set Nϕϕ …1  Also pass to <<unified>> Ф(t): 

( ) ( )( )[ ]abititΦ −−−= 1ϕ . 

On an interval: 
( )( ) ( ).1 abiatabia −+<≤−−+  

From set kij pass to: 
( ) ( )( ) ( )( )[ ]abjSabitkStk ijC −−−−−−= 1,1, . 

when: 
 

( )( ) ( )
( )( ) ( )⎩

⎨
⎧

−+<≤−−+
−+<≤−−+

.1
;1
abjaSabja

abiatabia
 

 
Then it is possible to write by one equation all of systems: 

( ) ( ) ( )
( )

( )., tFdSSStkt
abNa

a
C +∫ Φ=Φ
−+

λ  

Further equation is solve by one of known ways. 
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1.11. Using of the linear operators 
 

Operator: This any operation which transforming elements of one set to 
units of other set. 

10 EE → . 
The operator A is named linear, if  two conditions satisfied: 
1) ( ) ( ) ( ).yAxAyxA +=+  
2) ( ) ( ) .  ; constxAxA −= ααα  

( ) ( ) ( )∫=
b

a
dSSxStkty ,  - the integral operator of the Fredholm above x. 

The combination of the linear operators will (derivate-образует) a vector 
space of the operators. 

The operator transforming elements of set in it self (E→E) is named as a 
unity operator and is meant. 

Ix→ x If the return operator exists, the use him to the source operator 
should give  a single operator: A 1− A=I. 

The operator I+A - always has the return operator. 

( )
( ) .

;1

IAIS
AIS
=+

−+=
 

The decomposition is fair(Under certain conditions). 
( ) …+−+−+−=+= − 54321 AAAAAIAIS  

It will be used for the solution of integral equations. 
Let's consider an integral equation of the (Fredholm) of 2 kind: 

( ) ( ) ( ) ( )tf
b

a
dSSStkt +∫= ϕλϕ , . 

Let's designate linear operation: 

( ) ( )∫=
b

a
dSSStkA ϕϕ , . 

In the operator form an initial integral equation: 
.fA += ϕλϕ  

Sent Aϕ   to the left and carrying ϕ   out  brackets: 
( ) .fAI =− ϕλ  

Under certain conditions on the norm of the operator A the solution of an 
integral equation looks like: 
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( ) fAI 1−−= λϕ . 
The characteristics is known: 

…… +++++= fAfAAff nnλλλϕ 22 (Neumann) series. 
For this decomposition it is necessary: 
1) A series should be convergent. 
2) That the inequality was executed. 

( ) ( )
.

,
,

 max

1

abStk
baSt

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

÷∈

<λ
 

Let's consider degrees of the operator: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,,,,

,,,,

2

2

∫=∫ ⎥
⎦

⎤
⎢
⎣

⎡
∫=

=∫ ∫=∫ ⎥
⎦

⎤
⎢
⎣

⎡
∫==

b

a

b

a

b

a

b

a

b

a

b

a

b

a

dSSfStkdfdSSkStk

dSdfSkStkdSdfSkStkAfAfA

τττ

ττττττ
 

when: ( ) ( ) ( )∫=
b

a
dSSkStktk ττ ,,,2

 - repeated kernel similarly. 

∫ ∫=⎥
⎦

⎤
⎢
⎣

⎡
∫=

b

a

b

a

b

a
dSSfStKdfdSSKStKfA )(),(,)(),(),( 32

3 τττ ; 

∫=
b

a
dSKStKStK ττ ),(),(),( 23 ; 

∫=
−

b

a
nn dSKStKStK ττ ),(),(),( 1 ; 

∫=
b

a
n

n dSSfStKfA )(),( . 

then: 

+∫+=
b

a
dSSfStKtft )(),()()( 1λϕ +∫

b

a
dSSfStK )(),(2

2λ  

[ ]×∫ ++++=+∫+
b

a

b

a
StKStKStKtfdSSfStK ...),(),(),()(...)(),( 3

2
213

3 λλλλ

dSsf )(× . 
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It can be write, as: 

∫+=
b

a
dSSfStRtft )(),,()()( λλϕ  - finding )(tϕ  through a resolving. 

 
The resolving is determined as follows: 

...),(),(),(),,( 3
2

21 +++= StKStKStKStR λλλ  

It satisfying to such properties: 

∫+=
b

a
dSRtKStKStR τλττλλ ),,(),(),(),,( ; 

∫+=
b

a
dtRSKStKStR τλττλλ ),,(),(),(),,( . 

For a resolving following expression also are fair: 

∫−=−
b

a
dSRtRStRStR τλτλτλλλλ ),,(),,()(),,(),,( 122121 ; 

),()0,,( StKStR = ; 

∫=
∂ b

a
dSRtR

d
StR τλτλτ
λ

λ ),,(),,(),,(
. 

The received results are applicable so for equations Volterra. 
 

Example: 
1. Solve an integral equation: 

∫ +=
1

0
)()()( tfdSStSt ϕλϕ ; 

tSStK =),(  , 1,0 == ba ; 
1,0   при1),(max ≤≤= StStK . 

The conditions of applicability will be executed. 
Let's find sequence of iterated kernels: 

tSStK =),(1 ; 

∫ ∫ ===
1

0

1

0
2 3

),(),(),( tsdtdSKtKStK ττττττ ; 

23 3
),( tSStK = ; 
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13
),( −= nn

tSStK ; 

λ
λλλλ

−
=++++++=

3
3...

3
...

33
),,( 2

2 tStStStsStR n

n
. 

Thus, the general solution of an input equation looks like: 

∫ −
+=

1

0
)(

3
3)()( dSSftStft

λ
ϕ . 

 
2. Solve an integral equation: 

∫ −+=
t

Stt dSSeet
0

)()( ϕϕ ; 

1=λ ; 
SteStK −=),(1 ; 

∫ −== −−−
t

S

StSt StedeeStK )(),(2 τττ ; 

!2
)(),(

2

3
SteStK St −

= − ; 

)!1(
)(),(

1

−
−

=
−

−

n
SteStK

n
St

n ; 

)(2
1

...
!
)(...)1,,( St

n
StSt e

n
SteeStR −

−
−− =++

−
++= . 

∫ =+= −
t

tSStt edSeeet
0

2)(2)(ϕ - the solution of an integral equation. 

            
1.12. Integral equations with a kernel having a weak feature 

 
The similar equations have a kind of core: 

 

α)(
),(),(

St
StHStK

−
= ; 

10 << α . 
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(equation Abel ∫ =
−

t
tfdS

St
S

0
)()(ϕ

). 

Let's consider an appropriate equation Volterra. A general view of an 
equation: 

 

dSS
St

StHtft
t

a
)(

)(
),()()( ϕϕ α∫

−
+= , 

bta ≤≤ , tS < ,   

when: 
2
1

≥α  Square of a kernel – nonintegrable. 

However to solve an equation it is possible. For the solution will use 
following procedures: 

1. Evaluate iterated kernel: 
);,(2 StK    ),(3 StK , и т. д. 

∫ −−=
−−

=
t

S
StFSt

Stt
SHtHStK ),()(
)()(
),(),(),( 2

21
2

α
αατ

ττ
; 

),()(),( 3
32

3 StFStStK α−−= ; 

),()(),( 4
43

4 StFStStK α−−= . 

Let's repeat calculation n of time while the nonintegrable component 
becomes integrated: 

n(1-α)>1. 
 

2. Input equation is lead to an integral equation with iterated kernels. By 

contraction of both parts with a function ),( StKλ .The integral operator of a 
kind is used for this purpose to both parts of an equation: 
 

dSStK
t

a
)(),( ⋅∫λ . 

Then: 

=∫ dSSStK
t

a
)(),( ϕλ +∫ dSSfStK

t

a
)(),(λ ∫∫ ×

S

a

t

a
dSKStK ])(),([),(2 ττϕτλ  
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                  =× dS +∫ dSSfStK
t

a
)(),(λ dSSStK

t

a
)(),(2

2 ϕλ ∫ .            (1.12.1) 

 
But from an input equation: 

)()()(),( tftdSSStK
t

a
−=∫ ϕϕλ . 

Let's put it in (1.12.1): 

)()(),()( 22
2 tfdSSStKt

t

a
+= ∫ ϕλϕ ; 

dSSfStKtftf
t

a
)(),()()(2 ∫+= λ . 

It is similarly possible to receive: 

)()(),()( 33
3 tfdSSStKt

t

a
+= ∫ ϕλϕ , 

where                      dSSfStKtftf
t

a
)(),()()( 223 ∫+= λ , 

we will proceed until reach n, which have found on 1-м a stage. Thus: 

)()(),()( tfdSSStKt n

t

a
n

n += ∫ ϕλϕ , 

kernel of this equation Кn  - integrated.       
The function fn can be found, therefore obtained equation is decided by 

usual methods. 
 

 1.13. An equation such as a convolution 
 
It is such integral equations, which kerne depends on a difference of 

arguments. They look like the following: 

( ) ( ) ( ) ( ).tfdSSStkt +−= ∫
∞

∞−
ϕλϕ  

1.13.1. Using Fourier transform generally 
For the solution of equations such as a convolution the Fourier transform 

in the following form will be used: 
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( ) ( )

( ) ( ) .
2
1

;
2
1

∫

∫

∞

∞−

∞

∞−

−

=

=

ωω
π

π
ω

ω

ω

deFtf

dtetfF

tj

tj

 

The convolution of functions is following: 

( ) ( ) ( ) .2121 ffdttftft ∗=−=Ψ ∫
∞

∞−
τ  

* - The denotation of a convolution. 
The integral operator of the Fourier we shall signify F(*). 

( ) ( )[ ] .FftfFF ==ω  
The Fourier transform from a convolution of functions is equal (In view 

of a constant factor) To product of separate Fourier transforms from each 
function: 

[ ] [ ] [ ].2 2121 fFfFffF ⋅=∗ π  
Let's consider an equation: 

( ) ( ) ( ) ( ).tfdSSStkt +−= ∫ ϕλϕ  
Also is applicable to it a Fourier transform: 

 
Designate:             [ ] [ ] [ ] .   ;  ; KkFFfFF ==Φ=ϕ  

 
Then after a Fourier transform: 

( ) ( ) ( ) ( ),2 ωωωπλω FK +Φ=Φ  
now it is possible to find ( )ωΦ : 

( ) ( )
( )

.
21 ωπλ
ωω

K
F

−
=Φ  

Having taken reconversion of the Fourier, we receive a required function: 

( ) ( )
( )

.
212

1
∫
∞

∞− −
= ω

ωπλ
ω

π
ϕ

ω
d

K
eFt

tj
 

 
It is possible to use other path. 
Let ( )λ,tR -This reconversion of the Fourier from a following function: 
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( )
( )

;
21 ωπλ
ω

K
K

−
 

( ) ( )
( )

.
212

1, ∫
∞

∞− −
= ω

ωπλ
ω

π
λ ω de

K
KtR tj  

Then the solution can be found by the formula: 

( ) ( ) ( ) ( ) .,∫
∞

∞−
−+= dSSfStRtft λλϕ  

1.13.2. Application of a method convolution for the solution of integral 
equations of 1-st kind 

 
Let it is necessary to solve an equation: 

( ) ( ) ( ).tfdSSStk =−∫
∞

∞−
ϕ  

Is applicable a Fourier transform to both parts and we use properties of a 
convolution.  
 

After transformation:  
( ) ( ) ( ).2 ωωωπ FK =Φ  

We have found that:       ( ) ( )
( ) .

2
1

∫
∞

∞−
= ω

ω
ω

π
ϕ ω de

K
Ft tj  

The Laplace transformation is possible also to apply as well as Fourier 
transform, but it is necessary always at the solution to check up a range of 
definition. 
 
Example: 

( ) ( ) ( )∫ −+=
t

dSSSttt
0

sin ϕϕ , 

L{*}- The Laplace transformation. 
 

It is known: 

{ } { } { } ( ).   ;
1

1sin   ;1
22 pL

p
tL

p
tL Φ=

+
== ϕ  

Having applied to an equation a Laplace transformation, we shall receive: 
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( ) ( ) ( ) .11     ;
1

1
4222 pp

p
p

p
p

p +=Φ⇒
+

Φ
+=Φ  

Solution: 

( ) .
!3

3ttt +=ϕ  

 
1.13.3. Solution of a system of integral equations 

 

Let we have a system N of integral equations Volterra of a following 
kind: 

( ) ( ) ( ) ( ) .1   ;
10

nidSSStktft
n

j

t

jiji ÷=−+= ∑ ∫
=

ϕλϕ  

Is applicable to all equations of this system a Laplace transformation: 

( ) ( ) ( ) ( ).
1

∑
=

Φ+=Φ
n

j jijii ppkpFp λ  

Solution this system of algebraic equations as a set of the imagery and 
finding from them the originals, we shall receive the solution: 

( ) ( ).tp ii ϕ⇒Φ  

 
1.13.4. Solution of non-linear integral equations 

 
The method is applicable and for some non-linear integral equations. For 

example: 

( ) ( ) ( ) ( ).
0

tfdSStSt
t

+−= ∫ ϕϕλϕ  

This non-linear equation such as a convolution. Is applicable a Laplace 
transformation to both parts of this equation: 

( ) ( ) ( ).2 pFpp +Φ=Φ λ  
This quadratic equation, its solution: 

( ) ( )
λ

λ
2

411 pF
p

−±−
=Φ . 

Having taken reconversion of the Laplace, we shall receive ϕ(t). 
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1.13.5. Solution of integro-differential equations such as a convolution 
 

Following integro-differential equation let is given: 

( ) ( ) ( ) ( ) ( ) ( ).
0 0

1

1

1 tfdS
dS

SdStkta
dt

tda
dt

td l

m

t

m

m

mnn

n

n

n
=⎥

⎦

⎤
⎢
⎣

⎡
−++++ ∑ ∫

=
−

− ϕϕϕϕ "  

Let's designate a set of the initial conditions: 

( ) ( ) ( ) ( ).0      ;0   ;0 1
0

1
00

−−
=′=′=

⎟
⎠
⎞

⎜
⎝
⎛ nn

ϕϕϕϕϕϕ …  

Using the following property of a Laplace transformation (for an arbitrary 
function ϕ): 

( ) .
1

00
3

0
2

0
1 ⎟

⎠
⎞⎜

⎝
⎛ −−−− −−′′−′−−Φ⇒
kkkkk

k

k
ppppp

dt
d ϕϕϕϕϕ …  

Is applicable this property to our equation: 

( ) ( ) ( ) ( ) .
1

00
1

0
⎥⎦
⎤

⎢⎣
⎡ −−−Φ⇒−

⎟
⎠
⎞

⎜
⎝
⎛ −−∫
mmm

m

t
m

m ppppkdSSStk ϕϕϕ …  

Now equation looks like the following: 

( ) ( ) ( ).
0

1
1 pFppkapapp

l

m

m
mn

nn =⎥
⎦

⎤
⎢
⎣

⎡
++++⋅Φ ∑

=

− …  

From here will find a required function: 

( ) ( )

( )
.

0

1
1 ∑

=

− ++++
=Φ l

m

m
mn

nn ppkapap

pFp
…

 

The reconversion gives a required function. 
 

1.13.6. Transformation Меллина 

Let there is a certain function ( )tf  and for it justly following: 

( ) +∞<∫
∞

−

0

1dtttf σ . 

σ - arbitrary number: 
Such function knows transformation Меллина: 
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( ) ( )∫
∞

−=
0

1dtttfSF S . 

Reconversion transformation 

( ) ( )∫
∞+

∞−

−=
j

j

S dStSF
j

tf
σ

σπ2
1 ,      .0>t  

The transformation Меллина establishes unambiguous interconnection 
between two by functions. The integral takes on a complex integrated plane on a 
vertical axis. 
 
Example: 

Let's consider a gamma-function. With the help of transformation 
Меллина. 

( )

( ) 0.c  ;
2
1

;
0

1

>Γ=

=Γ

∫

∫

∞+

∞−

−−

∞+
−−

jc

jc

St

St

dStS
j

e

dtteS

π

 

Transformation Меллина in many respects similar on a Laplace 
transformation: 
 

( ) ( )

( ) ( ). 

;  
;ation transformLaplace

tfS

Sp
tp

⎯⎯←  Φ

=

⎯⎯⎯⎯⎯⎯⎯⎯⎯ →⎯Φ

8
ϕ

 

In this case between functions ϕ(t) and f(t) there is an interconnection:  
( ) ( ).teft −=ϕ  

 
1.13.7. Application of transformation Меллина for the solution of integral 
equations 

  
 Using  convolution: 

       )()()(
0

SФSF
t
dt

t
xtfM =

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

∫
∞

ϕ ; 
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{ })()( tfMSF = ; 

                                            { })()( tMSФ ϕ= . 
This property will be used for the solution of integral equations of a kind: 

                         t
dt)t()

t
x(K)x(f)x(

0
ϕϕ ∫

+∞
+= .                          (1.13.1) 

The condition of applicability is, that the functions should admit 
transformation Меллина. 

Let's designate transformation  Меллина from )(xf  through 
{ } )()( SFxfM = , and transformation Меллина from )( zK  as 
{ } )()( SKzKM = .  

Functions )(SF  and )(SK  should have general area of an analyticity.  
Using transformation Меллина to both parts of an equation (1.13.1). 

 
)()()()( SФSKSFSФ += ; 

)(1
)()(
SK

SFSФ
−

= . 

By inverse of  transformation we are finding ϕ(t). 
 
Example: 

Let there is an integral equation of a kind: 

0,)(
2
1)( >+= ∫

∞+

∞−

−− αϕϕ α

t
dtteex t

x
x . 

Let's find transformation Меллина separately from each component: 

{ } { } 0Re,)()(

0

11

0
>==== ∫∫

∞+
−−−−

∞+
−− SSFSГdzzedxxeeM S

SzSSxx

α
ααα . 

Replace: 

{ } 0Re);()(
2
1

2
1

>==
⎭
⎬
⎫

⎩
⎨
⎧ − SSKSГxeM . 

The areas of an analyticity coincide: 

)()(
2
1)()( SФSГSГSФ S +=

α
; 
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⎥⎦
⎤

⎢⎣
⎡ −

=
)(

2
11

)()(
SГ

SГSФ
Sα

. 

By inverse of transformation (Меллина) we are finding ϕ(t). 
 

1.14. Symmetrical integral equations 
 

Symmetrical the integral equations are named for which kernels justly:  
 

),(),( tSKStK = . 
 
 
Example: 

22),( StStK = . 
 

If a kernel complex- owes will be executed: 
),(),( * tSKStK = . 

Let such function is a  kernel of an equation: 

∫ +=
b

a
tfdSSStKt )()(),()( ϕλϕ . 

dSSStKA
b

a
∫= )(),( ϕϕ  - The linear operator under a function ϕ . 

If  0)( ≡tf  , that respective integral equation would become uniformly 
Thus it is possible to write down following : ϕλϕ A= . Such uniformly 

equation has restricted number of the solutions . These solutions represent a set 
of some functions { }Cϕ . They are named as eigenfunctions and correspond to 

own numbers of a kernel- defined values λ. 
 

The symmetrical kernel should have the next characteristics: 
1. Every kernel should have minimum nonzero own number. And all own 
numbers are real. 
2. To each own number there can correspond some eigenfunctions. 
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3. The eigenfunctions from different sets always are orthogonal among 
themselves, though inside a set, they are optionally orthogonal. 

 
In each set quantity of functions nф can be estimated from a following 

inequality: 

dtdSStKn
b

a

b

a
ф ∫ ∫≤ 22 ),(λ . 

For their further using they are necessary for orthogonalizing. For all that 
will be used the procedure of orthogonalization Грама-Шмидта. 

At the first stage there are own numbers and eigenfunctions of an 
equation: 

 
ϕλϕ A= . 

At the second stage achieve, that the inside sets of a function among 
themselves too orthogonal. 

The functions )(),( tBtA  are called orthogonal, if: 

∫ =
b

a
dttBtA 0)()( . 

The functions from a set appropriate to each own number subject to a 
procedure of orthogonalization. The procedure consists of several stages: 

 
1. Choosing the first function, )(11 tiϕψ = : 

∫

=
b

a
dtt

t
t

)(

)(
)(

2
1

1
1

ψ

ψ
ω . 

2. ∫−=
b

a
ii dttttt )()()()( 21122 ϕωωϕψ . 

∫

=
b

a
dtt

t
t

)(

)(
)(

2
2

2
2

ψ

ψ
ω . 
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We are finding the seconded function ( )2 tω from a new set. 

3. ∫∫ −−=
b

a
i

b

a
iii dtdttttt 3223133 )()()()( ϕωωϕωωϕψ ; 

)(
)(

)(
)( 3

2
3

3
3 t

dtt

t
t

b

a

ω
ψ

ψ
ω →=

∫

. 

We are finding the seconded function 3( )tω from another set. 

dtdtdttttt
b

a
ikkk

b

a
ik

b

a
ikiikk ∫−∫−∫−=

−−− 111221 )()()()( ϕωωϕωωϕωωϕψ ; 

∫

=
b

a
k

k
k

dtt

t
t

)(

)(
)(

2ψ

ψ
ω . 

We will continue for the moment finding the last function from this set. 
 

For finding the function justly: 

0=∫
b

a
ji dtωω  - conditions orthogonal property. 

12 =∫
b

a
i dtω  - normalized conditions. 

For improvements we will use the next exchange: 
( 0≠λ ). 

Let's divide an input equation on λ, we shall designate λµ 1=
, and also 

( ) ( ).1 tftg λ−=  

Our integral equation will  following kind: 

( ) ( ) ( ) ( )., tgtdSSStk
b

a
=−∫ µϕϕ  

Or in the statement form: 
.gA =− µϕϕ  
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1.15. Integral equations, which can be led to symmetrical 

 
Some integral equations can be led to symmetrical and used for further 

computations. 
For example, the equation: 

( ) ( ) ( ) ( ) ( ),, tfdSSSpStkt
b

a
+= ∫ ϕλϕ  

where k is a real symmetrical kernel. 
 

It is assumed that the function ( ) 0>Sp  in [ ]ba, . By multiplying both of 

the parts by ( )tp  and introducing a designation: 

)()()(;)()(),(),( ttptSptpStkStL ϕψ == ; 

( ) ( ) ( ) ( ) ( )., tftpdSSStLt
b

a
+Ψ=Ψ ∫λ  

This is a standard form of integral equation with symmetrical kernel. 
( )tΨ  and later ( )tϕ  can be found by solving it. 

 
1.16. 1st kind Volterra equations 

 

∫ =
t

a
tfdSSStK )()(),( ϕ . 

Differentiability of all functions in equation is assumed. It is necessary for 
continuous solution that 0)( =af . To solve the equation need to compute the 
derivative of the function with respect to t. The result is: 

[ ]∫ ∂
∂

=
∂
∂

+
t

a
tf

t
dSSStK

t
tttK )()(),()(),( ϕϕ . 

Assumed, that 0),( ≠ttK . 

Designations are as follows: ),('),( StKStK
t t=

∂
∂

and )(')( tftf
t t=

∂
∂

; 
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∫ =+
t

a

t
ttK

tf
dSS

ttK
StKt

),(

)('
)(

),(
),(')( ϕϕ . 

The result is a second kind equation, what can be solved using regular 
ways. It could happen, that 0),( ≡ttK , then the computation yields to the 
second kind equation again. 

[ ] )()(),( tf
dt
ddSSStK

t

t

a
∫ =
∂
∂ ϕ . 

In such a case both parts are differentiable with respect to t. 

∫ =
∂

∂
+

t

a
tt tfdSS

t
StKtttK )('')(),()(),(' 2

2
ϕϕ . 

If 0),(' ≠ttKt , then division by ),( ttK ′  is leading to the second kind 

equation. If ),( ttK ′ =0 anyway, the procedure has to be repeated again. 
 

1.17. 1st kind Fredholm equations with symmetrical kernel 
 

                                          ( ) ( ) ( )., tfdSSStk
b

a
=∫ ϕ                                   (1.17.1) 

First kind Fredholm equation might have no solutions even in case of a 
“good” kernel. For instance, suppose the kernel be a power function with a finite 
number of terms: 

( ) ( ) ( ) ( )SatSatSaStk m
mm +++= − ..., 1

10 . 

It is easy to show that after a substitution into an integral it yields: 

( ) ( ) ( ) ( ) ( ) ( ) =∫++∫+∫ −
b

a
m

b

a

mb

a

m dSSSadSSSatdSSSat ϕϕϕ ...1
1

0  

m
mm bbtbt +++= − ...

1
1

0
 is a power function with a finite number of terms. 

So, if for instance ( ) ttf sin= , then left part will never yield to sin t with 
any coefficients if the number of m is finite. Therefore such an equation has no 
solution. 

It is possible to try out to find a solution for symmetrical kernels using the 
Hilbert-Schmidt theorem. Then it is required that f(t) can be decomposed with 
respect to eigenfunctions of the kernel, i.e. 
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                                                    ( ) ( )∑=
i ici tatf ϕ ,                                (1.17.2) 

where coefficients are: ( ) ( ) .∫=
b

a
ici dtttfa ϕ  

Hilbert and Schmidt suggested to find a solution in the form of 
decomposed kernel’s eigenfunctions but with another coefficients. 

 
                                                   ( ) ( ).∑=

i ici tct ϕϕ                                    (1.17.3) 

If the equation (1.17.3) is substituted into a first kind Fredholm equation 
(1.17.1) and compared to (1.17.2) then it yields to: 

i
i

i a
c

=
λ

, where iλ  are self-numbers. 

So, the final solution: 
( ) ( ).∑=

i icii
tat ϕλϕ  

 
1.18. Usage of a sequential approximation method to solve some of the 

first kind Fredholm’s integral equations 
 

Let 
minλ  be a minimal absolute eigenvalue of the kernel К(t,S). If 

min20 λλ << , then a solution could be found as an iteration procedure in the 

following form: 
( ) ( ),lim tt nn

ϕϕ
∞→

=   

where: 

( ) ( ) ( ) ( ) ( ) ., 11 ⎥
⎦

⎤
⎢
⎣

⎡
∫−+=

−−

b

a
nnn dSSStktftt ϕλϕϕ  

Starting function ( )ϕ 0 t  can be taken as optional. 
In this case the solving algorithm is represented as follows: 

1) ( )→Stk , .{ i
λ } minλ→ ; 

2) Selection of ( )ϕ 0 t  and λ; 
3) Computing iterations. 
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1.19. Execute function method 
 

Assumed, that the kernel k is symmetrical. Besides, it should be one of the 
generating functions. Function ( )ztG ,  is known as generating function for a 
system of initial functions gi(z), i.е. 

( ) {←ztG , ( ) ( ),..., 10 zgzg . }, 

if it can be represented as follows: 

( ) ( ) .,
0

∑=
∞

=n

n
nn tzgCztG  

Each of the functions g(z) is orthogonal: 

( ) ( ) jidzzgzg
b

a
ji ≠=∫     ,0 . 

The solution could be found in the form of: 

                                              ( ) ( ).
0

∑=
∞

=n nn tgatϕ                                      (1.19.1) 

After the substitution of the kernel and the sought function into the 
integral and transformation: 

( ) ( ) ( ) ( ) =∫ ⎥⎦
⎤

⎢⎣
⎡

∑∑=∫
∞

=

∞

=

b

a k kkn

n
nn

b

a
dSSgatSgCdSSStk

00
, ϕ  

( ) ( ) ∑=⎥
⎦

⎤
⎢
⎣

⎡
∑ ∫∑=

∞

=

∞

=

∞

= 000 n nn
n

nk

b

a
knkn

n
n GatCdSSgSgatC , 

where ( )∫=
b

a
nn dSSgG 2 . 

By computing the derivative of the function ( )tf  k times and substituting 
t=0, n

a  can be found: 

( ) !
0

kGaC
t

tf
kkk

t
k

k
=

=∂
∂

 

There will be only one coefficient in decomposition, for instance: 
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( )

( )

.........................................................

2)(

;...32'

...

2

10
2

321

3
3

2
210

bty

btbtbbty

tbtbtbbty

t

=′′

=+++=

++++=

=  

etc. 
So, 

( )( )
.

!
0

kGC

tf
a

kk

t
k

k
==  

After substituting these coefficients into (1.19.1), it will be like: 

( ) .)(
!

)(

1

0
)(

∑=
∞

=

=

k k
kk

t
k

tg
kCG

tf
tϕ  

 
1.20. Non-Fredholm integral equations 

 
Kernels corresponding to the condition: 

( ) ., 2 +∞<∫ ∫
b

a

b

a
dtdSStk  

were overviewed before. 
If this condition is false, then continuous areas of numbers and 

corresponding joint of continuous functions are conformed to the kernel, but not 
a set of eigenvalues as before. 
 
For example (Picard equation): 

∫=
−

−−D

D

St dSSet )()( ϕλϕ . 

Let’s check if it is a Fredholm equation. 
 

∫ ∫ ∫ =⎥
⎦

⎤
⎢
⎣

⎡
∫=

∞

∞−

∞

∞−

∞

∞−

∞

∞−

−− dtdSedtdSStK St ||22),(  

∫
∞

∞−

∞

∞− ∞−

∞ −−−− ⋅∫ =⎥
⎦

⎤
⎢
⎣

⎡
∫ ∫+ 1)(2)(2 dtdtdSedSe
t

t

tSSt . 
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It is not a Fredholm type of equation. 
The solution for this equation is: 

rtrt ecect −+= 211 )(ϕ ; 

λ21 −=r , 0>λ . 
The collection of eigenvalues forms a continuous set. 
Have a look at the dual couple of functions: continuous and integratable 

function ϕ(t) and its cosine transform ϕ1(ω): 

∫
∞+

=
0

cos)(2)(1 xdxx ωϕ
π

ωϕ ; 

∫
∞+

=
0

1 cos)(2)( xdxx ωωϕ
π

ϕ . 

After forming a function ψ(x) out of them and proceeding to other 
variables: 

[ ]∫ ∫
∞ ∞

=+=+=
0 0

11 cos)(2cos)()(2)()()( xtdttxdtttxxx ψ
π

ωϕϕ
π

ϕϕψ . 

The function ψ(x) is an integral equation’s eigenfunction: 

∫
∞

=
0

cos)()( xtdttt ψλψ , 

and it corresponds to the eigenvalue: 

π
λ 2

= . 

As ψ(x) might be optional, so if 
π

λ 2
=  then the integral equation has 

an infinite number of eigenfunctions. This case could take place as: 
 

∫ ∫ ∫ ∫ ∞==
∞∞ ∞∞

0 0 0 0

22 cos|| dxdtxdxdtK . 

 
1.21. Singular integral equations 

 
The singular integral equation is known as integral equation where an 

unknown function stands under the singular integral. 
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.)()(lim
0

0

0 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫∫ +
+

−

→

b

x

x

a
dxxfdxxf

ξ

ξ

ξ

.)(.. ∫
b

a
dxxfpV

Assume the function f(x) is unlimited at the neighbourhood of x0 (f→∞ if 
x→x0). 

Cauchy’s main value is known as a limit (if it exists): 

It means that 0<ξ<min{x0–a;b–x0}.  
All integrals in the meaning of this value are known as special or singular 

integrals. 

Designation that is used for them is: 

For instance: 

We had been discussing the use of such integrals earlier: integral 
equations with weak peculiarity kernel. 

Now, let’s have a look at the important case from radioengineering point 
of view. 
 

1.22. Hilbert transform  

The integral Fourier transform: 

[ ]∫ +=
∞+

0
sin)(cos)()( dtxttbxttaxf . 

The coefficients can be determined using the following formulas: 

∫=
∞+

∞−
utduufta cos)(1)(

π
; 

[ ].,,∫ ∈
−

b

a
bac

cx
dx
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∫=
∞+

∞−
utduuftb sin)(1)(

π
. 

Integral Fourier transform can be considered as a limit (when y→0) of the 
expression ),,(lim

0
yxU

y→
 where: 

[ ]∫ +=
∞ −

0
.sin)(cos)(),( dtexttbxttayxU yt  

This integral could be treated as a real part of more complicated one: 

[ ] [ ][ ]

[ ] [ ]

),,(),(

sin)(cos)(sin)(cos)(

sincos)()()()()(

00

0 0

yxjVyxU

dtexttaxttbjdtexttbxtta

dtextjxttjbtadtetjbtaz

ytyt

ytytjxt

+=

=−−+=

=+−=−=Φ

∫∫

∫ ∫

∞
−

∞
−

−
∞ ∞

−

 

 

where V(x,y) is an imaginary part of the complex function Ф(x,y). 
The limit of the function V(x,y) can be found as (if y→0): 

[ ]∫ −=−=
∞

0
sin)(cos)()0,()( dtxttaxttbxVxg . 

The function g(x) is expressed from f(x). After a substitution: 

[ ]∫
⎭
⎬
⎫

⎩
⎨
⎧

∫ −=
∞ ∞

0 0
)(sin)(1)( dxtxuufdtxg

π
. 

This integral is conjugated to Fourier integral transform. 
By repeating the procedure we can get an initial expression but it will be 

negative: 

[ ]∫
⎭
⎬
⎫

⎩
⎨
⎧

∫ −−=
∞ ∞

0 0
.)(sin)(1)( dutxuugdtxf

π
 

After a several formal transforms: 

[ ] [ ]{ }

..)()(cos1lim1

0 0
)(sinlim)(1)()(sin1lim)(

∫
∞

∞− −
−−

∞→
=

∫ ∫
∞

∞−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫ −

∞→
=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∫
∞

∞−
−

∞→
=

duuf
xu

xu

dudttxuufduuftxudtxg

λ

λπ

λ λ

λππλ
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The integral can be divided into two parts: 

∫
−

−−
+

∫ ∫ +
−

−−
=

−
−−

∞

∞

∞− ∞−

x

x

duuf
xu

xu

duuf
xu

xuduuf
xu

xu

.)()(cos1

)()(cos1)()(cos1

λ

λλ

 

Then, substitute t by u – x = t. So, the second integral in a sum will be: 

∫
∞−

∫
∞−

+
−

=
−

−−x
dttxf

t
tduuf

xu
xu 0

)(cos1)()(cos1 λλ
. 

The first integral: 

∫ ∫ +
−

=
−

−−∞ ∞

x
dttxf

t
tduuf

xu
xu

0
)(cos1)()(cos1 λλ

. 

After changing the sign of the expression (t = – t): 

.
0

)(cos1

0
)(cos10

)()()(cos1

∫
∞

−
−

−=

=∫
∞+

−
−

∫
∞+

=−−
−

−−

dttxf
t

t

dttxf
t

ttdtxf
t

t

λ

λλ

 

Finally, 

[ ]∫ −−+
−

=
∞

∞→ 0
)()(cos11lim)( dttxftxf

t
txg λ

πλ
. 

A part of the integral containing cos(λt) approaches zero for considerably 
smooth functions f(x) as proved by Hilbert. 

So, 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∫
∞ −−+

−=

∫
∞ −−+

=

0
.)()(1)(

0
;)()(1)(

dt
t

txgtxgxf

dt
t

txftxfxg

π

π

 

This duality was noticed for the first time by Hilbert. So, two functions 
linked by such a transform are known as Hilbert transform. 

More often they are used in another form: 
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∫
∞

∞− −
−=

∫
∞

∞− −
=

.)(..1)(

;)(..1)(

dt
xt

tgpVxf

dt
xt

tfpVxg

π

π
 

 
 

1.23. Usage of Hilbert transform for integral equations solving 
 

Each of two Hilbert formulas can be considered as a first kind integral 
equation. Then another formulae will be a solution to that integral equation. 

Let: 

( ) ( )[ ] ( )
∫
∞+

∞− −
=Η= dy

xy
ypVtxf ϕ

π
ϕ ..1

. 

Be a Hilbert transform of the function ϕ. This method is used to solve 
equations in the form of: 

 

( ) ( ) ( ).xfdy
xy

yx =∫
−

−
∞+

∞−

ϕλϕ  

Remembering upper designation the symbolic form will be as follows: 
                                              ( ) [ ] ( )xfx =Η− ϕλπϕ .                              (1.23.1) 

By applying the Hilbert transform to the both sides of the equation we 
will get: 

[ ] [ ];fΗ=+Η λπϕϕ   
(Consider that [ ]{ } .ϕϕ −=ΗΗ ) 

By substituting [ ]ϕΗ  into (1.23.1): 

[ ] ( ).22 xff =+Η− ϕπλλπϕ  
So, ϕ will be: 

( ) ( ) [ ];1 22 fxf Η+=+ λππλϕ  

( ) ( ) [ ] .0+1      ;
1

22
22 ≠

+
Η+

= πλ
πλ

λπϕ fxfx  
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The Hilbert transform is applicable in more complicated cases also, when 
kernel looks like: 

( ) ( );,1, 0 yxk
xy

yxk +
−

=  

Sometimes the Hilbert transform is used in the form of: 

( ) ( )

( ) ( )⎪
⎪

⎩

⎪
⎪

⎨

⎧

∫
+

−
⎟
⎠
⎞

⎜
⎝
⎛ −

Ψ−=

∫
+

−
⎟
⎠
⎞

⎜
⎝
⎛ −

=Ψ

π

ππ
ϕ

π

π
ϕ

π

.
2

..
2
1

;
2

..
2
1

dtxtctgtpVx

dtxtctgtpVx

 

 
They are used if there is a ctg function in the equation. The way of 

solving is the same. 
 

1.24. Nonlinear integral equations 

Solving nonlinear integral equations is much difficult. Solution of the 
integral equation in the form of: 

( ) ( )[ ] ( ),,, tfdSSStkt
b

a
+∫= ϕλϕ  

was discussed earlier. 
Consider the Gammerstein integral equation: 

( ) ( ) ( )[ ] ( ),,, tfdSSSStkt
b

a
+∫ Ψ= ϕλϕ  

where ( )Stk , , Ψ(s,z) are known functions, 
φ(s) is sought function. 
Condition: 

( )
min

, λ
∂

∂
<

Ψ
y

yx
 

has to be true. It is a minimal absolute value of the kernel’s k(t,s) eigenvalue. 
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The solution for this integral equation also can be found using the 
sequential approximation method. The function 

0
ϕ  is optional, even it is 

possible to construct an approximation series: 

( ) ( ) ( )[ ] ( );,, 01 xfdSSSSxkx
b

a
+∫ Ψ= ϕλϕ  

( ) ( ) ( )[ ] ( );,, 12 xfdSSSSxkx
b

a
+∫ Ψ= ϕλϕ  

( ) ( ) ( )[ ] ( )

. . . . . . . . . . .  .  .  .  .  .  . . .

;,, 23 xfdSSSSxkx
b

a
+∫ Ψ= ϕλϕ

 

( ) ( ) ( )[ ] ( );,, 1 xfdSSSSxkx
b

a
nn +∫ Ψ=

−
ϕλϕ  

( ) ( ).lim xx nn
ϕϕ

∞→
=  

 

1.25. Usage of degenerated kernels for Gammerstein equation solving 

 
If the kernel is degenerated then it could be represented as follows: 

( ) ( ) ( )∑=
=

m

i ii SbtaStk
1

, , 

so, the initial integral equation in this case looks like: 

( ) ( ) ( ) ( )[ ] ( )tfdSSSSb
m

tat
b

a
ii i

+∫ Ψ∑=
=

ϕλϕ ,
1

. 

and is known as Gammerstein equation. 
Designating: 

                                         ( ) ( ) ( ),
1

tfC
m

tat ii i +∑=
=

λϕ                                (1.25.1) 

where: ( ) ( )[ ] .,∫ Ψ=
b

a
ii dSSSSbC ϕ  
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By substituting (1.25.1) into the initial equation: 

∫ =+∑
=

b

a
j

m

i iij cdSSfSacSSb ))()(,()(
1

ψ , mj ÷= 1 . 

Functions Ψ( ) are known, so the integral can be solved. If the solution of 
the new formed nonlinear algebraic equation system exists, it means that a set of 

coefficients { }∆∆ ÷ mcc1  exists also. By substituting them into a corresponding 

equation it can be converted into a true identity ∑ +≡
=

∆m

i ii tftact
1

)()()(ϕ . It 

could be, that there are not only one set of the coefficients { }∆∆ ÷ mcc1  so, in this 

case we have several solutions φ(t) for the integral equation. 
 

Examples. 
1.  The initial integral equation in the form of:  

dttStt )()( 21

0

2 ϕλϕ ∫= , 

where StStK 2),( =  is a degenerated kernel consisted of one member. So, 
there is only one coefficient с exists. 

∫=
1

0
;)(2 dSSSc ϕ  

2)( ctt λϕ = ; 

∫ ==
1

0

22
422

6
)( λλ cdSSScc . 

Easy to notice that this algebraic equation has two solutions (λ≠0). 

.
2
6

2

;01

λ
=

=

c

c

 

So, the integral equation has two solutions also: 
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.
2
6)(2

;0)(1

λ
ϕ

ϕ

=

≡

t

t

 

2.  The initial equation: 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

0 )(
)(sin)()()()( dS

Sa
SSSatat ϕϕϕ . 

( 0)( >ta  in interval t from 0 to 1). 
By computing similar transforms, the equations with respect to coefficient 

с can be found. 

∫=
1

0

2 sin)(1 cdSSa ; 

∫=
1

0

2 )(sin1 dSSac . 

Two variants are possible: 

a) 1)(
1

0

2 <∫ dSSa  — the solution does not exist. 

b) 1)(
1

0

2 >∫ dSSa . 

then: 

∫

= 1

0

2 )(

1sin
dSSa

c ; 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+

∫

−

+

∫

=

=
n

dSSa

n
dSSa

c

c
ππ

π

2
)(

1arcsin

2
)(

1arcsin

1

0

2

1

0

2

. 

There is an infinite number of с, so there is an infinite number of φ(t) also. 
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3.  The initial equation: 

∫+=
1

0

2 )(1)( dSSt ϕλϕ . 

Assume: ∫=
1

0

2 )( dSSc ϕ ; 

then: ct λϕ += 1)( . 

 
Substituting it into the initial equation results: 

01)12(22 =+−+ cc λλ . 

Expression to find с: 

22
4121

λ
λλ −±−

=c . 

 
Finally: 

λ
λϕ

2
411)(1

−+
=t ; 

λ
λϕ

2
411)(2

−−
=t . 

It is possible for the Gammerstein equation with nondegenerated kernel to 
find a degenerated kernel that will approximate nondegenerated kernel in an 
integration interval rather precisely. In this case the solution of integral equation 
with degenerated kernel is an approximate solution of the integral equation with 
nondegenerated kernel. 



2. CALCULUS OF VARIATIONS 
 

Calculus of variations is the field of mathematics researching extremums 
of functions and functionals. If a solutions of extremum is found with any 
conditions, such problems is named as conditional. 

 
2.1. The finding of function extremums 

 
Let necessary to find a function extremum: 

)...,,( 1 nxxfZ = . 
Available additional conditions require formalization, i.e. transformation 

to a set of functions with respect to x represented as: 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
−−−−−−−−
=
=

0),...,(

0),...,(
0),...,(

1

12

11

nm

n

n

xx

xx
xx

ϕ

ϕ
ϕ

 , 

on conditions that m<n. 
This is a default target setting. Such problems are solved using a couple of 

methods. 
 

Method 1. 
 

1.  From one (any) connection equation, one of variables is expressed 
),...,( 111 nxxx ϕ← . 

Acquired 1x  is substituted in f and in mϕϕ ...2 . 

2.  From another equation, 22 ϕ←x  is expressed and substituted in f , 

mϕϕ ...3 , etc. The same way repeating m times. ),...,( 1 nm xxf +  is aquired 
depeding on n-m arguments, and the conditions are none. 
3. Find conditionless extremum of f and substitute in connection equation 
with reverse order.  
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2.2. The method of lagrange multiplier for finding function extremums 
 

Application condition:  

1. Functions ( ) ( )1 n 1 mf x x  and x xϕ÷ ÷  must be continuous and its partial 
derivatives must exist on all arguments. 

2. In whole range of definition x , rank of matrix with elements 
j

i

dx
dϕ

 and 

size [n×m] must be greater than m. 
On method using: 
a) compose Lagrange function represented as: 

∑
=

+=
m

i
iifФ

1
ϕλ , 

where λi  are undefined Lagrange multipliers (unknown coefficients). 
b) compose n equations represented as: 

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=
Φ

=
Φ

=
Φ

.0

;0

;0

2

1

nx

x

x

∂
∂

∂
∂
∂
∂

 

and m equations represented as: 

 
Thus, we have m+n equations and m+n variables. Then, solve this 

system. Points, at these a derivative of function f on all arguments nxx ...1  is  
 

– 61 – 

( )
( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

=
=

.0...

;0...
;0...

1

12

11

nm

n

n

xx

xx
xx

ϕ

ϕ
ϕ



equal to zero, are named stationary points. If only single solution exists, then 
corresponding extremum is said as a global extremum. If several solutions exist, 
then the function has several local extremums. Aquired sets x point to extremum 
coordinates. After then, necessary check each extremum. At that three case are 
possible at each point: 

1) Maximum. 
2) Minimum. 
3) Saddle point. 
The checking is processed as the following:  
Compose quadratic form: 

∑ ∑
=

=

=
==

∇

∇

∇
∆∆

∂∂
∂

=
n

i

xx

xx
xxk

n

k
i

ki

nn

xx
xx
fФd

1

.........

1

2
2

22

11

)( 1
∇∇ ÷ nxx  - system solution 

If at some small neighborhood is: 
02 >Φd  - then there is a maximum; 
02 <Φd  - then there is a minimum. 

If Фd 2  may be greater than zero and less than zero, then there is a saddle 
point. 
 
Example 1. 

A function is given:  

( ) ( ) .11 22 ++−= yxz  
Find extremum with the following condition: 

( ) 01, =−+= yxyxϕ . 
In the first, we are finding a unconditional extremum: 

( ) ;1     ;012 ==−= ∇xx
x
z
∂
∂

 

( ) ;1     ;012 −==+= ∇yy
y
z
∂
∂

 

.0min == zzex  
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Now, find a conditional extremum. 
Express y from the condition: 

;1 xy −=  

( ) ( ) ;21 22 xxz −+−=  

( ) ( ) ;5,0   ;5,1     ;02212 −===−+−= ∇∇ yxxx
x
z
∂
∂

 

.2/1min =z  
The presence of the condition leads to other value of extremum  and to 

other coordinate of extremum. 
 
Example 2. (Lagrange multiplier method). 

( ) ;,, xyzzyxf =  

( )
( ) ;08,,

;03,,

2

1

=−−−=
=−−+=

zyxzyx
zyxzyx

ϕ
ϕ

 

Compose Lagrange function: 
( ) ( ) ( );83,, 21 −−−+−−++=Φ zyxzyxxyzzyx λλ  

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=−−−
=−−+

=−−=
Φ

=−+=
Φ

=++=
Φ

;08
;03

;0

;0

;0

21

21

21

zyx
zyx

xy
z

xz
y

yz
x

λλ
∂
∂

λλ
∂
∂

λλ
∂
∂

 

Solving that, we get: 

32
605  ;

4
11  ;

2
5  ;

4
11  ;

32
231  ;

32
11

21 =−=−==−== ∇∇∇
exfzyxλλ . 

Determine a kind of the found point. 
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;02

2

2

2

2

2
=

Φ
=

Φ
=

Φ

zyx ∂
∂

∂
∂

∂
∂

 

;     ;     ;
222

x
zy

y
zx

z
yx

=
Φ

=
Φ

=
Φ

∂∂
∂

∂∂
∂

∂∂
∂

 

zdxdyydxdyxdydzd 2222 ++=Φ . 
From connection condition: 

⎩
⎨
⎧

=−−
=−+

;0
;0

dzdydx
dzdydx

 

;    ;0 dzdxdy ==  

.2 22 dxyd ∇=Φ  

.05
2
52 222 <−=⎟
⎠
⎞

⎜
⎝
⎛−=Φ dxdxd  

The quadratic form is greater than zero regardless to the sign of x, that 
means a maximum placed at the investigated point. 
 

2.3. Functional 
 

Assume, some class М of  functions y(x) is given. If each function 
( ) Mxy ∈ is accordance to some number J  by some rule, then it is said a 

functional J is defined in the class М. 
( )[ ].xyJJ =  

The class М, where this functional is defined, is named as a domain of 
functional. 
 
Example 1.  

Assume that М is a collection of all continuous function at range [0,1]. 
Following define integral is a functional: 

( )[ ] ( )∫=
1

0
dxxyxyJ ; 
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when:          ( ) ;      cJcxy =→=  

when:      ( ) ;1      −=→= eJexy x  

when:      ( ) .0      cos =→= Jxxy π  
 
Example 2.  

Assume that М is a class of functions having a continuous derivative at 
range [ ]ba,  and let [ ]bax ,0 ∈ , then the following is considered as a functional: 

( ) ;2   ;3   ;1   ;' 00 ==== xbaxyJ  

when:                                 ( ) ;4      2 =→= Jxxy  

when:                               ( ) ( ) .
3
1      1ln =→+= Jxxy  

 
2.4. Variations 

 
A variation (increment) of yδ  being a argument of ( )xy  of a functional 

( )[ ]xyJ  is a difference between a couple of functional, when both functions are 
included to class М.  

( ) ( )0xyxyy −=δ . 
If the function y can be derivatived k-times, then degree of the variation is 

k. 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ).0xyxyxyy kkkk −== δδ  
It’s said that functions ( ) ( )1  andy x y x  are close in terms of zero order, if 

the condition, that ( ) ( )xyxy 1−  is small, is satisfied. Geometrically it means 

that at this range the functions are close by arguments. There is the closeness of 
first order, if not only a difference between theirs is small, but a difference 
between their derivations is small too. 

   
( ) ( )
( ) ( )

  
.''

;1

⎪⎩

⎪
⎨
⎧

−

−

xyxy

xyxy
- small. 

The closeness of k-th order – the condition is added:  
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( ) ( ) ( ) ( )xyxy KK
1−  - small. 

(and all differences of lower orders are small too). 
If the closeness of k-th order is given, then there is the closeness of 

previous order. 
 

Example. 

There are the curves 
n

xy
2sin)( =  and 0)(1 ≡xy . Consider theirs ar 

range ],0[ π . We can claim these are close in term of zero order when n are 
great. 

0sin)()(
2

1 ⎯⎯ →⎯=−
∞→nn

xnxyxy . 

In terms of first order there is not the closeness, because at point: 

2
2
n

x π
= ; 

xnnxyxy 2'
1

' cos)()( =− , 

this expression can be maked arbitrary large by n growing.  
Distance between curves )(xfy = , )(11 xfy =  at range ba ÷  

(consider both functions as continuous) is a positive number ρ , which is equal 
maximum modulus of difference between them. 
 
Example. 

There are the functions xy =  and 2
1 xy = ; 10 ÷=÷ ba . 
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2
11 )( xxyyx −=−=ρ ; 

x
dx

d
211 −=

ρ
; 

021 =− x . 
Maximal distance at point:  

2
1

=x , 

it is eual to                                        
4
1

=ρ . 

 
Distance of n-th order between curves is the most of maxima of following 

values: 
)()( 1 xfxf − ; 

)()( '
1

' xfxf − ; 

………... 

)()( )(
1

)( xfxf nn − , 

at range ],[ ba . 

[ ] )()(maxmax)(),( )(
1

)(
0

1 xfxfxfxf kk
bxank

nn −==
≤≤≤≤

ρρ . 

  
ε  neighborhood of n-th order of a curve )(xy  at range ],[ ba  is a collection of 

curves )(1 xf , distance of n-th order from original curve )(xy  is less than ε . 

[ ] ερρ <= )(),( 1 xfxynn . 
Neighborhood of zero order is a strong neighborhood. Neighborhood of 

first order is a weak neighborhood. Physically meaning of a strong 
neighborhood is a set of continuous curves, which can be drawn in a belt with 
width 2ε about a curve y=f(x). 
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A functional )]([ xyJ  in М class of functions is continuous, when 

)(0 xyy =  in terms of the closeness of n-th order, if for any ε  we can select 
such number 0>η  to satisfy condition: 

If [ ] ηρ <)(),( 0 xyxyn ; then ε<− )]([)]([ 0 xyJxyJ . 

In the other case, it is discontinuous. A functional is linear, if all 
properties of linear operators are right. 
 
 

2.5. The simplest problem of calculus of variations 
 

The functional is given: 

∫=
2

1

' ),,(][
x

x
dxyyxFyJ , 

where F is a unknown function, 
y is a unknown piecewise-smooth function. 

It needs to find minimum of this functional among all piecewise-smooth 
functions у. 

Conditions: 
1.  Function y(x) must connect points y1=y( 1x ) and y2=y2( 2x ). 

2. ),,( 'yyxF  must be continuous in all three arguments ),,( yyx ′ , and 
all derivatives must be continuous up to third order too. 
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Minimum (maximum) of functional ][yJ , reached in a strong (weak) 

neighborhood of function )(0 xy  is named as a strong (weak) minimum 
(maximum) of functional ][yJ . A extremum of functional ][yJ  at whole set of 
functions у, where it defined, is a absolute extremum. 
 

2.6. The required condition of extremum. 
First and second variation of functional 

 
Assume )(xη is a piecewise-smooth function, which is satisfied for the 

condition:  
0)()( 21 == xx ηη . 

Introduce a function: 
)()()(~ xxyxy αη+= , 

where α is a unknown parameter. 
Then a set of all possible functions )(~ xy  is owned by a weak 

neighborhood of function у. 
Functional: 

∫=
2

1

' ),~,(]~[
x

x
dxyyxFyJ . 

by conditions:  

⎥
⎦

⎤
⎢
⎣

⎡
==

==

222

1

)()(~
)()(~

yxyxy
yxyxy

. 

is a function of the parameter α . 

)(),,(]~[ '
2

1

' αηααη ФdxyyxFyJ
x

x
=++= ∫ . 

Shown that )(αФ  has minimum when 0=α . 
For this the following conditions are required: 

2

2

( ) 0, when 0,

( ) 0, when  0

Ф

Ф

α α
α
α α

α

⎧
⎪⎪
⎨
⎪
⎪⎩

∂ = =
∂

∂ ≥ =
∂

. 
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After differenting )(αФ  by the parameter α: 

      0)~,~,(
)(

)~,~,(
2

1

'
'

' =⎥
⎦

⎤
⎢
⎣

⎡

∂

∂
+

∂
∂

=
∂
∂

∫ dxyyxF
y

yyxF
y

Ф x

x
ηη

α
.   (2.6.1.) 

A derivative 
α∂
∂Ф

 at point 0=α  is named as first variation of functional 

][yJ  and labeled as:  

0=
=

αα
δ

d
dФJ . 

Corresponding derivative is named as second variation. 

0
2

2
2

=

=
αα

δ
d
ФdJ . 

Found function y give minumum (maximum) ][yJ , if:  

2

2
minimum
maximum

0
0
0

J
J
J

δ
δ
δ

⎧
⎪
⎪
⎨
⎪
⎪⎩

=
> −
< −

. 

If integrate expression (6.1.) by apart, then we’ll get: 

( ) 0'
'

2

1 1

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

−
∂
∂

= ∫ ∫
x

x

x

x
dxdx

y
F

y
FJ ηδ . 

This expression must be satisfied for any η. From this the Euler-Lagrange 
integral equation is following: 

CdxFF
x

x
yy ≡− ∫

1

' . 

After differenting, we get: 

( ( ) '' yF
y
F

=
∂
∂

;  yF
y
F
=

∂
∂

;) 

( ) 0' =− yy F
dx
dF .                                        (2.6.2.) 
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Expression (2.6.2.) is one of basic equation of calculus of variation. It is 
just as first finding extremum. 

Smooth function y(x) being a solution of this equation is named as the 
extremal. The extremal is named as Lagrange curve also. The extremal is 
satisfied for (2.6.2.), also satisfied for the following equation: 

[ ] 0' ' =−− xy FFyF
dx
d

. 

Besides a detailed representation is used: 

0''' ''', =−++ yxyyyyy
FFFyFy ; 

( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
= F

yd
d

yd
dF yy '''' ; 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
= F

yd
d

dy
dF yy '' ; 

( ) ( )ZYXFyyxF ,,',, = . 
Although, arguments are connected each to other, but, while it is 

differenting with respect to one of arguments, others arguments are considered 
as constants. 
 
Notes. 

1. This formula gives solution to two constants, and these are 
determinated from boundary conditions. 
2. For specified boundary conditions, equation has no solution or has 
infinite number of solutions. 

 
Example. 

1) The functional is given:   

( )[ ] [ ]∫ −=
2

1

2 2' dxxyyxyJ , when y(1) = 0, y(2) = - 1; 

( ) xyyyyxF 2'',, 2−= ; 
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( ) '2
'' yF

yd
dFy == ; 

( ) ( ) ''2'2' yy
dx
dF

dx
d

y == ;  x
y
FFy 2−=
∂
∂

= ;  0''22 =−− yx ;  0=+ xy ; 

21

3

6
CxCxy ++−= . 

Substitute boundary conditions: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=+

=+

;
6
22

;
6
1

21

21

CC

CC

 

6
1

1 =C ;  02 =C ;  ( )21
6

xxy −= . 

2) Find extremum of the functional:  

( )[ ] ( )∫ −=
3

1
3 ydxyxxyJ .  

Boundary conditions: 

y(1)=1; y(3)=4,5. 
Euler equation is as the following: 

023 =− yx ; 

( ) xxy 5,1= . 
Aquired extremal isn’t satisfied the first boundary condition. It means that 

the problem could not be solved. 
Find a extremal of following functional:  

( )[ ] ( )∫ −=
π2

0

22' dxyyxyJ . 

y(0) = 1;  y(2π) = 1. 
Euler equation is:  

0=+′′ yy . 
General solution is: 
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( ) xCxCxy sincos 21 += ; 
xCxy sincos += . 

All these functions serve as extremal for any С. In other words, there is 
infinite number of solutions. 

 
2.7. Veierstrasse-erdman theorem 

 
Assume, that y(x) is solution of Euler equation: 

0' =− yy F
dx
dF . 

If F has partial devirative up to second inclusive, then at all points where 

( )
0

' 2

2
≠

∂

∂

y
F

, function y(x) has continuous second derivative, and it means, at 

this point, break is not present. If 
( )

0
' 2

2
=

∂

∂

y
F

, then at this point, break is 

present. Lines composed of extremal piecewises, satisfying condition  

( )
0

' 2

2
≠

∂

∂

y
F

, are named as broken extremal. 

 
Legandr condition. At all points of line y(x) supplying extremal to functional J, 
the following condition must be satisfied: 

If ( ) 0',,'' ≥yyxF yy  - minimum; 

If ( ) 0',,'' ≤yyxF yy  - maximum; 

21 xxx ≤≤ . 
Veierstrasse condition: If y is minimum (maximum), then: 

( ) ( ) ( ) ( ) 0',,'',,,, ' ≥−−− yyxFyzyyxFzyxF y , ( 0≤ ), 

for any  z at all points of this range. 
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2.8. Cased of simplifying or defiation of euler equation 
 

Respects to function ( )',, yyxF  different cases are possible. 
 
The case №1.  

F is independent to y’. In this case, Euler equation is represented as:  
0),( =yxFy . 

Here, cases often are appeared, when due to combination of boundary 
conditions equation is unsolved. 
 
Example.  

( )[ ] ( )∫ −=
2

0
2

π

dxyxyxyJ , ( ) 00 =y , 
22
ππ

=⎟
⎠
⎞

⎜
⎝
⎛y . 

Euler equation is: 
 022 =− yx , xy = . 

For this initial conditions, equation has solution, but for other, e.g.,  

0)0( =y , 1)
2

( =
πy , 

equation has no solution. 
 
The case №2. 

F depends to y′  linearly. 

( ) ( ) ( ) ',,',, yyxNyxMyyxF += . 
Euler equation is turned to more simple: 

( ) ( ) 0,,
=

∂
∂

−
∂

∂
x

yxN
y

yxM
. 

After derivation, it is turned from differential to algebraical equation. 
Some cases are possible, when in some area this equation is equal to zero 

identically. It means, that in limits of this area function J[y] is constant, and 
variation problem is meaningless. 
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Example. 

( )[ ] ( )∫ +=
b

a
dxxyyyxyJ '22 ;  

( ) ( ) ;    ; BbyAay ==  

.0   ;2   ;2 ≡
∂
∂

−
∂
∂

=
∂
∂

=
∂
∂

x
N

y
My

x
Ny

y
M

 

 
The case №3. 

F depends to y only. In this case, Euler equation is represented as:  
0'''' =yFyy . 

General solution can be taked: 

21 CxCy +=  - all possible straight lines. 
Here С1, С2  are arbitrary constants. 

 

Example.  

Find extremum of functional (line length between given points).  

( )[ ] ( ) ;1 2∫ +=
b

a
dxxyxyJ  

( ) ( ) ;    ; BbyAay ==  

                              ( ) ( ) Aax
ab
AByCxCyxy +−

−
−

=+==    ;   ;0'' 21 .  

(shortest length between two points is straight line). 
 
The case №4.  

F is independent to y.  
( )', yxFF = . 

In this case, Euler equation is turned to: 

                          ( ) ( ) 1'' ',    ;0', CyxFyxF
dx
d

yy ==  - arbitrary constant. 

We got common first order differential equation. 
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Example.  
Two points are given А(1,3), В(2,3). Among all possible curves 

connecting these 2 points, find such points among extremum of the following 
functional can be reached: 

( )[ ] ( ) ( )[ ] .'1' 2∫ +=
b

a
dxxyxxyxyJ  

In this case, Euler equation is: 

( ) ;0', =yxF
dx
d

y   ( ) ;0'21 2 =+ yx
dx
d

 

;
2

1'    ;'21 2
2

x
CyCyx −

==+  

( ) ;2
1 C

x
C

xy +=   2
1

1
CC −

= . 

Use initial conditions: 

⎪⎩

⎪
⎨
⎧

+=

+=

.
2

5

;3

2
1

1

C
C

CC

  

hence:                                          

( ) .47
x

xy −=  

 
The case №5.  

F is independent to x explicitly:  
( )', yyFF = . 

taking into account, that:  

yyyyyyy FyFyF
yd
d

dx
ydF

dy
d

dx
dyF

dx
d

′′′′′ ′′+′=
′

′
+= ). 

In this case, the equation is: 
.0''' ''' =−− yFyFF yyyyy  
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Multiply by y: 

;0''''' '''
2 =−− yyyyy FyyFyFy  

( ) ( ) ( ) ( ) ;0'''''' ''''' =−−−+=− ′yyyyyyyy F
dx

ydyF
dx
dyyF

dx
ydF

dx
ydF

dx
dyFyF

dx
d

 

( ) ,0' ' =− yFyF
dx
d

 

where 1'' CFyF y =− - arbitrary constant. 
This equation is solved using separation of variables. 

 
Example. Consider a problem: 

There is a gas flow, and a solid is moving within it. What shape of the 
solid is it putted minimal pressure? 

 
   If gas density is small enough and 

we are too far from acoustic speed, then 
hade is equal to angle of reflection. 

θρ 22 sin2 Vp = , 
p – gas density, V – molecules speed 
relative to the solid, θ – angle of tangent 
to generatrix and horizontal. 

( ) ;'1 2
1

dxydl +=   ( ).xyr =  
A force puts on ring with width dx: 

( )[ ] dyyyVdF θπθρ sin'12sin2 2
1222 += . 

Full force is putting along axis ОХ: 

.
0
∫=
l
dFF  

We shall find a simplified solution, substituting: ( )
'

'1

'sin
2

12
y

y

y
≈

+
=θ . 

 
 
 

– 77 – 



Then, a drag is: 

;'4
0

32 ∫=
l

ydxyVF πρ    ( ) ;00 =y     ( ) .Rly =  

Euler equation is: 

( ) .0'3' 23 =− yy
dx
dy  

Multiply both sides by y’. Left side is become a derivative from 
expression y’3y. Integrate the following expression:  

;'3 Cyy =  
3

1'
y

C
y = ; ( ) ,4

3

21 CxCy +=  

substituting initial conditions: .
4

3

⎟
⎠
⎞

⎜
⎝
⎛=

l
xRy  Contour putting minimal 

pressure to solid is a parabola with the power - 3/4. 
 

2.9. Invariance of euler equation 
 

If functional like: 

[ ] ( )∫=
b

a
dxyyxFyJ ',, , 

is turned by substituting independent variable x or simultaneously x and y, then 
extremal is solving using Euler equation as usual, but it consists of turned 
equation. 

Assume x and y are function of new variables. 
( )VUxx ,= ;   ( )VUyy ,= . 

Also, assume that the mutual independence of these functions condition is 
satisfied. 

;0
;

;
≠

∂
∂

∂
∂

∂
∂

∂
∂

V
y

U
y

V
x

U
x
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Then after the substituting: 

( ) ( ) ( ) =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

+
∂
∂

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

+
∂
∂

∂
∂

∂
∂

+
∂
∂

= ∫∫ dU
U
V

V
x

U
x

V
x

U
x

U
V

V
y

U
y

VUyVUxFdxyyxF ,,,,',,

( )∫Φ= dUVVU ',, . 

),,( VVU ′Φ - is some new function. 
There is a formula to find new extremal.  

0' =Φ−Φ VV dU
d

. 

Example.  
Find extremum of the following functional: 

[ ] ( )∫ −= −
2ln

0

22' dxyeyeyJ xx . 

Euler equation for integrand is: 

0''' 2 =+− yeyy x . 
Do substitute the variables )  ;ln( VyUx == . Then, original functional 

is turned to: 

[ ] ( ) ( ) .''
2

0

22
2

0

2ln22ln ∫∫ −=−= − dUVV
U
dUVeVUeVJ UU  

For such functional, Euler equation is more simpler: 
0'' =+VV ; 

.sincos 21 UCUCV +=  
Do reverse substituting: 

xx eCeCy sincos 21 += . 
Constants are determinated from initial conditions. 
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2.10. Variation problems in parametric form 
 

In many practical applications, parametric definition of lines is necessary 
to be used to make calculations simpler. 

( )
( )⎩

⎨
⎧

=
=

ty
tx

ψ
ϕ

;       10 ttt ≤≤ . 

Assumed, that ϕ and ψ are continuous and have at least piecewise 
continuous derivatives. It is necessary both derivatives to be not turned to zero 
together, that is need the following condition to be satisfied: 

0'' 22 =+ψϕ . 
Each line allow infinite number of parametric representations. 
For instance, ellipse can be defined using different kinds of parametric 

equations: 

⎩
⎨
⎧

=
=

;sin
;cos

tby
tax

           ππ ≤≤− t , 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

+
=

+
−

=

.
1

2

;
1
1

2

2

2

z
bzy

z
zax

      +∞≤≤∞− z . 

In the case of incorrect way, we can find untrue extremum of functional. 
In this case, extreamal can be depended from parametric representation instead 
of y. In order to prevent this, it is necessary and enough integrand to do not 
contain t in explicit form. It is necessary the following condition is satisfied. 

( ) ( )',',,',',, yxyxkFkykxyxF = , k is constant. 
If a line L is defined using the following system: 

( )
( )⎩

⎨
⎧

=
=

,
;

ty
tx

ψ
ϕ

 

where t is changing in range 10 ttt ≤≤  and the line L delivers extremum J, 
then φ and ψ are satisfied the following Euler equations: 
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⎪
⎪
⎩

⎪
⎪
⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥⎦
⎤

⎢⎣
⎡−

.0
'

;0
'

dy
dF

dt
d

dy
dF

dx
dF

dt
d

dx
dF

 

The equations allow to find functions ( )tϕ  and ( )tψ . Each of those 
equations is consequence of other equation. For this situation, Veierstrasse form 
of Euler equation is exist also: 

( ) 2
322

1

''

''

1

yxF

FF
r

yxxy

+

−
= ;        

''''
''

2
''

2
''

1 xy
F

x

F

y
F

F xyyyxx === , 

where r is radius of curvature of extremal. 
 
Example.  

Find extremal of functional: 

∫=
11,

0,0

22 '
yx

dxyyJ ; 

Turn to parametric form: 

        
( )
( )⎩

⎨
⎧

=
=

.
;

tyy
txx

 

Transform integrand in such a way as to exclude depending from t. 

dtx
x
yydt

dt
dx

dt
dx
dx
dy

ydx
dx
dyydxyy ′

′

′
=

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

=⎟
⎠
⎞

⎜
⎝
⎛=′

2

2
2

2

2

2
2

222 dt
x

y
y

'
'22= . 

Consider the first Euler equation: 

0
'

'22 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

x
yy

dx
dFx ;    2

222
2

'
'

'
'

'
' x

yy
x

yy
dx
dFx −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ; 

0
'
'
2

2
2 =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

x
yy

dt
d

;  ;02 =C ; 1C
dx
dyy = ; 
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21
2 2 CxCy += . 

It must pass through corresponding boundary points (x0,y0)=(0,0). Hence, 
С2 = 0 and we get: 

x
x
y

y ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

1

2
12 ,     

where 11 , xy  are point coordinates. 
This is parabola equation. 

 
2.11. Summarizing of the simplest problem of calculus of variation 
 

2.11.1. Formulas depend on high order  derivatives 
 

Minimization of functional like below: 

( )[ ] ( )[ ]∫=
1

0

,...,',,
x

x

n dxyyyxFxyJ . 

Function F must be differentiable with respect to all variables n+2 times. 
Boundary conditions are set: 

( )
( )
( )

( ) ( ) ( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=
=
=

−− ;
.....................
;''''

;''
;

1
00

1

00

00

00

nn yxy

yxy
yxy

yxy

           

( )
( )
( )

( ) ( ) ( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=
=
=

−− .
.....................
;''''

;''
;

1
11

1

11

11

11

nn yxy

yxy
yxy

yxy

. 

Suppose, boundary conditions are given for both edges. Extremals are 
defined using Euler- Poisson equation: 

∫ ∫=
D D

NNNN dxdxdxpppzxxxFxxxZJ ...),...,,,,,...,(...)]...,([ 2122121 . 
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Example.  
Find extremal of functional: 

( )[ ] ( )∫ −=
1

0

2 ''720 dxyyxxyJ . 

Boundary conditions are there:  
( ) 00 =y ; ( ) 10' =y ; 

( ) 01 =y ; ( ) 11' =y . 
Euler-Poisson equation is represented as: 

0)2(720 2

2
2 =′′−+ y

dx
dx ;  2360xy =′′′′ ; 

43
2

2
3

1
6 CxCxCxCxy ++++= . 

Substitute boundary conditions: 
                       ;21 −=C  ;02 =C   ;13 =C   04 =C  and with respect to they 

( ) xxxxy +−= 36 2 . 
 

2.11.2. Functionals depend on m functions 
 

Assume, m functions y1(x), y2(x),…, ym(x) are considered. 
Boundary conditions must be defined with respect to all functions. Mark 

them in the following way: 
)0(

0 )( kk yxy = ; )1(
1)( kk yxy = ; mk ÷=1 . 

Extremum of functional is necessary to find: 

∫=
1

0

''
111 ),...,,,...,,(]...[

x

x
mmm dxyyyyxFyyJ . 

For this, a system of 2nd order differential equations need to be solved. 
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⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=−

−−−−−−−−−

=−

=−

.0

;0

;0

'

'
2

'
1

1

1

mm yy

yy

yy

F
dx
dF

F
dx
dF

F
dx
dF

 

 
Example. 

Find extremum of functional: 

∫ ++=
2

1

222 )''()](),([ dxzzyxzxyJ . 

Boundary conditions are below:  
1)1( =y ; 2)2( =y ; 0)1( =z ; 1)2( =z . 

The system of differential equations for this functional is represented as: 

⎩
⎨
⎧

=−
=

.0"
;0"

zz
y

 

Solving the system, we get: 

⎩
⎨
⎧

−=

+=
− .

;

43

21
xx ececz

cxcy
 

For a set с we can get the following expressions: 
11 =c ; 

02 =c ; 

1
1

23
−

=
e

c ; 

12

2

4
−

=
e

ec . 
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Desired extremal is: 

⎪⎩

⎪
⎨
⎧

−
=

=

.
1

)1(
;

sh
xshz

xy

 

 
In general case, boundary conditions may to be not enough to determinate 

all constants c. In this case, some c in solution are arbitrary. 
 
2.11.3. Functionals depend on functions of several independent variables 
 

a) In the first, consider functionals depend on functions from 2 variables. 
Assume, a function ),( yxZ  depends on 2 variables. Physically meaning 

of ),( yxZ is some arbitrary surface. Such way, corresponding functional can be 
written as: 

∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
D

dxdy
y
z

x
zzyxFyxZJ ,,,,)],([ . 

Problem has solution, if function F is able to be derivatived three time 
with respect to all its arguments. Suppose desired function Z in area D is 
continuous together with its derivatives upto 2nd order (inclusive). Assume, area 
D has edge Г. Here, we are forced to define boundary conditions at all area Г. 
Surface ),( yxZ  provides extremum of functional, if it is satisfied Euler-
Ostrogradski equation: 

{ } { } 0=
∂
∂

−
∂
∂

− qpz F
y

F
x

F , 

where: 
x
zp
∂
∂

= ; 
y
zq
∂
∂

= . 

{ }
x
qF

x
pF

x
zFFF

x pqpppzpxp ∂
∂

+
∂
∂

+
∂
∂

+=
∂
∂

; 

{ }
y
qF

y
pF

y
zFFF

x qqqpqzqyq ∂
∂

+
∂
∂

+
∂
∂

+=
∂
∂

. 

This equation is used to solve extremals. 
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Example. 
Find extremum of functional like: 

dxdy
y
z

x
zyxZJ

D
∫∫

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
22

)],([ . 

Integrand is: 
22),,,,( qpqpzyxF −= . 

Hence, we easy find Euler-Ostrogradski equation:  

0)2()2( =−
∂
∂

−
∂
∂

− q
y

p
x

; 

02

2

2

2
=

∂

∂
−

∂

∂

y
z

x
z

. 

Further, we find solution in common way. 
b) Assume, desired function Z is function depending on N variables: 

).,...,,( 21 NxxxZZ =  
We have functional: 

∫ ∫=
D D

NNNN dxdxdxpppzxxxFxxxZJ ...),...,,,,,...,(...)]...,([ 2122121 ; 

k
k x

zp
∂
∂

= ; nk ÷= 1 . 

Euler-Ostrogradski equation is: 

{ } 0
1

=
∂
∂

− ∑
=

n

i
p

i
z i

F
x

F . 

In detailed representation: 

0)(
1

=
∂
∂

++− ∑
= i

i
ppizp

n

i
pxz x

p
FpFFF

iiiii
. 

In this case, Г isn’t line, but it is some multidimensional bound of 
multidimensional area. 
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2.12. Variation problems with conditional extremum 
 

Variation problem, which is solving extremum of functional with 
additional conditions to desired function, is named as variation problem with 
conditional extremum. 
 
2.12.1.Isoperimetric problem 
 

Two functions are given: )',,(),',,( yyxGyyxF . Supposing that they 
have continuous partial derivatives for 1st and 2nd order in considered range 

10 xxx ≤≤ , for any y and 'y . Assume, functional K[y] is defined using 
the following expression: 

∫ ==
1

0
)',,(][

x

x
ldxyyxGyK ,                                 (2.12.1) 

where l is given value. 
For these conditions, it is necessary to determinate extremum of 

functional J . 

∫ →=
1

0
.)',,(][

x

x
extrdxyyxFyJ                             (2.12.2) 

To solve this problem, Euler theorem is used:  
If a curve  )(xyy =  provides conditional extremum to functional:  

∫=
1

0
)',,(][

x

x
dxyyxFyJ , 

with condition  

∫ ==
1

0
)',,(][

x

x
ldxyyxGyK , 00 )( yxy = , 11)( yxy = , 

and )(xy  is not extremal of functional ][yK , then such constant λ  exists, that 
a curve )(xy  is conditionless extremal of new functional L: 

dxyyxGdxyyxFL
x

x

)]',,()',,([
1

0

λ+= ∫ . 
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Example. 

 
 
Line connects points А and В.  

0)()( ==− ayay . 
Length of line is given: πа< l <2а. 
It is required to find function )(xy  in order to maximal area embraced by 

curve l. 
 
Solution. 

The problem comes to finding extremum of expression: 

                      ∫=
b

a
dxxyxyJ )()]([  with condtions; 

0)0()( ==− yay , 
and with additional condition 

ldxyyK
a

a
=+= ∫

−

2'1][ . 

Compose auxilary function: 
2'1 yyGFH ++=+= λλ . 

We get new functional: 

∫
−

=
a

a
dxyyxHL )',,( . 

Euler equation is: 
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1
'1

'
2

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+ y

y
dx
d λ

. 

Further: 

12'1

' cx
y

y
+=

+

λ
. 

After transformation, we get: 
22

2
2

1 )()( λ=+++ cycx  - is equation of piece of circle. 
 
2.12.2. The rule of mutuality of isoperimetric problems 
 

Extremal y1 satisfying conditions: 
[ ]
[ ]⎩

⎨
⎧

=
→

,
;

constyK
extryJ

 

is congruent with extremal y1 satisfying conditions: 

⎩
⎨
⎧

=
→

.][
;][

1

1

constyJ
extryK

 

 
2.12.3. Isoperimetric problems with several conditions 

 
If piecewise smooth function )(xy  provides conditional extremum of 

functional ][0 yJ  with the following conditions: 

                                                
⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
−−−−−−

=
=

;][

;][
;][

22

11

kk lyJ

lyJ
lyJ

    l1÷lk – are assigned values. 

( ∫=
1

0
)',,(][

x

x
ii dxyyxFyJ ). 
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then a set of constants { }iλ , ki ÷= 0 , 1... 22
1

2
0 =+++ kλλλ , exists in such a 

way, that a curve y provides conditionless extremum of functional: 

∫ ++++=
1

0
221100 )...(

x

x
kk dxFFFFL λλλλ . 

 
2.12.4. Isoperimetric problems for a set of functions 

 
Isoperimetric problem is named in that case, if it is required to find 

extremum of functional: 

∫=
1

0

''
2

'
121 )...,,...,,(][

x

x
nn dxyyyyyyxFyJ ,  

with conditions: 

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

=

−−−−−−−−−−−−−−−

=

=

∫

∫

∫

1

0

''
11

1

0
2

''
112

1

0
1

''
111

.)...,...,(

;)...,...,(

;)...,...,(

x

x
mnnm

x

x
nn

x

x
nn

ldxyyyyxG

ldxyyyyxG

ldxyyyyxG

 

l1÷lm – are assigned values. 
(Continuous requirements are the same) 

To find solution a functional is composed: 

∫ ∑ ⎟
⎠

⎞
⎜
⎝

⎛
+=÷

=

1

0 1
01 ][

x

x

m

i
iin dxGFyyФ λ . 

It is solved as usually (finding conditionless extremum). 
Constants λ and С is determinated using boundary and isoperimetric 

conditions. 
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Example. 
Find extremal of functional like that: 

∫ −−+=
1

0

22 )4'4''()](),([ dxzxzzyxZxyJ ; 

⎩
⎨
⎧

==
==

,1)1(,1)1(
;0)0(,0)0(

zy
zy

 

with additional condition: 

2)'''( 2
1

0

2 =−−∫ dxzxyy . 

Compose auxilary functional: 

dxzxyyzxzzyФ )]'''(4'4''[ 22
1

0

22 −−+−−+= ∫ λ . 

Corresponding Euler equations are there: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−−−−

=−+

.0)'24'2(4

;0)'2'2(

zxz
dx
d

xyy
dx
d

λ

λλ

 

Solution is: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+
−

=

+
+
+

=

.
)1(2

)(

;
)1(4

2
)(

4
3

2
1

2

c
xc

xz

c
xcx

xy

λ

λ
λ

 

Taking into account boundary conditions, we get the following: 

2
43

1

+
=

λc , 02 =c , )1(23 λ−=c , 04 =c . 

After the substituting: 

⎪
⎩

⎪
⎨

⎧

=
+

++
=

.)(

;
)1(4

)43()(
2

xxz

xxxy
λ
λλ
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After repeated using isoperimetric condition: 

)12(48)244623(
3
1 22 ++=++ λλλλ . 

Hence: 

11
10

1 −=λ . 

(Other root is 
11
12

2 −=λ  - is not satisfied original isoperimetric condition). 

Finally: 

⎪⎩

⎪
⎨
⎧

=

−
=

.)(

;
2
57)(

2

xxz

xxxy
 

 
2.12.5. Lagrange problem 
 
(It is problem for conditional extemum also) 

Target setting. 
Find functions nyyy ,...,, 21  providing extremum of functional, with 

boundary conditions: 
( ) 00 jj yxy = ;  ( ) 11 jj yxy = ;  nj ÷=1 . 

Additional conditions do not concern to functional of desired functions, 
but they concern to relations between these original functions, and are 
represented as: 

( )
( )

( )⎪
⎪
⎩

⎪
⎪
⎨

⎧

==

==
==

.0,...,,,

;0,...,,,
;0,...,,,

21

2122

2111

nmm

n

n

yyyx

yyyx
yyyx

ϕϕ

ϕϕ
ϕϕ

       m<n. 

To find solution the following theorem is used. 
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Theorem: Functions nyyy ,...,, 21 , implemting extremum of functional J with 

a set of conditions ϕi,, i=1÷m, are satisfied Euler equations for modifed 
the following functional, if multipliers λi(x), i=1÷m are choosen accordingly: 

( )∫ ∑ ⎥⎦

⎤
⎢⎣

⎡
+=

=

1

0 1

*
x

x

m

i
ii dxxFJ ϕλ . 

(Here λi – are not constant already, but they are functions from х) 
ϕi=0 can be considered as Euler equations for functional J*, if arguments of 
the functional are considered not only functions ( ) ( )xyxy n÷1 , but and 

additional functions ( ) ( )xx mλλ ÷1  too. Mark:  

( )nn
m

i
ii yyyyxF ',...,',,...,, 11

1
Φ=+ ∑

=
ϕλ . 

Then, functions yj(x), and functions λi(x) are determinated from joint 
solution of the following system of equations: 

( )

( ) ( )⎪⎩

⎪
⎨
⎧

==

==Φ−Φ

....1   ;0,...,,

;...1   ;0

1

'

miyyx

nj
dx
d

ni

yy ji

ϕ
 

(n+m equations for n+m desired unknown functions ) 
 
Example.  

The surface, satisfying the following equation, is given: 
022715 =−+− zyx . 

At that two points: A(1;-1;0); B(2;1;-1) are given. Find equation of curve 
with minimal length connecting these points. 
 
Solution. 

At any surface, satisfying equation ( ) 0,, =zyxϕ , length between points 
A(x0,y0,z0); B(x1,y1,z1) are determinated using formula: 

                                    ∫ ++=
1

0

22 ''1
x

x
dxzyl ; y=y(x); z=z(x) – are projection 

of line connecting these points at corresponding coordinate planes. 
 

– 93 – 



Compose auxilary functional like that: 

( )( )∫ −+−+++=
2

1

22* ]22715''1[ dxzyxxzyJ λ . 

According Euler equations are below: 

( )( )

( )
⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
−⋅

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
−−

.0
''1

'1

;0
''1

'7

22

22

zy
z

dx
dx

zy
y

dx
dx

λ

λ

 

After transformation: 

;0
''1

'7'
22

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

−

zy

zy
dx
d

 

122 ''1

'7' C
zy

zy
=

++

−
;  15'7' −= yz ; 

( ) 23 CxCxy += ;  С3 = 2;  С2 = -3; 

( )
( )⎩

⎨
⎧

−=
−=
.1

;32
xxz

xxy
 

We get equation of right line, connecting two points at the surface (the 
surface is defined by isoperimetric condition). 

( ) 0≡xλ  . 

Length l is equal:                   6=l . 
Shortest line at given surface and connecting two specified points is 

named as a geodesic line. 
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2.13. Variation tasks with moving boundary 
 

This is class of the tasks when Limits of integral in function are not 
constants. 
 
2.13.1. The simple task with moving boundary 

Let ( )',, yyxF  - Thrice differentiable function on all arguments and in 
plane XOY two curves are given: 

 
( )
( ).

;
xy
xy

ψ
ϕ

=
=

 

Let's consider functional: 

[ ] ( )∫=
γ

dxyyxFyJ ',, . 

Given  functional  determined will be considered in a class of curve y(x) 
What is the ends lay on these lines ϕ(x) and ψ(x). Thus y0=φ(x0), y1=ψ(x1),but х0 
and х1- unknown. It is required to find extremum initial functional 
For solution  we shall use the following theorem, Let the curve y (x) gives 
extremum of function: 

[ ] ( )∫=
γ

dxyyxFyJ ',, . 

Among all curves, two given lines ϕ (x) and ψ (x) connecting two any 
point. Then y (x) is extremum and on its ends A (x0, y0, z0); B(x1, y1, z1).  

Conditions transversally a kind are satisfied: 

( )[ ]
( )[ ]⎪⎩

⎪
⎨
⎧

=−+

=−+

=

=

.0''

;0''

1

0

'

'

xxy

xxy

FyF

FyF

ψ

ϕ
 

These conditions were used for find extremum. The solution with use of 
the theorem is carried out by the following sequence of actions: 

1. To write and solve appropriate equation Eiler a usual way. Consider 
moving boundary, thus we find ),,( 21 ccxfy = , с1, с2 -  const. 
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2. Using two  equations transversal and two new equations 
)(),,( 0210 xccxf ϕ= ; 

)(),,( 1211 xccxf ψ= . 
We find the system from four equations with four unknown const: 

1021 ,,, xxcc . 

3. Solution this system we are finding the const 1021 ,,, xxcc . 
 
Example: 

Find the shortest distance between two lines which are given by the 
following equations: 

       2xy = , 5=− yx . 
Solution. 

We are finding the value of extremum function: 

;'1
1

0

2 dxyJ
x

x
∫ +=  

2)( xx =ϕ ; 
5)( −= xxψ . 

Solve initial equation Eiler, Including boundary points as though fixed: 

21 cxcy += . 
The condition transversally for this situation has the following kind: 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−++

==
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−++

; при,0
'1

')'1('1

; при,0
'1

')'2('1

12

2

02

2

xx
y

yyy

xx
y

yyxy

 

⎩
⎨
⎧

−=+
=+

;5
;

1111

2
0101

xcxc
xcxc

 

1' cy = ; 
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⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
+

−++

=
+

−++

;0
1

)1(1

;0
1

)2(1

2
1

1
1

2
1

2
1

1
10

2
1

c

c
cc

c

c
cxc

 

.
8
23;

2
1

;
4
3;1

10

21

==

=−=

xx

cc
 

  
Extremum it is achieved on function 43+−= xy . Thus the minimal 

distance is equal: 

8
219)1(1

8/23

2/1

2 =−+= ∫ dxl . 

 
 
2.13.2. A task for three measured spaces 
 

For this task line located in  measured spaces, i.e we need to find 
functional kind: 

∫=
1

0
)',',,,(],[

x

x
dxzyzyxFzyJ . 

Let even one of boundary points (x0, y0, z0) or B (x1, y1, z1) moves on 
the given curve. 

Then extremum of function may be achieved only on curves satisfying 
system of equations Eiler. 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−

=−

.0

;0

'

'

zz

yy

F
dx
dF

F
dx
dF
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For simplicity we shall consider, that point A is fixed motionlessly, and 
the point B may move over a curve which is set by system of the equations. 

⎩
⎨
⎧

=
=

);(
);(

xz
xy

ψ
ϕ

  

),,( 000 zyxA , ),,( zyxB . 
In this case the condition transversal will become: 

 

1'' when   ,0)''()''( xxFZFyF zy ==−+−+ ψϕ . 
 

If also the point A moves over a curve it means, that position of a point A 
can be determined system: 

⎩
⎨
⎧

=
=

).(~
);(~

xz
xy

ψ
ϕ

 

 
The condition transversally for a point A looks like: 

 

0'' when ,0)'~()'~( xxFZFyF zy ==−+−− ψϕ . 
 
Example. 

Find the shortest distance from a point ),,( 000 zyxM  up to the straight 
line any way focused in space given by system of the equations: 

⎩
⎨
⎧

+=
+=

.
;

qnxz
pmxy

 

Solution 
 

The problem is reduced to search of integral: 

dxzyzyJ
x

x
∫ ++=
1

0

22 ''1],[ . 
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When the condition that x1 Moves on a line described by system: 

                                              
⎩
⎨
⎧

+=
+=

.)(
;)(

qnxx
pmxx

ψ
ϕ

                                        (2.13.1) 

The common solution for (13.1) in this case looks like: 

⎩
⎨
⎧

+=
+=

.
;

43

21

cxcz
cxcy

 

For the right border of a condition transversally: 
 

12222

22 when ,0
''1

')'(
''1

')'(''1 xx
zy

zzn
zy

yymzy ==
++

−+
++

−+++ . 

 
Let's take into account, that: 31 ',' czcy == .  
Substituting it in a condition transversal, we receive .01 31 =++ ncmc   
It is necessary take into account that unknown extremum should pass 

through point ),,( 000 zyxM .  
So we find new system of equations: 

⎩
⎨
⎧

+=
+=

.
;

4030

2010

cxcz
cxcy

 

Other end moves over a straight line, the point means 1x . It is connected 
by system: 

⎩
⎨
⎧

+=+
+=+

.
;

1413

1211

qnxcxc
pmxcxc

 

Thus, there are 5 equations and 5 unknown 43211 ,,,, ccccx . Solving 
these equations, we receive: 

22
000

1
1

)()(
mn

qznpymx
x

++

−+−+
= ; 

0
22

00

0
2

00
1

)()()(
))(1()(

xnmqznpym
pynqzmnmx

c
+−−+−

−+−−+
= ; 
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0
22

00

0
2

00
3 )()()(

))(1()(
xnmqznpym
qzmpymnnx

c
+−−+−

−+−−+
= . 

C2 and C4  not necessarily to find. 
Answer: 

22
0002

0
2
0 1

)()(
)(],[min

mn
qznpymx

pyxzyJ
++

−+−+
−−+= . 

Let one of points is fixed - ),,( 000 zyxA , other point may move on some 
surface which equation is set by the equation, In this case the condition 
transversal becomes: 

( )[ ]
[ ]⎪⎩

⎪
⎨
⎧

=+

=−+−

=

=

.0'

;0'''

1

1

''

''

xxyzy

xxzxy

FF

FzFyF

ϕ

ϕ
 

This conditions together with the equation ( )yxz ,ϕ=  enable to find two 
arbitrary constant in equation Elier, other two constant can determine from 
conditions extremum by fixed point A.  

 
Example. 

The point A (1,1,1) is given, the sphere which surface is described by the 

equation is given 1222 =++ zyx . To find the shortest distance from a point up 
to sphere. 
 
Solution. 

The task is reduced to research on extremum following functional: 

[ ] ∫ ++=
1

22

1

''1,
x

dxzyzyJ . 

Extremum in a general view it is given by the following system of the 
equations: 

⎩
⎨
⎧

+=
+=

.
;

43

21

CxCz
CxCy

 

 
 

– 100 – 



From a condition of passage extremum through a point A (1,1,1), we shall 
receive: 

⎩
⎨
⎧

=+
=+

.1
;1

43

21

CC
CC

 

The condition transversally will become: 

( )
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−
⋅

++
+

++

=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

++
⋅⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

−−

−
+

++
−++

=

=

.0
1''1

'

''1

'

;0
''1

''
1''1

'''1

1

1

222222

222222

2
22

xx

xx

yx

y

zy

z

zy

y

zy

zz
yx

x

zy

yzy

 

From the condition transversally we find the following:  

⎩
⎨
⎧

=−
=−

.0
;0

1311

131

yCzC
xCz

 

where: x1,y2,z1- coordinate of point B. 

⎩
⎨
⎧

+=
+=

.
;

4131

2111

CxCz
CxCy

 

11 =С ; 02 =С ; 13 =С ; 04 =С . 

It follows that: 

( )
( )⎩

⎨
⎧

==
==

.
;

xzxz
xyxy

 

Having substituted it in the equation of sphere, we shall find: 

x2 + y2 + z2 = 1; 

x1
2 + y1

2 + z1
2 = 1; 

x1 = y1 = z1 = 
3

1
± . 

 

 
– 101 – 



B1 ⎟
⎠

⎞
⎜
⎝

⎛
3

1,
3

1,
3

1
; 

B2 ⎟
⎠

⎞
⎜
⎝

⎛ −−−
3

1,
3

1,
3

1 . 

Answer:                              B1 ⎟
⎠

⎞
⎜
⎝

⎛
3

1,
3

1,
3

1
; 

133111
1

3
1

1

3
1

min −==++= ∫∫ dxdxJ . 

 

2.14. Geodesic distance 

 
Geodesic distance: Length of a geodetic line between two given points(J-

length). 
Furthermore, a geodetic line in curvilinear space sometimes name J - a 

straight line. 
 
Example. 
 

The points A (0, 0) and B (1, 1) were given to be on some curvilinear 
surface, the distance on a surface is determined by expression: 

∫ ′⋅=
B

A
dxyyyJ 2][ . 

It is required to find geodetic length between these points on a plane. 

Solution. 

Geodetic distance - the minimal distance, i.e. min J [y], boundary 
conditions: coordinates A and B. 

We work out equation Эйлера: 

 

– 102 – 



).(0

;0)2(2

2

22

yy
dx
dyyy

yy
dx
dyy

′==′+′′

=′⋅⋅−′⋅⋅

 

From this equation we can write down constCyy ==′ . 

After some transformations: 

21
2 CxCy +⋅= . 

Using boundary conditions: 

.0;1
;1)1(
;0)0(

21 ==
⎩
⎨
⎧

==
==

CC
xy
xy

 

Thus ,the equation extremum: 

xyxy == ;2 . 

From this it follows that: 

J(A,B) = 0,25; 

geodesic length= 0,25. 

The geodetic distance between a point and a line is determined more 
difficultly. Here it is necessary to observe simultaneously two conditions: 

1)  min ∫ ′
B

A
dxyyxF ),,( . 

2) That point in which our geodetic line and the given line are mutually 
perpendicular gets out. 

Geodetic distance between a point and a line - L - distance lengthways 
extremum, connecting a point and line L in that place where extremum and line 
L are crossed perpendicularly.  

Geodetic circle (J - a circle) - the line, which all points are on identical 
distance from the given point. 
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2.15. Explosive problems 

Earlier determined function ),,( yyxF ′ . As twice differentiable on х. 

Parameter of it was a condition 0≠′′yyF .  

However there is a class of problems which at such severe constraints 
have no the decision, but at mitigation of conditions well are solved. 

Thus such methods allow to find extremum functional as piecewise 
continuous function. 

 

2.15.1. Explosive problems of the first sort 

Let's consider some functional: 

∫ ′=
1

0

),,(][
x

x
dxyyxFyJ . 

Boundary condition: Let all allowable decisions satisfy to conditions: 

⎩
⎨
⎧

=
=

.)(
;)(

11

00

yxy
yxy

 

But except for it we admit, that the required decision y (x) may have a 
break in some point x0 < C < x1. This break may be only there.  

Where it is carried out: 

0=′′yyF . 

For search of the decision we shall take advantage of condition 
Вейерштрасса - Эрдмана: 
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If C - a point of a break from the different sides from a point C function y 
may be expressed by various formulas. 

С – 0 and С + 0 - pieces of function y on the different sides from a break. 

Except for it, itself extremum it should be continuous. 

)0()0( +→=−→ CxyCxy . 

Set of these conditions allows to find extremum and coordinates of a point 
of a break C. 

 

Example. 

It is given functional:         

∫ −′=
2

0

22 )(][ dxyyyJ . 

Find extremal: 

2=′′yyF  > 0; yFy ′=′ 2 - means, in this example the solution can be found 

and as smooth function. 

 

Example. 

It is given functional:           

dxyyyJ ∫ ′−′=
2

0

24 )6(][ . 

Boundary conditions:             

y(0) = 0; y(2) = 0. 

1212 −′=′′ yF yy  - points quite may find. 

0y yF ′ ′ = . 

Means, at extremum presence of breaks in any point is possible.  
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Let's search extremum as a broken line. 

Sub integral function depends only from y′ . From here the solution will 
be direct lines y = C1x + C2. 

In the field of smooth functions the decision one: y = 0. 

y(0) = 0 = C1 ⋅ 0 + C2 ⇒ C2 = 0; 

y(2) = 0 = C1 ⋅ 2 + C2 ⇒ (C2 = 0) = C1 = 0. 

 

Therefore in the given task the not trivial decision is possible only among 
extremum with a break. 

F - it is identical in both parts, that y+ and y-. There will be direct lines, but with 
the factors: 

⎩
⎨
⎧

≤≤+=
≤≤+=

−

+

).(;
);(;

1

0

xxCnmxy
Cxxqpxy

 

m, n, p, q, C – unknown. 

If we substitute boundary condition then n = 0; q = -2p. 

⎩
⎨
⎧

+=
=

+

−

).2(
;

xpy
mxy

 

At the same time extremum it should be continuous in point C: 

).2()()(
;

−=⇒===
=

+−

+−

CpmCCxyCxy
yy

 

Using condition Вейерштрасса – Эрдмана:   

⎪⎩

⎪
⎨
⎧

′+′−=′−

′−′=

′

′

.63
;124

2

3

yyFyF
yyF

y

y
 

It is possible to notice pymy =′=′ +− ; . 

Let's substitute it in condition В-Э. We shall receive: 
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⎩
⎨
⎧

+−=+−
+=−

.6363
;124124
242

33

ppnm
ppnm

 

After transformation: 

⎩
⎨
⎧

=−+⋅−
=−++⋅−

.0)2()(
;0)3()(

2222

22

pmpm
pmpmpm

 

From the second equation 2;; 22 =+−== pmpmpm . If pm = , 
extremum has a continuous derivative and earlier this variant is rejected.  It is 
means, both equations can be divided on pm − . 
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=++⋅+

.2)()(
;03

22

22
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ppmm

 

This system has more simple solution: 

⎩
⎨
⎧

=++
=+

⎩
⎨
⎧

=++
=+

.3
;2

:2

;3
;0

:1

22

22

22

pmpm
pm

pmpm
pm

 

The equations of system 2 are received when pm −= . Also are neglected. 

The system 1 has two solutions: 

.3;3:2

;3;3:1

=−=

−==

pm

pm
 

Taking into consideration, that pm −= . And substituting in conditions 
)()( CyCy +− = . We receive C = 1. 

There are two sought extremum. Completely equal in rights: 
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2.15.2. Explosive problems of the second sort 

  ∫ ′=
2

1

;),,(
x

x
dxyyxFJ  ;)( 11 yxy =  22)( yxy = . 

Problems of the second sort - when function F has break. 

Let this break lengthways )(сФy =  - a curve. Let on the one hand from 

result ),,(1 yyxF ′ , with another ),,(2 yyxF ′ . If the solution exists, it too consists 
of pieces extremum. Thus both extremums have the general point on a line of 
break. 

21 xcx << ; cx = ; )(сФy = . 

For determination of a sought broken line extremum we receive two 

equations Elier. They contain four constants  4321 ,,, cccc . Also it is necessary to 
find unknown C where meet 2 extremums. 
 

Two boundary condition: 
 

2211 )(,)( yxyyxy == ; 

                                     ).()(
);()(

2

1

сФcxy
сФcxy

==
==

 

Condition on a joint: 

022011 )()(
+=′−=′ ′−′+=′−′+

cxycxy FуФFFyФF . 
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2.15.3. Explosive problems for extremum from several functions 

),...,,,...,,( 2121 nn yyyyyyxF ′′′ . 

If sub integral function F is continuous on all arguments and has private 
derivatives up to the third order for realization of broken lines extremum y a 
condition should be satisfied Вейерштрасса – Эрдмана. 
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2.16. One-sided variations 

∫ ′=
2

1

;),,(][
x

x
dxyyxFyJ  ;)( 11 yxy =  22)( yxy = . 

To find extremum it functional under certain conditions. If earlier the 
condition was set by the equation, now an inequality: 

0≥)(− xy φ . 

At such formulation required extremumwill consist of pieces of borders and 
)(xφ  and from pieces extremum y. In points of a joint )(xφ  and y the basic 

extremum and may have explosive points. 

[ ] 0),,()(),,(),,( =′′−′−′−′
=′

cxxy yyxFyyxFyyxF φφ , 

cx  - factor of a point of a joint. 

If in cx  0≠′′yyF , that extremum concerns border φ . 

Example. 

 А (-2, 3), В (2, 3). 

 

 

– 109 – 



Find the shortest way between A and B which lays below a parabola 
2xy ≤ . 

∫
−

=′+=
2

2

21 dxyJ min; 

.0
]1[

1
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;3)2(
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2/32
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xCCy
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In a point of a contact of ordinate of a parabola and ordinates of straight 
lines coincide: 
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In a case of more complex borders the mobile ends are used. 
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