Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Владимирский государственный университет Кафедра сопротивления материалов

> Н.А. МАЛОВА КВОФИЕ Р. ОХЕНЕ

ЧИСЛЕННЫЕ МЕТОДЫ В СТРОИТЕЛЬСТВЕ

Методические указания

«В печать»: Автор – Зав. кафедрой – Редактор – Корректор – Начальник РИО – Директор РИК –

Н.А. Малова, Квофие Р. Охене.

Л.В. Пукова Е.В. Афанасьева Е.П. Викулова Ю.К. Жулев

Владимир 2005

Рецензент

Кандидат технических наук, доцент кафедры теплогазоснабжения, вентиляции и гидравлики Владимирского государственного университета *М.В. Мельников*

Печатается по решению редакционно-издательского совета Владимирского государственного университета

Численные методы в строительстве: метод. указания / сост.: 467 Н. А. Малова, Квофие Р. Охене ; Владим. гос. ун-т. – Владимир : Издво ВлГУ, 2005. – 44 с.

Методические указания содержат задания и примеры численного решения задач с применением современного программного обеспечения ЭВМ по дисциплине «Численные методы в строительстве». Способствуют усвоению основных теоретических положений и методике расчета курса «Численных методов» прикладного направления применительно к численному решению строительных задач.

Содержат задания по темам: решение дифференциальных уравнений; метод конечных элементов в расчетах балок при растяжении – сжатии; метод конечных элементов в расчетах плоских ферм.

Предназначены для студентов дневной формы обучения по специальностям, связанным со строительством.

Табл. З. Ил. 5. Библиогр.: 5 назв.

УДК 519.6 ББК 22.19

ВВЕДЕНИЕ

Методические указания предназначены для студентов строительных специальностей, содержит задания к решению задач, предназначенных для ознакомления с началами численных методов, на примере ряда задач сопротивления материалов и строительной механики.

В качестве математического инструмента для практического освоения методов численных вычислений студентам предлагается современный программный комплекс MathCAD-2000, позволяющий приобрести устойчивые навыки в решении прикладных задач.

Методические указания содержат три задания, позволяющие ознакомиться с методом конечных элементов на примере задач, вычисляющих перемещения и усилия в конструкциях, а также с методом численного решения обыкновенных дифференциальных уравнений.

Задания являются индивидуальными и приведены в приложении, где рассматриваются примеры выполнения заданий, иллюстрированные необходимым графическим материалом.

Работы выполняются и представляются студентами в электронном виде.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Решение обыкновенных дифференциальных уравнений (ОДУ)

К обыкновенным дифференциальным уравнениям относятся уравнения, содержащие одну независимую переменную. В общем виде уравнения могут быть записаны как $F(x, y, y', y'', ..., y^n) = 0$, где x – независимая переменная. Наивысший порядок n входящей в уравнение производной называется порядком дифференциального уравнения.

Решением ОДУ называется всякая функция $y = \phi(x)$, которая после ее подстановки в уравнение превращает его в тождество.

Решение в общем виде: $y = \phi(x, C1, C2,...,Cn)$

Частное решение получается из общего, если произвольным постоянным $C_1, C_2, ..., C_n$ придать определенные значения. Для выделения частного решения из общего следует задавать столько дополнительных условий, сколько произвольных постоянных в общем решении, т.е. каков порядок уравнения. Если эти условия задаются в одной точке, то такая задача называется задачей Коши. Дополнительные условия в задаче Коши называются начальными условиями, а точка $x = x_0$, в которой они задаются, – начальной точкой.

Одним из наиболее точных методов численного решения ОДУ является метод Рунге – Кутта. Метод является одношаговым, решаемым по схемам различных порядков точности. Порядок определяется порядком точности по шагу h на сетке. Схема Рунге – Кутта четвертого порядка точности

$$y_{i+1} = y_i + \frac{h}{6} \cdot (k_0 + 2k_1 + 2 \cdot k_2 + k_3)$$

где i = 0,1, k – коэффициенты, которые определяются:

$$k_{0} = f(x_{i}, y_{i}) \qquad k_{1} = f\left(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{0}}{2}\right)$$
$$k_{2} = f\left(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{1}}{2}\right) \qquad k_{3} = f\left(x_{i} + h, y_{i} + k_{2}\right)$$

Программа решения для нахождения пошаговых значений у, реализованная в MathCAD, для ОДУ первого порядка:

$$rk4(y0, a, b, n, f) := \begin{cases} y \leftarrow y0 \\ x \leftarrow a \\ h \leftarrow \frac{b-a}{n} \end{cases}$$
while $x < b$

$$k1 \leftarrow f(x, y) \cdot h$$

$$k2 \leftarrow f\left(x + \frac{h}{2}, y + \frac{k1}{2}\right) \cdot h$$

$$k3 \leftarrow f\left(x + \frac{h}{2}, y + \frac{k2}{2}\right) \cdot h$$

$$k4 \leftarrow f(x + h, y + k3) \cdot h$$

$$y \leftarrow y + \frac{1}{6} \cdot (k1 + 2 \cdot k2 + 2 \cdot k3 + k4)$$

$$x \leftarrow x + h$$

$$y$$

Здесь y_o – начальное значение функции при хо = a; [a, b] – интервал интегрирования; n – заданное количество шагов на интервале; f(x,y) – уравнение первой производной.

ОДУ высших порядков для численного решения функциями Math-CAD должны быть представлены задачей Коши в векторной форме. Само решение функциями выдается в табличном и графическом виде.

Рассмотрим решение на примере дифференциального уравнения второго порядка при помощи функции **rkfixed** (решение Рунге – Кутта четвертого порядка точности с фиксированным шагом).

Математическая постановка задачи сводится к представлению вектора начальных условий и вектора системы ОДУ. Предварительно уравнение должно быть преобразовано в систему уравнений первого порядка:

$$Yo = y(x);$$

 $Y_1 = Yo' = y_{\cdot};$
 $Y_1' = f(x, Yo, Y_1) = y'';$

вектор начальных условий:

$$y = \begin{pmatrix} y(x_0) \\ y'(x_0) \end{pmatrix}$$
(2)

векторная функция правых частей уравнения

$$D(x, Y) = \begin{pmatrix} Y_1 \\ y''(x, Y_0, Y_1) \end{pmatrix}$$
(3)

Формат функции **rkfixed**(y, xo, xk, Npoins, D) включает определенный выше вектор начальных условий y, начальное xo и конечное xk значения интервала интегрирования, количество расчетных точек Npoints и векторную функцию правых частей D(x,Y). Численное решение уравнения получаем в виде матрицы, которая содержит в первом столбце координаты N узлов равномерной сетки на отрезке [xo, xk], во втором – приближенные значения решения в этих узлах функции, в третьем – первой производной.

Функция **rkadapt** решает уравнение методом Рунге – Кутта с автоматическим подбором шага.

Численные методы Булирша-Штера и алгоритма Розенброка для жестких систем представлены рядом функций (**bulstoer, stiffr, stiffb**), также использующих векторное представление всех параметров.

Исключением векторного представления уравнения в MathCADe является функция **odesolve**, позволяющая запись уравнения в символьном виде. Перед обращением к функции необходимо записать ключевое слово Given, затем ввести уравнение и начальные условия.

Формат функции odesolve(x, b[step]) требует указать конечное значение интервала интегрирования b. Шаг Step является необязательным, но при его указании функция решает уравнение методом Рунге – Кутта с фиксированным шагом.

Основные положения метода конечных элементов и реализация решения МКЭ в системе MathCAD

Любую непрерывную величину (температуру, давление, перемещение) можно аппроксимировать дискретной моделью в виде кусочнонепрерывных функций, определенных на конечном числе подобластей, или элементов. Такая модель строится из предположения, что числовые значения искомой функции в каждой внутренней точке элемента известны. Для стержневых систем такой метод является точным. МКЭ позволяет рассчитывать системы, составленные из тел с различными физическими и геометрическими свойствами, а также имеющие сложные граничные условия.

Настоящий практикум рассматривает расчеты стержневых систем, основанные на методе перемещений, на примере одномерных конечных элементов (отрезков).

Чтобы составить конечно-элементную модель, поступают следующим образом:

• фиксируют конечное число точек (узлов), а систему разбивают на конечное число элементов, имеющих общие узлы;

• искомую функцию аппроксимируют в каждом элементе полиномом, который определяется с помощью узловых значений этой величины;

• значение функции в каждой узловой точке считается переменной, которая должна быть определена.

Расчет стержня на продольную нагрузку

В качестве неизвестной (искомой) функции принимается перемещение стержня. Стержень разбивается

на п конечных элементов (пример для 3 КЭ на рис. 1). Каждый элемент должен иметь постоянные физические и геометрические характеристики, а приложенная нагрузка на элементе должна иметь одну функциональную зависимость (для продольной нагрузки, это означает, что внутри стержня может быть либо распределенная нагрузка одной интенсивности, либо отсутствие всякой нагрузки). Все узлы и КЭ нумеруются слева направо. На рис. 2 показано, как разбита схема (см. рис. 1) на три конечных элемента (при реализации зада-

чи в программе MathCAD первый порядковый номер узла зависит от назначенной системной переменной ORIGIN, управляющей нумерацией ячеек в матрице). Узлы 1 и 2 являются общими для первого и второго КЭ, а, следовательно, приведенные к узлам внешние силы также суммируются.

Матрица жесткости одного элемента

$$\frac{\mathbf{E}\cdot\mathbf{A}\mathbf{e}}{\mathbf{L}\mathbf{e}}\cdot\begin{pmatrix}\mathbf{1} & -\mathbf{1}\\-\mathbf{1} & \mathbf{1}\end{pmatrix}\tag{4}$$

где Е – модуль упругости элемента; А – площадь поперечного сечения элемента; L – длина элемента.

Условие равновесия всей системы:

$$\{\mathbf{F}\} = [\mathbf{K}] \cdot \{\mathbf{U}\},\tag{5}$$

где {F} – матрица-вектор узловых внешних сил; [K] – глобальная матрица жесткости; {U} – матрица-вектор узловых перемещений.

Задача сводится к тому, чтобы, зная матрицы жесткости каждого элемента, на первом этапе получить матрицу жесткости всей системы (глобальную матрицу жесткости), а затем, задавшись граничными условиями, определить с ее помощью неизвестные перемещения и усилия в узлах заданного стержня.

Глобальная матрица системы, разбитой на три КЭ:

$$\begin{bmatrix} K^{(1)} & 0 & 0 \\ 0 & K^{(2)} & 0 \\ 0 & 0 & K^{(3)} \end{bmatrix}$$
(6)

Каждая матрица КЭ (1) по отношению к предыдущей сдвигается на одну ячейку вправо и одну вниз, суммируя тем самым перемещения одного и того же узла.

Граничные условия для глобальной матрицы задаются исходя из условий закрепления стержня. На схеме (см. рис. 1) согласно закреплению 0-го узла его перемещения должны быть равны нулю.

Матрица-вектор внешних нагрузок составляется в соответствии с приложенными внешними силами (опорные реакции в данном случае как величины неизвестные внешними силами не считаются). Распределенная нагрузка на элементе заменяется равнодействующей и прикладывается в узлы КЭ (см. 2-й КЭ на рис. 2).

Вектор перемещений определяется из условия равновесия системы¹ (5):

$$U := lsolve(K, F)$$
(7)

После вычисления перемещений в узлах определяются все остальные неизвестные величины (относительные деформации, напряжения, внутренние продольные усилия).

Расчет балок на поперечную нагрузку

При поперечной нагрузке в каждом сечении стержня возникают два вида перемещений: угловые и линейные. Таким образом, поиск перемещений в узлах усложняет матрицу жесткости КЭ и увеличивает ее размерность до 4 × 4:

$$Ke := \frac{Ee \cdot Je}{Le^{3}} \cdot \begin{pmatrix} 12 & 6 \cdot Le & -12 & 6 \cdot Le \\ 6 \cdot Le & 4 \cdot Le^{2} & -6 \cdot Le & 2 \cdot Le^{2} \\ -12 & -6 \cdot Le & 12 & -6 \cdot Le \\ 6 \cdot Le & 2 \cdot Le^{2} & -6 \cdot Le & 4 \cdot Le^{2} \end{pmatrix}$$
(8)

Здесь J – осевой момент инерции поперечного сечения элемента. Принцип построения глобальной матрицы тот же, что и при продольной нагрузке (3), но поскольку в каждом узле системы учитывается по два перемещения, каждая последующая матрица КЭ сдвигается на две ячейки вправо и вниз.

Вектор внешних нагрузок включает для каждого узла последовательно поперечную силу и изгибающий момент. Таким образом, если система имеет 4 расчетных узла, матрица нагрузок имеет размерность 8 × 1. Распределенная нагрузка, приложенная в КЭ, заменя-

Puc. 3

ется сосредоточенными силами и моментами в узлах (считаем, что КЭ жестко закреплен с обеих сторон) (рис. 3).

¹ Предварительно в глобальной матрице задаются граничные условия заданной системы.

Все нагрузки в матрицу-вектор заносятся согласно математическому правилу знаков (сила положительна, если ее вектор совпадает с положительной осью локальной системы координат; момент положителен, если его вращение осуществляется против часовой стрелки).

Граничные условия определяют способы закрепления. В шарнирных опорах отсутствуют линейные перемещения, в жесткой заделке – и те, и другие (и линейные, и угловые).

Расчет перемещений осуществляется по формуле (7).

Результат заносится в матрицу-вектор перемещений в следующей последовательности: линейное, затем угловое перемещение первого (по порядку слева направо) узла, затем линейное, угловое перемещение следующего узла и т. д. Если нумерация ячеек в матрице программой Math-CAD осуществляется с 1, линейные перемещения в узлах будут иметь нечетные индексы, угловые – четные.

Далее определяются внутренние усилия в узлах (поперечные силы, изгибающие моменты и внутренние напряжения)².

ПРАКТИЧЕСКИЕ ЗАДАНИЯ

Задание 1. Решение ОДУ второго порядка

Цель работы: средствами MathCAD применить численные методы для решения обыкновенных дифференциальных уравнений второго порядка. Пример выполнения задания приведен в прил.

Задание

Найти аналитически решение линейного однородного уравнения второго порядка y'' + $a1 \cdot y' + a2 \cdot y = 0$. Решить численно задачу Коши y(x0) = y₀, $y'(x0) = y_1$. Изобразите график решения и табличный вывод для x, y, y'. Данные взять из табл. 1.

² Подробнее нахождение внутренних усилий рассмотрено в примерах (прил. 2). 10

Вари-	21	37	$\mathbf{v}(\mathbf{x}_0)$	$V9(x_0)$	xo
ант	aı	a2	y(x0)	3 <i>J</i> (X0)	ло
1	2	0	1	1	0
2	- 4	4	0	1	0
3	2	1	5	0	$\pi/2$
4	0	1	3	0	-π/2
5	2	5	8	0	1
6	- 3	4	1	1	0.3
7	6	13	-1	1	0.25
8	- 8	1	4	1	$\pi/2$
9	- 2	5	6	2	-π/2
10	- 4	8	0	2	1
11	2	3	0	2	0
12	- 3	4	-1	0.5	2
13	3	1	1	1	$\pi/2$
14	5	5	4	-0.5	-π/2
15	6	10	5	2	0.8
16	- 4	6	0	0.5	0.75
17	2	- 3	1	1	-1
18	- 4	12	-1	0	$\pi/2$
19	6	9	-2	2	1
20	4	1	8	0.5	0.3
21	0	- 1	1	0	0
22	- 5	4	1	1	0
23	5	- 1	2	0	0
24	- 1	1	1	0	$\pi/2$
25	7	2	2	0	3
26	- 4	3	6	10	0
27	4	29	0	15	0
28	2	8	1	-2	3
29	4	- 3	2	4	1
30	1	0.25	2	0	0
31	9	0.5	6	3	1
32	- 9	2	4	5	2
33	10	- 3	-1	7	3
34	- 10	4	5	5	2

Таблица 1

Пример выполнения задания приведен в прил.

Указания к выполнению задания

1. Аналитически получить выражение функции в общем виде и найти неизвестные постоянные интегрирования С1 и С2 по начальным условиям. Для этого составить и решить характеристическое уравнение. Решение для функции и аргумента реализовать в графической и табличной форме. 2. Численно получить решение уравнения в графической и табличной форме, используя не менее двух функций. Для функции rkfixed составить вектор начальных условий (2) и вектор правых частей (3).

3. Задать одинаковый шаг аргументу и сравнить полученные решения.

Задание 2. Расчет методом конечных элементов перемещений и усилий в стержневой конструкции от действия продольной нагрузки

Цель работы: научиться составлять конечно-элементную модель заданной конструкции, матрицы жесткости системы, задавать граничные условия, вычислять усилия в конструкции, используя МКЭ.

Задание

Используя МКЭ, определить в стальном ступенчатом стержне круглого сечения перемещения, относительные деформации, внутренние усилия и напряжения от действия продольной нагрузки. Построить эпюры перемещений, внутренних усилий и напряжений. Оценить прочность стержня. Принять расчетное сопротивление R = 200 МПа; модуль упругости $E = 2 \cdot 10^5$ МПа. Схему и данные взять по номеру варианта из рис. 4 и табл. 2. Повторить решение, добавив вторую заделку в сечение D.

		1
1	annua	1
1	aoninga	-

Ba-	F	'1	F2		q1	q2	<u>q1</u>	A1	A2	A3	L1	L2	L3
ри-	ъЦ	0.011	ъЦ	0.011	кН	κН	q2	10 ⁻⁴ ,	10 ⁻⁴ ,	10 ⁻⁴ ,	X	X	м
ант	ант КН	сеч	КП	сеч	M	M	уч-к	M ²	M ²	M ²	М	м	м
1	7	В	10	D	12	0	BC	2,0	4,0	2,0	0,25	0,36	0,95
2	8	С	12	В	10	0	CD	2,5	2,5	5,0	0,75	0,62	0,26
3	9	D	14	С	8	0	AB	2,1	4,2	2,1	0,90	0,32	0,65
4	10	В	16	D	6	0	BC	2,2	4,4	2,2	0,80	0,42	0,95
5	11	С	18	В	0	6	CD	2,3	4,6	2,3	0,60	0,52	1,10
6	12	D	20	С	0	8	AB	2,4	4,8	2,4	0,55	0,75	0,98
7	13	В	8	D	0	10	BC	2,6	5,2	2,6	0,45	0,80	1,04
8	14	С	10	В	0	12	CD	2,7	5,4	2,7	0,35	0,70	1,22
9	15	D	12	С	6	0	AB	2,8	5,6	2,8	0,40	0,92	0,58
10	16	В	14	D	8	0	BC	2,9	5,8	2,9	0,70	0,45	0,85
11	17	С	16	В	10	0	CD	3,0	6,0	3,0	0,26	0,68	0,94
12	18	D	18	С	12	0	CD	2,1	2,1	4,2	0,34	0,85	0,68
13	19	В	20	С	0	6	CB	2,2	2,2	4,4	0,68	0,36	0,90
14	20	С	10	D	0	8	AB	2,3	2,3	4,6	0,72	0,44	0,66
15	7	D	12	В	0	10	BC	2,4	2,4	4,8	0,48	0,85	0,35

Окончание табл. 2

Ba-	F	1	F	2	q1	q2	<u>q1</u>	A1	A2	A3	L1	L2	L3
ри-	TI.		чIJ		κН	κН	q2	10 ⁻⁴ ,	10 ⁻⁴ ,	10 ⁻⁴ ,			
ант	КП	сеч	КП	сеч	M	M	уч-к	M ²	M ²	M ²	м	м	М
16	8	В	14	С	0	12	CD	2,5	2,5	5,0	0,56	0,74	0,94
17	9	С	16	D	12	0	AB	2,6	2,6	5,2	0,66	0,45	0,82
18	10	D	18	В	10	0	BC	2,7	2,7	5,4	0,70	0,38	0,46
19	11	В	20	D	8	0	CD	2,8	2,8	5,6	0,44	0,76	0,84
20	12	С	10	В	6	0	AB	2,9	2,9	5,8	0,92	0,35	0,55
21	13	D	12	С	0	6	BC	3,0	3,0	6,0	0,75	0,46	0,98
22	14	В	14	D	0	8	CD	6,0	3,0	3,0	0,58	0,70	1,10
23	15	С	16	В	0	10	AB	5,8	2,9	2,9	0,48	0,65	1,00
24	16	D	18	С	0	12	BC	5,6	2,8	2,8	0,60	0,42	1,20
25	17	В	20	С	12	0	CD	5,4	2,7	2,7	0,38	0,85	1,05
26	18	С	10	D	10	0	AB	5,2	2,6	2,6	0,46	0,90	0,82
27	19	D	12	В	8	0	BC	5,0	2,5	2,5	0,64	0,55	1,30
28	20	В	14	С	6	0	CD	4,8	2,4	2,4	0,38	0,88	1,10
29	15	С	16	D	10	0	AB	4,6	2,3	2,3	0,80	0,65	1,20
30	20	D	18	В	8	0	BC	4,4	2,2	2,2	0,55	0,72	1,25
31	5	В	20	D	8	0	BC	3,1	4,5	3,1	0,46	0,38	0,36
32	6	С	10	В	0	12	CD	3,2	4,4	4,4	0,84	0,76	0,62
33	7	D	15	С	0	15	AB	3,3	4,3	3,3	0,55	0,35	0,32
34	8	В	11	D	14	0	BC	3,4	4,2	3,4	0,98	0,46	0,42
35	9	С	13	В	12	0	CD	3,5	4,0	4,0	1,10	0,70	0,52

Пример выполнения задания приведен в прил.

Указания к выполнению задания

1. Разбить заданную конструкцию (см. рис. 4) на конечные элементы, исходя из геометрических характеристик и приложенной нагрузки на участках стержня.

2. Задать поэлементный счет в матрице с 1 (системная переменная ORIGIN = 1).

3. Пронумеровать узлы КЭ слева направо, начиная с 1.

4. Составить для каждого і-го КЭ матрицу жесткости Кі (4), предварительно задав все геометрические и физические характеристики.

5. Составить глобальную матрицу системы К. Для объединения матриц жесткости КЭ используйте базовую нулевую матрицу Ко n x n (n – количество узлов системы) и программу для вставки подматрицы:

$$Rep(A, B, r, c) := R \leftarrow A$$

for $i \in 1.. rows(B)$
for $j \in 1.. cols(B)$
 $R_{i+r-1, j+c-1} \leftarrow B_{i, j}$
R

где r, c – номер строки и столбца соответственно, с которых начинается вставка подматрицы В (Ki) в матрицу А (Ko).

6. Задать граничные условия элементам глобальной матрицы жесткости, исходя из условий закрепления. Во избежание получения сингулярной (вырожденной) матрицы, необходимо задать вместо 0 первому обнуляемому элементу значение высокого порядка (например, 10²⁰).

7. Задать вектор узловых внешних нагрузок. Нагрузка в жесткой заделке считается неизвестной. Распределенная нагрузка заменяется двумя сосредоточенными силами, приложенными пропорционально к узлам КЭ. Учитывать знак внешней нагрузки, считая ее положительной, если ее вектор совпадает с положительным направлением оси х КЭ.

8. Вычислить узловые перемещения по (7). Найти относительную деформацию, напряжения и усилия в узлах КЭ.

9. Построить эпюры абсолютных и относительных деформаций, напряжений и продольных усилий по полученным узловым значениям.

10. Оценить прочность конструкции по максимальному напряжению.

11. Сравнить полученные результаты с аналитическим расчетом. Используя созданный алгоритм, решить статически неопределимую задачу (добавить заделку в сечение D – рис. 4) в той же последовательности.

Задание 3. Расчет методом конечных элементов перемещений и усилий в балке от действия поперечной нагрузки

Цель работы: научиться в плоской балке, используя метод конечных элементов, составлять глобальную матрицу жесткости системы и за-14 давать граничные условия; численно определять перемещения, внутренние усилия и представлять их графически.

Задание

Для балки (см. рис. 5, а; табл. 3) определить методом конечных элементов прогибы и углы поворотов, внутренние усилия (поперечные силы и изгибающие моменты); построить эпюры усилий и перемещений. Найти аналитически изгибающие моменты в характерных сечениях балки и перемещение в заданном расчетном сечении (методом начальных параметров); сравнить с численным результатом. Принять сечение балки постоянным. Форма сечения – квадрат 0,15 × 0,15 м; модуль упругости материала $E = 2.10^{\circ}$ МПа. Проверить прочность балки по максимальному моменту. Использовать алгоритм для решения дважды статически неопределимой системы (см. рис. 5, б).

Puc. 5

Таблиц	įa 3
--------	------

Ba	Crea	F			q				L1	L2	L3		
ри-	Ma	E1/E2	0.011		a1/a2	уч-	TT.	M1/M2	0.011				
ант	Ma	Γ1/ΓΖ	сеч	КП	q1/q2	к	КП	IVI 1/IVIZ	сеч	кн∙м	М	М	м
1	1/C	F1	В	5	q1	AB	10	M1	D	2	1,2	0,9	1,0
2	2/B	F2	В	6	q1	BC	9	M1	Α	5	1,7	0,6	1,2
3	3/A	F1	А	7	q2	CD	10	M1	В	2	0,9	1,3	0,6
4	4/B	F2	В	8	q2	AB	9	M2	D	2	0,8	1,4	0,9
5	5/A	F1	А	9	q1	BC	8	M2	D	3	0,6	1,5	1,10
6	1/C	F2	С	10	q1	CD	7	M2	В	4	0,9	1,7	0,6
7	2/B	F1	С	11	q2	AB	8	M1	D	6	1,4	0,80	1,0
8	3/A	F2	С	12	q2	BC	7	M1	Α	7	1,3	0,70	1,2
9	4/B	F1	D	13	q1	CD	6	M1	В	8	1,2	0,8	0,9
10	5/A	F2	D	14	q1	AB	5	M2	С	9	1,3	0,6	1,0
11	1/D	F1	D	15	q2	BC	6	M2	D	3	1,2	0,6	0,9
12	2/C	F2	В	16	q2	CD	5	M2	В	4	1,3	0,8	0,8
13	3/C	F1	А	15	q1	AB	4	M1	D	4	0,6	1,3	0,90
14	4/D	F2	В	14	q1	BC	3	M1	Α	6	0,7	1,4	0,6
15	5/D	F1	D	13	q2	CD	4	M1	Α	8	1,4	0,8	1,1
16	1/D	F2	В	12	q2	AB	3	M2	С	5	1,5	0,7	0,9
17	2/C	F1	С	11	q1	BC	2	M2	D	5	0,9	0,5	1,2
18	3/C	F2	С	10	q1	CD	2	M2	Α	4	1,1	0,8	0,6
19	4/D	F1	D	9	q2	AB	5	M1	С	6	1,2	0,7	0,8
20	5/D	F2	А	8	q2	BC	5	M1	С	8	0,9	0,35	0,55
21	1/C	F1	С	7	q1	CD	6	M1	D	6	0,7	1,4	0,9
22	2/B	F2	В	6	q1	AB	8	M2	С	3	1,3	0,70	1,10
23	3/A	F1	С	5	q2	BC	10	M2	В	9	1,1	0,6	1,00
24	4/B	F2	D	15	q2	CD	8	M2	Α	8	1,4	0,7	1,20
25	5/A	F1	D	14	q1	AB	7	M1	В	7	1,3	0,8	1,0
26	1/D	F2	D	13	q1	BC	6	M1	В	6	1,4	0,9	0,8
27	2/C	F1	В	12	q2	CD	7	M1	С	5	1,6	0,5	1,30
28	3/C	F2	А	11	q2	AB	6	M2	С	4	1,3	0,8	1,10
29	4/D	F1	В	10	q1	BC	5	M2	D	3	0,8	0,6	1,20
30	5/D	F2	А	9	q2	CD	5	M2	В	2	1,5	0,7	1,2
31	1/D	F1	D	14	q2	AB	10	M1	D	2	1,35	1,1	0,9
32	2/C	F2	С	12	q1	BC	9	M1	Α	5	1,45	0,6	1,2
33	3/A	F1	А	9	q2	CD	10	M1	В	2	1,25	0,85	0,6
34	4/B	F2	В	8	q1	AB	9	M2	D	2	1,35	0,75	0,9
35	5/A	F1	А	11	q2	BC	8	M2	D	3	1,15	0,5	1,00

Пример выполнения задания приведен в прил.

Указания к выполнению задания

1. Задать системную переменную ORIGIN = 1.

2. Разбить заданную конструкцию (рис. 5, а) на конечные элементы, исходя из геометрических характеристик и приложенной нагрузки на участках стержня.

3. Пронумеровать узлы КЭ слева направо, начиная с 1.

4. Составить для каждого і-го КЭ матрицу жесткости Кі (8), предварительно задав все геометрические и физические характеристики.

5. Составить глобальную матрицу системы К. Для объединения матриц жесткости КЭ используйте базовую нулевую матрицу Ко n x n (n – количество узлов системы) и программу для вставки подматрицы (см. указания к заданию 2).

6. Задать граничные условия элементам глобальной матрицы жесткости, исходя из условий закрепления. Во избежание получения сингулярной (вырожденной) матрицы, необходимо задать вместо 0 обнуляемым элементам значение высокого порядка (10²⁰).

7. Задать вектор узловых внешних нагрузок. Каждому узлу задается две нагрузки: сила и момент соответственно. Нагрузка в жесткой заделке считается неизвестной. Распределенная нагрузка заменяется сосредоточенными силами и моментами, приложенными к узлам элемента (см. рис. 3). Вектор поперечной силы считать положительным, если его направление совпадает с положительной осью локальной системы координат КЭ; вектор момента положителен, если его вращение против часовой стрелки.

8. Вычислить линейные и угловые перемещения U, используя функцию **lsolve** (7).

9. Вычислить узловые внутренние усилия, в зависимости от наличия или отсутствия распределенной нагрузки на КЭ.

10. Составить для каждого конечного элемента функциональные зависимости поперечных сил, изгибающих моментов, угловых и линейных перемещений и построить эпюры Q, M, v, θ для всей системы.

11. Сравнить полученные численно значения перемещений в заданном расчетном сечении с аналитическим расчетом перемещений, используя метод начальных параметров.

12. Построить эпюры внутренних усилий, угловых и линейных перемещений.

13. Выполнить решение для дважды статически неопределимой системы согласно заданной схеме по рис. 5, б.

ЗАКЛЮЧЕНИЕ

Настоящие методические указания включают задания, позволяющие освоить современные численные методы, широко применяемые в инженерных задачах. Первое задание, предназначенное для численного решения дифференциальных уравнений, дает возможность освоить численные методы решения ОДУ, используя различные методики решения; наглядное графическое представление решения и выбор интервалов интегрирования дают возможность студенту самостоятельно прийти к правильному решению. Второе и третье задания позволяют освоить принцип метода конечных элементов на примере стержневых конструкций.

приложение

Примеры решений

Пример 1. Решение обыкновенных дифференциальных уравнений второго порядка

Аналитическое решение первоначально предполагает составление и решение характеристического уравнения.

Уравнение в общем виде

 $y''(x) + a1 \cdot y'(x) + a2 \cdot y(x) = 0$ имеет характеристическое уравнение $r^2 + a1 \cdot r + a2 = 0.$

В зависимости от полученных корней уравнения функция у(х) имеет три вида решения в общем виде:

- 1) два действительных корня r1 и r2: $y(x) = C1 \cdot e^{r1 \cdot x} + C2 \cdot e^{r2 \cdot x};$
- 2) один действительный корень r: $y(x) = (C1 + C2 \cdot x) \cdot e^{r \cdot x};$
- 3) два комплексных корня $r1 = \alpha + \beta i$; $r2 = \alpha \beta i$: $y(x) = e^{a \cdot x} \cdot (C1 \cdot \cos(\beta \cdot x) + C2 \cdot \sin(\beta \cdot x)).$

Постоянные С1 и С2 находятся из заданных начальных условий.

Рассмотрим аналитическое и численное решения уравнения на примере случая с комплексными корнями.

Дано:

y''+2y'+2y = 0, $y(-\pi/2) = 6$, $y'(-\pi/2) = 2$.

Характеристическое уравнение и его решение:

$$\lambda^2 + 2 \cdot \lambda + 2 = 0$$
 solve, $\lambda \rightarrow \begin{pmatrix} -1 + 1i \\ -1 - 1i \end{pmatrix}$
= -1 β : = 1

отсюда $\alpha := -1, \beta := 1.$

Общий вид решения:

$$y(x, C1, C2) := e^{\alpha \cdot x} \cdot (C1 \cdot \cos(\beta \cdot x) + C2 \cdot \sin(\beta \cdot x))$$

Найдем первую и вторую производные:

$$\frac{d}{dx}y(x,C1,C2) \rightarrow -exp(-x)\cdot(C1\cdot\cos(x) + C2\sin(x)) + exp(-x)\cdot(-C1\cdot\sin(x) + C2\cos(x))$$

$$\frac{d^2}{dx}y(x,C1,C2) \rightarrow -exp(-x)\cdot(C1\cdot\cos(x) + C2\sin(x)) + exp(-x)\cdot(-C1\sin(x) + C2\cos(x))$$

$$\frac{d^2}{dx^2}y(x,C1,C2) \text{ simplify } \rightarrow 2 \cdot \exp(-x) \cdot C1 \cdot \sin(x) - 2 \cdot \exp(-x) \cdot C2 \cdot \cos(x)$$

Зададим начальные условия и найдем постоянные С1 и С2: Присвоим найденные значения:

C1 :=
$$\frac{8}{\frac{\pi}{2}}$$
 C2 := $\frac{-6}{\frac{\pi}{2}}$
 $x := \frac{-\pi}{2}$

Given

$$y(x, C1, C2) = 6$$

$$\frac{d}{dx}y(x, C1, C2) = 2$$
Find (C1, C2) $\rightarrow \begin{pmatrix} \frac{8}{\exp\left(\frac{1}{2} \cdot \pi\right)} \\ \frac{-6}{\exp\left(\frac{1}{2} \cdot \pi\right)} \\ \frac{-6}{\exp\left(\frac{1}{2} \cdot \pi\right)} \end{pmatrix}$

Выполним проверку (символ производной Ctrl-F7). Предварительно выражение первой производной упростим при помощи команды Factor:

$$Y(x) := e^{-x} \cdot (C1 \cdot \cos(x) + C2 \cdot \sin(x))$$

$$Y'(x) := \exp(-x) \cdot (-C1 \cdot \cos(x) - C2 \cdot \sin(x) - C1 \cdot \sin(x) + C2 \cdot \cos(x))$$

$$Y''(x) := 2 \cdot \exp(-x) \cdot C1 \cdot \sin(x) - 2 \cdot \exp(-x) \cdot C2 \cdot \cos(x)$$

$$Y''(x) + 2 \cdot Y'(x) + 2 \cdot Y(x) = 0$$

Построение графика:

Для численного решения используем две функции: **odesolve** и **rkfixed**. Функцию odesolve предварим ключевым словом Given:

Given $z''(x) + 2 \cdot z'(x) + 2 \cdot z(x) = 0$ $z\left(\frac{-\pi}{2}\right) = 6$ $z'\left(\frac{-\pi}{2}\right) = 2$ od := odesolve (x, \pi)

Построим график функции:

Для использования функции rkfixed необходимо составить вектор начальных условий у и вектор правых частей F(x,y):

$$y := \begin{pmatrix} 6 \\ 2 \end{pmatrix} \qquad F(x, y) := \begin{pmatrix} y_1 \\ -2 \cdot y_1 - 2 \cdot y_0 \end{pmatrix}$$
$$rk := rkfixed\left(y, \frac{-\pi}{2}, \pi, 100, F\right)$$

Количество шагов интегрирования зададим равное 100. Решение функция выдает в матричной форме, первый столбец которой является аргументом, второй – функцией, третий – первой производной. Для представления функции в графической форме следует задать в качестве аргумента rk^{<0>}, в качестве функции rk^{<1>}:

Очевидно, что все три полученных графика (рис. П1, П2, П3) идентичны. Для сравнительного анализа всех трех методов решения в табличной форме зададим равный шаг аргументу, исходя из заданных 100 точек функции rkfixed. Интервал интегрирования от $\pi/2$ до π . Задаем ранжированную переменную х с шагом для 100 точек:

$$x \coloneqq \frac{-\pi}{2}, \frac{-\pi}{2} + \frac{\pi + \frac{\pi}{2}}{100} \dots \pi$$

Табличный вывод (первые 15 значений) показывает, что все три способа имеют практически сходные результаты. Функция rkfixed, использующая метод Рунге – Кутта, не отличается от точного (аналитического) решения:

x =	Y(x) =	Y'(x) =	od(x) =			0	1	2
-1.571	6	2	6		0	-1.571	6	2
-1.524	6.077	1.277	6.069		1	-1.524	6.077	1.277
-1.477	6.121	0.613	6.12		2	-1.477	6.121	0.613
-1.429	6.136	6.451·10 ⁻³	6.138		3	-1.429	6.136	6.45·10 ⁻³
-1.382	6.123	-0.546	6.123		4	-1.382	6.123	-0.546
-1.335	6.085	-1.046	6.084		5	-1.335	6.085	-1.046
-1.288	6.025	-1.496	6.025		6	-1.288	6.025	-1.496
-1.241	5.945	-1.9	5.945	rk =	7	-1.241	5.945	-1.9
-1.194	5.847	-2.26	5.847		8	-1.194	5.847	-2.26
-1.147	5.732	-2.577	5.732		9	-1.147	5.732	-2.577
-1.1	5.604	-2.855	5.604		10	-1.1	5.604	-2.855
-1.052	5.464	-3.096	5.464		11	-1.052	5.464	-3.096
-1.005	5.313	-3.302	5.313		12	-1.005	5.313	-3.302
-0.958	5.153	-3.476	5.153		13	-0.958	5.153	-3.476
-0.911	4.986	-3.619	4.986		14	-0.911	4.986	-3.619
-0.864	4.813	-3.734	4.813		15	-0.864	4.813	-3.734

Пример 2. Расчет методом конечных элементов перемещений и усилий в стержне от действия продольной нагрузки

Рис. П4

1. Анализ системы.

Стержень разбивается на 3 КЭ в соответствии с переменной площадью поперечных сечений и приложенной нагрузкой (рис. П4). Задаем системную переменную, управляющую нумерацией начальной элемента матрицы: ORIGIN: = 1.

Нумерация КЭ слева направо: 1, 2, 3; нумерация узлов слева направо: 1, 2, 3, 4.

Задаем количество КЭ переменной ne: = 3; количество узлов переменной nu: = 4.

Счетчик КЭ el: = 1..ne.

2. Ввод данных.

Начальные данные КЭ задаем как элементы матриц:

Площади A_1 : = 2.10⁻⁴ M^2 ; A_2 : = 4.10⁻⁴ M^2 ; A_3 = 5.10⁻⁴ M^2 .

Длина КЭ L_1 : = 0,1 м; L_2 : = 0,2 м; L_3 : = 0,1 м.

Внешние нагрузки задаем в соответствии с направлением по оси X и нумеруем согласно узлу приложения (сосредоточенные силы, приложенные в узле) или КЭ (распределенные нагрузки). Поскольку реакция заделки заведомо неизвестна, считаем ее равной нулю. Если соответствующей нагрузки нет, ее также задаем равной нулю.

 q_1 : = 20000 H/m, q_2 : = 0, q_3 : = 0;

 f_1 := 0, f_2 := 0, f_3 := 0, f_4 := 10000 H.

Модуль упругости $E: = 2 \cdot 10^{11} \text{ H/m}^2$.

3. Формируем глобальную матрицу жесткости системы.

Матрица жесткости КЭ:

$$kk := \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad K_{el} := kk \cdot \frac{E \cdot A_{el}}{L_{el}}$$

Глобальная матрица жесткости системы формируется из суммы матриц жесткости КЭ со сдвигом на одну ячейку вправо и вниз. Предварительно создадим базовую нулевую матрицу 4 × 4:

 $i: = 1..nu j: = 1..nu K0_{i,j}: = 0, K0 - базовая нулевая матрица.$

Программа-функция replace создается для вставки подматриц КЭ в матрицу К0 со сдвигом на 1 ячейку вправо и вниз; г, с – номер строки и столбца соответственно, с которых начинается вставка подматрицы в матрицу, А – базовая матрица, В – подматрица:

$$Rep(A, B, r, c) := \begin{vmatrix} R \leftarrow A \\ \text{for } i \in 1.. \text{ rows}(B) \\ \text{for } j \in 1.. \text{ cols}(B) \\ R_{i+r-1, j+c-1} \leftarrow B_{i, j} \\ R \end{vmatrix}$$

Глобальная матрица системы

$$KT := \sum_{n = 1}^{ne} Rep(K0, K_n, n, n)$$

Теперь глобальная матрица КТ имеет вид:

$$KT = \begin{pmatrix} 4 \times 10^8 & -4 \times 10^8 & 0 & 0 \\ -4 \times 10^8 & 8 \times 10^8 & -4 \times 10^8 & 0 \\ 0 & -4 \times 10^8 & 1.4 \times 10^9 & -1 \times 10^9 \\ 0 & 0 & -1 \times 10^9 & 1 \times 10^9 \end{pmatrix}$$

Необходимо задать граничные условия системы. Первые две ячейки первой строки относятся к первому узлу (т.е. заделке), в котором перемещения отсутствуют по условию закрепления. Чтобы матрица не стала вырожденной, первой ячейке вместо 0 зададим очень большое число:

 $KT_{1,1}$: = 10²⁰, $KT_{1,2}$: = 0.

4. Задаем вектор узловых внешних нагрузок.

Для этого распределенную нагрузку заменяем ее равнодействующей, приложенной по половине в узлах соответствующего КЭ и складываем с узловой нагрузкой:

$$F_{1} := f_{1} + \frac{q_{1} \cdot L_{1}}{2}$$

$$F_{2} := f_{2} + \frac{q_{1} \cdot L_{1}}{2} + \frac{q_{2} \cdot L_{2}}{2}$$

$$F_{3} := f_{3} + \frac{q_{2} \cdot L_{2}}{2} + \frac{q_{3} \cdot L_{3}}{2}$$

$$F_{4} := f_{4} + \frac{q_{3} \cdot L_{3}}{2}$$

Иначе вектор узловых нагрузок можно задать функцией:

$$F := \begin{cases} \text{for } i \in 2.. \text{ nu } -1 \\ F_i \leftarrow f_i + \frac{q_{i-1} \cdot L_{i-1}}{2} + \frac{q_i \cdot L_i}{2} \\ F_1 \leftarrow f_1 + \frac{q_1 \cdot L_1}{2} \\ F_4 \leftarrow f_4 + \frac{q_3 \cdot L_3}{2} \\ F \end{cases}$$

5. Находим перемещения в узлах

$$U := KT^{-1} \cdot F$$

$$U = \begin{pmatrix} 0 \\ 2.75 \times 10^{-5} \\ 5.25 \times 10^{-5} \\ 6.25 \times 10^{-5} \end{pmatrix}$$

6. Относительные деформации

$$\varepsilon(\mathrm{el}) := \left(\frac{-1}{\mathrm{L}_{\mathrm{el}}} \quad \frac{1}{\mathrm{L}_{\mathrm{el}}}\right) \cdot \left(\begin{array}{c} \mathrm{U}_{\mathrm{el}} \\ \mathrm{U}_{\mathrm{el}+1} \end{array}\right)$$

Полученные значения соответствуют среднему значению на КЭ, поэтому справедливы только для элементов с постоянной нагрузкой. Введем вектор, учитывающий распределенную нагрузку и пересчитаем матрицы относительных деформаций на КЭ:

7. Определяем напряжения из закона Гука и продольные усилия

 $\sigma(el) := \epsilon(el) \cdot E$ $N(el) := \sigma(el) \cdot A_{el}$

Полученные результаты:

$$\varepsilon(1) = \begin{pmatrix} 3 \times 10^{-4} \\ 2.5 \times 10^{-4} \end{pmatrix} \qquad \varepsilon(2) = \begin{pmatrix} 1.25 \times 10^{-4} \\ 1.25 \times 10^{-4} \end{pmatrix} \qquad \varepsilon(3) = \begin{pmatrix} 1 \times 10^{-4} \\ 1 \times 10^{-4} \end{pmatrix}$$

$$\sigma(1) = \begin{pmatrix} 6 \times 10^7 \\ 5 \times 10^7 \end{pmatrix} \qquad \qquad \sigma(2) = \begin{pmatrix} 2.5 \times 10^7 \\ 2.5 \times 10^7 \end{pmatrix} \qquad \qquad \sigma(3) = \begin{pmatrix} 2 \times 10^7 \\ 2 \times 10^7 \end{pmatrix}$$

$$N(1) = \begin{pmatrix} 1.2 \times 10^{4} \\ 1 \times 10^{4} \end{pmatrix} \qquad N(2) = \begin{pmatrix} 1 \times 10^{4} \\ 1 \times 10^{4} \end{pmatrix} \qquad N(3) = \begin{pmatrix} 1 \times 10^{4} \\ 1 \times 10^{4} \end{pmatrix}$$

8. Определим максимальное по модулю напряжение.

Максимальное напряжение в первом элементе (первом узле) σ(1) = 60 MПа.

Условие прочности соблюдается, т.к. σ max < R.

9. Построение эпюр.

Задаем в виде ранжированной переменной длину каждого КЭ (шаг 0,01 позволит построить заштрихованную эпюру):

$$x_1 := 0, 0.001..L_1$$
 $x_2 := 0, 0.001..L_2$ $x_3 := 0, 0.001..L_3$

Для правого предела аргумента графиков зададим параметр:

$$LT := \sum_{el = 1} L_{el}$$

Запишем функции в общем виде. Учитывая то, что все величины определялись как матричные, введем нижний индекс 1:

– продольные усилия и напряжения

$$FN(el, x) := N(el)_1 - q_{el} \cdot x \qquad F\sigma(el, x) := \sigma(el)_1 - \frac{q_{el} \cdot x}{A_{el}}$$

– относительные продольные деформации и абсолютные перемещения:

$$F\varepsilon(el, x) := \varepsilon(el)_1 - \frac{q_{el} \cdot x}{E \cdot A_{el}} \qquad FU(el, x) := \varepsilon(el)_1 \cdot x - \frac{q_{el} \cdot x^2}{2 \cdot E \cdot A_{el}} + U_{el}$$

Для того чтобы получилась заштрихованная область на графике, в диалоговом окне Format (закладка Trace – графики) следует заменить тип графика с линейного (lines) на bar.

Продольные силы, Н (рис. П5):

Рис. П5

Напряжения, Па (рис. П6):

Рис. Пб

Относительные деформации (рис. П7):

Рис. П7

Абсолютные перемещения, м (рис. П8):

10. Проверка вычислений.

Чтобы убедиться в правильности расчетов, выполним аналитическую проверку. Достаточно вычислить опорную реакцию и найти в любом сечении линейное перемещение.

Given

$$-R1 + q_1 \cdot L_1 + f_4 = 0$$

Find(R1) \rightarrow 12000. R1: = 12000 N1_1 = 1.2 \cdot 10^4

Опорная реакция. Перемещение торца стержня (с учетом найденной реакции):

$$\frac{\text{R1} \cdot \text{L}_{1}}{\text{E} \cdot \text{A}_{1}} - \frac{\text{q}_{1} \cdot \left(\text{L}_{1}\right)^{2}}{2 \cdot \text{E} \cdot \text{A}_{1}} + \frac{\left(\text{R1} - \text{q}_{1} \cdot \text{L}_{1}\right) \cdot \text{L}_{2}}{\text{E} \cdot \text{A}_{2}} + \frac{\left(\text{R1} - \text{q}_{1} \cdot \text{L}_{1}\right) \cdot \text{L}_{3}}{\text{E} \cdot \text{A}_{3}} = 6.25 \times 10^{-5} \qquad \text{U}_{4} = 6.25 \times 10^{-5}$$

Таким образом, численное решение совпадает с аналитическим.

11. Решение статически неопределимой системы.

Закрепляем с правой стороны стержень дополнительной жесткой заделкой. Ход решения должен быть таким же, но граничные условия системы изменятся. Поскольку стержень теперь жестко закреплен в узлах 1 и 4, необходимо добавить дополнительные граничные условия: $KT_{4,3}$: = 0, $KT_{4,4}$: = 10^{20} .

Вектор U должен содержать нулевые значения в узлах 1 и 4 (на рис. П9 эпюра перемещений статически неопределимой системы).

Пункты 6 и 7 могут быть выполнены по другой методике расчета. Первоначально находим внутренние усилия, основываясь на матричной записи перемещений МКЭ (см. формулу 5), используя ее для одного конечного элемента.

Задаем вектор перемещений КЭ:

UE (el) :=
$$\begin{pmatrix} U_{el} \\ U_{el+1} \end{pmatrix}$$

Вектор внутренних усилий КЭ (вычитаем наличие распределенной нагрузки на элементе):

$$N(el) := K_{el} \cdot UE(el) - \begin{pmatrix} \frac{q_{el} \cdot L_{el}}{2} \\ \frac{q_{el} \cdot L_{el}}{2} \\ \frac{q_{el} \cdot L_{el}}{2} \end{pmatrix} \qquad N(el) := \boxed{N(el) \cdot \begin{pmatrix} -1 \\ 1 \end{pmatrix}}.$$

Векторное переопределение необходимо, поскольку метод конечных элементов строго использует математическое правило знаков направления векторов, а в сопротивлении материалов правило знаков подчиняется вызванной усилием деформации.

Далее вычисляются напряжения и относительные деформации:

sig (el) :=
$$\frac{N(el)}{A_{el}}$$
 eps (el) := $\frac{sig(el)}{E}$

Во избежание возможных ошибок необходимо пункты 6 и 7 выполнять только одним методом (для случаев статически определимой и статически неопределимой систем).

Пример 3. Расчет методом конечных элементов перемещений и усилий в балке от действия поперечной нагрузки

Система разбивается на 2 конечных элемента (на рис. П10 нумерация показана ниже линии балки). Соответственно узлы нумеруются слева направо от 1 до 3 (на рис. 16 показано выше линии балки). Поперечное сечение – квадрат 0,15 × 0,15 м. Распределенная нагрузка q = 10 кH/м, сила F = 5 кH, момент = 12 кH·м. Модуль упругости $E = 2 \cdot 10^5$ МПа. Расчетное сопротивление R = 200 МПа.

1. Зададим начальные данные.

Формируем все характеристики как элементы матрицы. Следует задать системную переменную отчета начального элемента матрицы с единицы:

ORIGIN: = 1

Количество элементов ne: = 2; узлов nu: = 3

Счетчик элементов el: = 1..2

Характеристики системы (модуль упругости, Па и момент инерции сечений, м'):

E :=
$$2 \cdot 10^{-11}$$
 J := $\frac{0.15^{-4}}{12}$
L₁ := 1.6 L₂ := 2 q₁ := -10000 q₂ := 0

Характеристики КЭ (знак для распределенной нагрузки задаем в соответствии с направлением положительной оси Y, размерность H):

Внешняя узловая нагрузка (сосредоточенные силы H, сосредоточенные моменты, H/м):

$$f_1 := 0$$
 $f_2 := 0$ $f_3 := -5000$ $m_1 := 12000$ $m_2 := 0$ $m_3 := 0$

2. Формируем матрицы жесткости КЭ:

$$k(Le) := \frac{E \cdot J}{Le^{3}} \cdot \begin{pmatrix} 12 & 6 \cdot Le & -12 & 6Le \\ 6Le & 4Le^{2} & -6Le & 2Le^{2} \\ -12 & -6Le & 12 & -6Le \\ 6Le & 2Le^{2} & -6Le & 4Le^{2} \end{pmatrix}$$

$$k_{el} := k \left(L_{el} \right)$$

$$k_{1} = \begin{pmatrix} 2.472 \times 10^{7} & 1.978 \times 10^{7} & -2.472 \times 10^{7} & 1.978 \times 10^{7} \\ 1.978 \times 10^{7} & 2.109 \times 10^{7} & -1.978 \times 10^{7} & 1.055 \times 10^{7} \\ -2.472 \times 10^{7} & -1.978 \times 10^{7} & 2.472 \times 10^{7} & -1.978 \times 10^{7} \\ 1.978 \times 10^{7} & 1.055 \times 10^{7} & -1.978 \times 10^{7} & 2.109 \times 10^{7} \end{pmatrix}$$

$$\mathbf{k_2} = \begin{pmatrix} 1.266 \times 10^7 & 1.266 \times 10^7 & -1.266 \times 10^7 & 1.266 \times 10^7 \\ 1.266 \times 10^7 & 1.688 \times 10^7 & -1.266 \times 10^7 & 8.438 \times 10^6 \\ -1.266 \times 10^7 & -1.266 \times 10^7 & 1.266 \times 10^7 & -1.266 \times 10^7 \\ 1.266 \times 10^7 & 8.438 \times 10^6 & -1.266 \times 10^7 & 1.688 \times 10^7 \end{pmatrix}$$

3. Формируем глобальную матрицу жесткости системы.

Создаем нулевую базовую матрицу (для двух КЭ она имеет размер 6 × 6) КО:

$$i:=1..2$$
·nu $j:=1..2$ ·nu $K_{1,i}^{0}:=0$

На базе нулевой матрицы создаем глобальную матрицу системы. Для этого используем программу вставки подматрицы в матрицу. Каждый КЭ в глобальной матрице смещается относительно предыдущего на две ячейки вправо и две вниз (т.е. матрица 1-го КЭ вставляется в ячейку (1,1), матрица второго КЭ – в ячейку (3,3), при этом ячейки, принадлежащие смежным узлам конечных элементов, складываются):

$$Rep(A, B, r, c) := \begin{vmatrix} R \leftarrow A \\ \text{for } i \in 1.. \text{ rows}(B) \\ \text{for } j \in 1.. \text{ cols}(B) \\ R_{i+r-1, j+c-1} \leftarrow B_{i, j} \\ KT := \sum_{n=1}^{ne} Rep(K0, k_n, 2n - 1, 2n - 1) \\ R \end{vmatrix}$$

Окончательно получим:

$$KT = \begin{pmatrix} 2.472 \times 10^{7} & 1.978 \times 10^{7} & -2.472 \times 10^{7} & 1.978 \times 10^{7} & 0 & 0 \\ 1.978 \times 10^{7} & 2.109 \times 10^{7} & -1.978 \times 10^{7} & 1.055 \times 10^{7} & 0 & 0 \\ -2.472 \times 10^{7} & -1.978 \times 10^{7} & 3.738 \times 10^{7} & -7.119 \times 10^{6} & -1.266 \times 10^{7} & 1.266 \times 10^{7} \\ 1.978 \times 10^{7} & 1.055 \times 10^{7} & -7.119 \times 10^{6} & 3.797 \times 10^{7} & -1.266 \times 10^{7} & 8.438 \times 10^{6} \\ 0 & 0 & -1.266 \times 10^{7} & -1.266 \times 10^{7} & 1.266 \times 10^{7} & 1.266 \times 10^{7} \\ 0 & 0 & 1.266 \times 10^{7} & 8.438 \times 10^{6} & -1.266 \times 10^{7} & 1.688 \times 10^{7} \end{pmatrix}$$

4. Формируем вектор внешних узловых нагрузок.

Он имеет размерность, равную 2nu × 1, где nu – количество узлов системы. Каждому узлу задается два вида нагрузки: первая – поперечная сила, вторая – изгибающий момент. Реакции в опорах являются неизвестными. Правило знаков математическое. Векторы сосредоточенных сил и моментов заданы в пункте 1. Следует добавить распределенную нагрузку на элементе, которая должна быть приложена в узлы. Вектор нагрузок от действия поперечной распределенной силы формируется подобно глобальной матрице жесткости с той лишь разницей, что теперь мы имеем дело с матрицей-вектором. Первоначально зададим узловые силу и момент:

$$qf_{el} := \frac{q_{el} \cdot L_{el}}{2}$$
 $qm_{el} := \frac{q_{el} \cdot (L_{el})^2}{12}$

2

Вектор узловых нагрузок Dq (от распределенной поперечной силы) на КЭ (принимается положительно направленная распределенная нагрузка, т.е. направленная вверх, поэтому необходимо в первом пункте учесть действительное направление нагрузки, что и сделано в нашем примере – задан знак «минус»)

$$Dq(el) := \begin{pmatrix} qf_{el} \\ qm_{el} \\ qf_{el} \\ -qm_{el} \end{pmatrix}$$

Чтобы сформировать вектор системы DLq, используем функцию Rep:

Q0_i := 0
$$DLq := \sum_{n=1}^{ne} Repq(Q0, Dq(n), 2n - 1)$$

где Q0 – базовый нулевой вектор (счетчик і задан выше и равен 6). Вектор DLq, вектор узловых сосредоточенных сил f и моментов m:

$$DLq = \begin{pmatrix} -8 \times 10^{3} \\ -2.133 \times 10^{3} \\ -8 \times 10^{3} \\ 2.133 \times 10^{3} \\ 0 \\ 0 \end{pmatrix} \qquad f = \begin{pmatrix} 0 \\ 0 \\ -5 \times 10^{3} \end{pmatrix} \qquad m = \begin{pmatrix} 1.2 \times 10^{4} \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Создаем матрицу-вектор всех узловых нагрузок:

$$FM := \begin{bmatrix} \text{for } i \in 1.. \text{ nu} \\ FM_{2 \cdot i - 1} \leftarrow DLq_{2 \cdot i - 1} + f_i \\ FM_{2 \cdot i} \leftarrow DLq_{2 \cdot i} + m_i \\ FM \end{bmatrix} FM = \begin{bmatrix} -8 \times 10^3 \\ 9.867 \times 10^3 \\ -8 \times 10^3 \\ 2.133 \times 10^3 \\ -5 \times 10^3 \\ 0 \end{bmatrix}$$

1

5. Граничные условия системы.

Необходимо задать граничные условия, которые обнуляют ячейки матрицы жесткости системы, соответствующие узлам с нулевыми угловыми и (или) линейными перемещениями. В нашем примере отсутствуют линейные перемещения в узлах 1 и 2 (за счет шарнирных опор, позволяющих системе угловые перемещения, но запрещающих линейные). Ячейки, которым соответствуют линейные перемещения в узлах 1 и 2: 1-я и 3-я. Тогда (чтобы избежать сингулярной, или вырожденной, матрицы, вместо 0 задаем очень большое число) $KT_{1,1}$: = 10^{20} ; $KT_{3,3}$: = 10^{20} .

6. Вычисление перемещений.

U := lsolve (KT, FM)

$$U = \begin{pmatrix} 0 & & \\ 8.723 \times 10^{-4} & \\ 0 & \\ -8.091 \times 10^{-4} & \\ -3.198 \times 10^{-3} & \\ -1.994 \times 10^{-3} \end{pmatrix}$$

1

0

7. Вычисление внутренних усилий (поперечных сил и изгибающих моментов).

Расчет внутренних усилий будет основан на условии равновесия (5), однако рассматривается равновесие отдельного КЭ, поэтому вектор {F} представим как вектор внутренних усилий. Введем обозначения:

Du – вектор перемещений КЭ;

RF – вектор узловых нагрузок (в данном случае внутренних, но с математическим правилом знаков направления векторов сил и моментов).

Чтобы сформировать данные векторные матрицы, создадим функцию преобразования вектора перемещений системы U (цифра 4 означает количество перемещений в узлах КЭ):

$$Du(A,r) := \begin{cases} \text{for } i \in 1..4 \\ Du_i \leftarrow A_{2 \cdot r - 2 + i} \\ Du \end{cases}$$

$$Du(U, 1) = \begin{pmatrix} 0 \\ 8.723 \times 10^{-4} \\ 0 \\ -8.091 \times 10^{-4} \end{pmatrix} \qquad Du(U, 2) = \begin{pmatrix} 0 \\ -8.091 \times 10^{-4} \\ -3.198 \times 10^{-3} \\ -1.994 \times 10^{-3} \end{pmatrix}$$

$$RF(n) := k_{n} \cdot Du(U, n) - Dq(n)$$

$$RF(1) = \begin{pmatrix} 9.25 \times 10^{3} \\ 1.2 \times 10^{4} \\ 6.75 \times 10^{3} \\ -1 \times 10^{4} \end{pmatrix}$$

$$RF(2) = \begin{pmatrix} 5 \times 10^{3} \\ 1 \times 10^{4} \\ -5 \times 10^{3} \\ 9.805 \times 10^{-13} \end{pmatrix}$$

Используя полученные данные, учтем правило знаков в сопротивлении материалов:

$$Q_{el} := \begin{pmatrix} RF(el)_{1} \\ -RF(el)_{3} \end{pmatrix} \qquad M_{el} := \begin{pmatrix} -RF(el)_{2} \\ RF(el)_{4} \end{pmatrix}$$

Для каждого КЭ получим значения поперечных сил Q и изгибающих моментов М:

$$Q_{1} = \begin{pmatrix} 9.25 \times 10^{3} \\ -6.75 \times 10^{3} \end{pmatrix} \qquad M_{1} = \begin{pmatrix} -1.2 \times 10^{4} \\ -1 \times 10^{4} \end{pmatrix} \qquad Q_{2} = \begin{pmatrix} 5 \times 10^{3} \\ 5 \times 10^{3} \end{pmatrix} \qquad M_{2} = \begin{pmatrix} -1 \times 10^{4} \\ 9.805 \times 10^{-13} \end{pmatrix}$$

Значение момента во втором КЭ порядка 10⁻¹³ означает 0. 8. <u>Аналитическая проверка численных результатов.</u>

Рис. П11

Given

$$-R1 \cdot 1.6 + 10000 \cdot 1.6 \cdot 0.8 - 5000 \cdot 2 + 12000 = 0$$
$$-5000 \cdot 3.6 - 10000 \cdot 1.6 \cdot 0.8 + R2 \cdot 1.6 + 12000 = 0$$

Найдем реакции в опорах:

Find(R1,R2)
$$\rightarrow \begin{pmatrix} 9250\\11750 \end{pmatrix}$$
 R1: = 9250 R2: = 11750

Найденные реакции позволяют построить эпюры поперечных сил и изгибающих моментов (рис. П11), ординаты которых соответствуют значениям усилий, найденных численно.

Вычислим в узле 3 угловое и линейное перемещения, используя метод начальных параметров, и сравним с численными результатами. Сначала из условия закрепления найдем угловое перемещение первого узла:

Given fi0 L₁ + $\frac{1}{E \cdot J} \cdot \left[\frac{R1 \cdot (L_1)^3}{6} + \frac{q_1 \cdot (L_1)^4}{24} - \frac{m_1 \cdot (L_1)^2}{2} \right] = 0$

Find(fi0) $\rightarrow 8?7229629629629629631 \cdot 10^{-4} \text{ U}_2 = 8,723 \cdot 10^{-4}$

Угловое перемещение третьего узла:

$$fi0 + \frac{1}{EJ} \left[\frac{R! (L_1 + L_2)^2}{2} - \frac{m_1 (L_1 + L_2)}{1} + \frac{q_1 (L_1 + L_2)^3}{6} - \frac{q_1 (L_2)^3}{6} + \frac{R2 (L_2)^2}{2} \right] = -1.994 \times 10^{-3}$$
$$U_6 = -1.994 \times 10^{-3}$$

Линейное перемещение третьего узла:

$$fiQ(L_1 + L_2) + \frac{1}{EJ} \left[\frac{R1(L_1 + L_2)^3}{6} - \frac{m_1(L_1 + L_2)^2}{2} + \frac{q_1(L_1 + L_2)^4}{24} - \frac{q_1(L_2)^4}{24} + \frac{R2(L_2)^3}{6} \right] = -3.19810^{-3}$$
$$U_5 = -3.19810^{-3}$$

Таким образом, аналитическая проверка показала, что численные результаты полностью верны.

9. Построение эпюр внутренних усилий и перемещений по результатам численного расчета МКЭ.

Создадим два вектора перемещений: вектор линейных перемещений v и вектор угловых перемещений θ :

$$v := \begin{bmatrix} \text{for } i \in 1..\text{nu} & \theta := \\ v_i \leftarrow U_{2:i-1} & \theta_i \leftarrow U_{2:i} \\ \psi & \theta_i \leftarrow U_{2:i} \\ \theta \end{bmatrix}$$
$$v = \begin{pmatrix} 0 & \\ 0 & \\ -3.198 \times 10^{-3} \end{pmatrix} \qquad \theta = \begin{pmatrix} 8.723 \times 10^{-4} \\ -8.091 \times 10^{-4} \\ -1.994 \times 10^{-3} \end{pmatrix}$$

Задаем ранжированные переменные координат КЭ:

$$x_{1}:=0,0.02.L_{1}$$
 $x_{2}:=0,0.02.L_{2}$ $L_{2}:=\sum_{el=1}^{ne}L_{e}$

Составим универсальные формулы-функции для построения эпюр: – поперечных сил:

QF (el, x) :=
$$(Q_{el})_1 + q_{el} \cdot x$$

39

– изгибающих моментов:

MF (el, x) :=
$$\left(M_{el}\right)_{1} + \left(Q_{el}\right)_{1} \cdot x + \frac{q_{el} \cdot x^{2}}{2}$$

– угловых перемещений:

$$\theta F(el, x) := \theta_{el} + \frac{1}{E \cdot J} \cdot \left[\left(M_{el} \right)_1 \cdot x + \frac{\left(Q_{el} \right)_1 \cdot x^2}{2} + \frac{q_{el} \cdot x^3}{6} \right]$$

– линейных перемещений:

$$YF(el, x) := v_{el} + \theta_{el} \cdot x + \frac{1}{E \cdot J} \cdot \left[\frac{\left(M_{el}\right)_{1} \cdot x^{2}}{2} + \frac{\left(Q_{el}\right)_{1} \cdot x^{3}}{6} + \frac{q_{el} \cdot x^{4}}{24} \right]$$

Эпюры внутренних усилий (поперечных сил и изгибающих моментов, рис. П2 и П13). Поперечные силы QF (Н). Изгибающие моменты MF, Нм. Для правильного построения эпюры моментов пределы оси Y меняем: "–" вверху, "+" внизу.

Рис. П12

Рис. П13

Эпюры перемещений (рис. П14, П15) – угловые θF (рад) и линейные YF(м).

10. Проверка прочности по максимальному изгибающему моменту.

$$Mom(el) := \begin{cases} for \ i \in 0... \frac{L_{el}}{0.0001} \\ Mom_{i+1} \leftarrow |MF(el, i \cdot 0.0001)| \\ Mom \end{cases} max(Mom(1)) = 1.2 \times 10^{4} \\ max(Mom(2)) = 1 \times 10^{4} \end{cases}$$

 $W := \frac{0.15^3}{\epsilon} \qquad \sigma max := \frac{max(Mom(1))}{W}$

 σ max = 21.33 MPa

Условие прочности удовлетворяется, поскольку максимальное напряжение не превышает расчетного сопротивления ($R = 200 \text{ M}\Pi a$).

11. Расчет статически неопределимой системы.

Поскольку аналитическая проверка показала, что методика численного расчета МКЭ верна, приступим к расчету системы статически неопределимой. Для этого добавим дополнительное закрепление (в третий узел жесткую заделку). Вся разница в расчетах состоит в том, что в случае дополнительной опоры добавляются и дополнительные граничные условия: в третьем узле запрещены как угловые, так и линейные перемещения (узел закреплен жестко). Ячейки (5,5) и (6,6) в глобальной матрице жесткости КТ соответственно линейное и угловое перемещения третьего узла.

Покажем эпюру линейных перемещений для дважды статически неопределимой системы (рис. П16):

Рис. П16

Граничные условия системы:

 $KT_{1,1}$: = 10²⁰, $KT_{3,3}$: = 10²⁰, $KT_{5,5}$: = 10²⁰, $KT_{6,6}$: = 10²⁰.

Далее ход решения проводится в том же порядке (см. выше пункты 6 - 10, за исключением пункта 8). 42

РЕКОМЕНДАТЕЛЬНЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. *Самарский, А. А.* Введение в численные методы / А. А. Самарский. – М. : Наука, 1982. – 272 с.

2. *Бахвалов, Н. С.* Численные методы: учеб. пособие / Н. С. Бахвалов, Н.П. Жидков, Г. М. Кобельков. – М. : Наука, 1987. – 600 с.

3. *Сегерлинд, Л*. Применение метода конечных элементов / Л. Сегерлинд. – М.: Мир, 1979. – 392 с.

4. Дьяконов, В. MatchCAD 2000: учеб. курс / В. Дьяконов. – СПб. : Питер, 2001. – 592 с.

5. *Херхагер, М.* MatchCAD 2000: полное руководство / М. Херхагер, Х. Партолль. – Киев: BHV, 2000. – 416 с.

оглавление

ВВЕДЕНИЕ	3
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	4
ПРАКТИЧЕСКИЕ ЗАДАНИЯ	10
ЗАКЛЮЧЕНИЕ	18
ПРИЛОЖЕНИЕ	19
РЕКОМЕНДАТЕЛЬНЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК	43

ЧИСЛЕННЫЕ МЕТОДЫ В СТРОИТЕЛЬСТВЕ

Методические указания

Составители МАЛОВА Наталья Анатольевна КВОФИЕ Р. Охене

Ответственный за выпуск – зав. кафедрой доцент А.Ф. Ковалев

Редактор Л.В. Пукова Корректор Е.В. Афанасьева Компьютерная верстка Е.Г. Радченко

ЛР № 020275. Подписано в печать 4.10.05. Формат 60х84/16. Бумага для множит. техники. Гарнитура Таймс. Печать на ризографе. Усл. печ. л. 2,56. Уч.-изд. л. 2,71. Тираж 200 экз.

Заказ №

Издательство Владимирского государственного университета. 600000, Владимир, ул. Горького, 87.