Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых»

М. В. ПОПОВА А. В. ВЛАСОВ

УЧЕБНОЕ ПОСОБИЕ К КУРСОВОМУ ПРОЕКТУ ПО ДИСЦИПЛИНЕ «МЕТАЛЛИЧЕСКИЕ КОНСТРУКЦИИ»

УДК 624.014 (07) ББК 38.54 П58

Рецензенты Доктор технических наук, профессор зав. кафедрой строительных конструкций Московской государственной академии коммунального хозяйства и строительства Ю. Н. Хромец

Начальник Владимирского строительного комплекса ОАО «Ивановская домостроительная компания» П. А. Грешкин

Печатается по решению редакционно-издательского совета ВлГУ

Попова, М. В.

П58 Учебное пособие к курсовому проекту по дисциплине «Металлические конструкции» / М. В. Попова, А. В. Власов ; Владим. гос. ун-т имени Александра Григорьевича и Николая Григорьевича Столетовых. – Владимир : Изд-во ВлГУ, 2012. – 60 с. – ISBN 978-5-9984-0287-6.

Содержит требования по проектированию всех элементов и связей балочной клетки промышленного здания, указания по выбору схемы балочной клетки, расчету и конструированию главной балки, подбору сечения и расчету металлической колонны.

Предназначено студентам дневной, заочной и дистанционной форм обучения направления 270800 – Строительство в соответствии с программой курса «Металлические конструкции».

Рекомендовано для формирования профессиональных компетенций в соответствии с ФГОС 3-го поколения.

Табл. 1. Ил. 25. Библиогр.: 8 назв.

УДК 624.014 (07) ББК 38.54

ISBN 978-5-9984-0287-6

© ВлГУ, 2012

ОБЩИЕ УКАЗАНИЯ

При работе над проектом следует пользоваться основным курсом «Металлические конструкции» [1], альбомом узлов балочных площадок [2], нормами проектирования [3] и [4], а также настоящим изданием.

При выполнении вычислений необходимо следить за единицами измерения величин. В соответствии с нормами напряжения модуль упругости, расчетные сопротивления материалов и соединений приводят в мегапаскалях (МПа). В ходе вычислений мегапаскали следует переводить в килопаскали (кПа) (1 кПа = 1 кН/м²) умножением на 10³ и наоборот. Геометрические характеристики сечений и размеры (длины, площади и т.п.) в расчетные формулы подставляют в метрах. При этом применяют следующее правило перевода: см^{*n*} = 10^{-2*n*} м^{*n*}, например, 1 см² = 10⁻⁴ м², 1 см³ = 10⁻⁶ м³, 1 см⁴ = 10⁻⁸ м⁴. Основные буквенные обозначения величин даны в прил. 1. Задание на выполнение курсового проекта выдает руководитель на бланке со следующими исходными данными:

- 1. Шаг колонн в продольном направлении А, м: 12, 14, 15, 16, 18, 20.
- 2. Шаг колонн в поперечном направлении В, м: 5; 5,5; 6; 6,5.
- 3. Габаритные размеры площадки в плане: 3А × 3В.
- 4. Отметка верха настила, м: 7; 7,5; 8; 8,5; 9; 10.
- 5. Строительная высота перекрытия, м: 1,6; 1,8; 2,0; 2,2; 2,4.
- 6. Временная равномерно распределенная нагрузка, кПа: 18; 20; 22; 24; 26; 28; 30; 32.
- 7. Материал конструкций:
- настила железобетон, сталь марки C 255;
- балок настила и вспомогательных сталь марки С 255, С 275;
- главных балок сталь (марка по выбору);
- колонн сталь марки C 255, C 275;
- фундаментов бетон класса В 12,5; В 15.
- 8. Допустимый строительный прогиб настила 1/150.
- 9. Тип сечения колонн сплошная, сквозная (по выбору).

10. Дополнительные указания

В курсовом проекте принят район строительства с $t > -30^{\circ}$, что по [3] относится к району II₅. В соответствии с этим принят следующий материал конструкций: для настила, прокатных балок и колонн – по группе 3, для составных балок – по группе 2. Коэффициенты условий работы во всех случаях равны $\gamma_c = 1$, кроме проверки общей устойчивости балок, когда следует принимать $\gamma_c = 0.95$.

Коэффициенты для расчета сварных соединений $\gamma_{wf} = \gamma_{wx} = 1$ и в дальнейшем исключаются. Коэффициент надежности по назначению в курсовой работе принят $\gamma_n = 1$.

1. ВЫБОР СХЕМЫ БАЛОЧНОЙ КЛЕТКИ

Схема балочной клетки выбирается в соответствии с рекомендациями [1]. Толщину стального настила принимают 6 – 12 мм.

Пример 1.1. Выбор схемы балочной клетки

Исходные данные:

Шаг колонны в продольном направлении А = 16 м.

Шаг колонны в поперечном направлении В = 5,5 м.

Габаритные размеры площадки в плане – 3А × 3В.

Отметка верха настила – 8 м.

Строительная высота перекрытия $h_{crp} = 2,2$ м.

Временная равномерно распределенная нагрузка $p = 24 \text{ к}\Pi a = 24 \text{ к}\text{H/m}^2$.

Материал конструкций:

настила – 1-й вариант – железобетон, 2-й вариант – сталь марки 18 кп;

балок настила и вспомогательных - сталь марки 18 кПа;

главных балок – сталь марки 18 Гпс;

колонн – сталь марки 18 кПа;

фундаментов – бетон марки 150;

допустимый относительный прогиб настила – 1/150;

тип сечения колонн – по выбору.

Примечание. Расчетные сопротивления материалов принимают в соответствии с табл. 1 прил. 2 либо по [3], табл. 5.1. Расчетные со-

противления срезу и смятию торцевой поверхности принимают соответственно

$$R_s = 0,58 R_v, \quad R_p = R_u . \tag{1.1}$$

Количество вариантов и тип балочной клетки согласовывают с преподавателем.

Рассмотрим один вариант балочной клетки нормального типа с железобетонным настилом и два варианта (нормального и усложненного типа) со стальным настилом.

Первый вариант. Железобетонный настил

По табл. 2 прил. 2 для заданной нагрузки P = 24 кПа принимаем пролет железобетонной плиты и шаг балок настила 3,2 м (см. рис. 1.1). Толщина плиты 14 см. Сопряжение балок настила с главной балкой может быть принято по рис. 1.2, *а* или рис. 1.2, *б*. На рис. 1.2 показаны возможные схемы сопряжения балок, которые выбираются в соответствии с рекомендациями [1], [2] с учетом заданной строительной высоты.

Рис. 1.1. Схема балочной клетки (вариант 1)

Второй вариант. **Нормальный тип балочной клетки.** Настил – сталь марки 18 кп

В зависимости от заданной нагрузки P = 24 кПа и относительного прогиба [f/ℓ] = 1/150 определяем наибольшее отношение пролета настила к его толщине $\ell_{\rm H}/t_{\rm H}$ в соответствии с [1].

Цилиндрическая жесткость настила E_1 при коэффициенте Пуассона v = 0,3 равна

$$E_1 = \frac{E}{1 - v^2} = \frac{2,06 \cdot 10^5}{1 - 0,3^2} = 2,3 \cdot 10^8 \text{ K}\Pi\text{a},$$
$$\frac{l_n}{t_n} = \frac{4n_0}{15} - (1 + \frac{72l_t}{n_0^4 p}) = 40 \ (1 + \frac{32,2}{p}) \approx 94$$

где $n_0 = [\ell/f]$, задаем $t_{\rm H} = 10$ мм, тогда $\ell_{\rm H} = 94 \times 10 = 940$ мм и возможный шаг балок настила a = 1 м, так как $\ell_{\rm H}$ меньше a на ширину полки балки настила. Схема расстановки балок настила показана на рис. 1.3, сопряжение балок (см. рис. 1.2, a)

Рис. 1.2. Схемы сопряжения балок: *а* – этажное; *б* – *в* одном уровне; *в* – пониженное

Рис. 1.3. Схема балочной клетки (вариант 2)

Третий вариант. Усложненный вариант балочной клетки. Настил – сталь марки 18 кп

Принимаем шаг вспомогательных балок, а значит и пролет балок настила 3,2 м. При меньшем пролете целесообразны более частое расположение балок настила и более тонкий настил. Примем $t_{\rm H} = 8$ мм, тогда $l_{\rm H} = 94.8 = 752$ мм и шаг балок настила a = 80 см. Схема компоновки третьего варианта показана на рис. 1.4. Сопряжение балок может быть принято по рис. 1.2, *в*.

Рис. 1.4. Схема балочной клетки (вариант 3)

После компоновки вариантов выполняется расчет балок по каждому из вариантов в приведенной последовательности:

- определение нормативных нагрузок;

- определение расчетных нагрузок с учетом коэффициентов перегрузки для временной нагрузки $n_p = 1,2$, для собственного веса стальных конструкций $n_y = 1,05$, железобетонных плит $n_q = 1,1$ (собственный вес балок настила и вспомогательных может быть принят 1 - 2% от нагрузки на них);

- расчет балок настила и вспомогательных с учетом развития пластических деформаций на прочность и проверка их прогибов по формулам:

$$\sigma = \frac{M_{\text{max}}}{C_1 W} \le R_y \gamma_c; \quad \frac{f}{l} = \frac{5}{384} \frac{q^{\scriptscriptstyle H} l^4}{E Y_x} \le \left[\frac{f}{l}\right]. \tag{1.2}$$

Коэффициент C_1 зависит от отношения площади пояса (см. табл. 3 прил. 2) к площади стенки. Учитывая, что для прокатных двутавровых балок от № 16 до 45 величина C_1 меняется незначительно (от 1,086 до 1,112), в курсовом проекте допускается принимать приближенно $C_1 = 1,1$ независимо от номера двутавра и в последующем не уточнять.

Продольный относительный прогиб для балок настила и вспомогательных принимается [f/ℓ] = 1/250.

Для низколегированных сталей при пролетах балок 6 м и более и нагрузках до 40 кН/м целесообразно подбирать сечение по жесткости и затем проверять на прочность. При большом водонапряжении рекомендуется переход на более дешевую малоуглеродистую сталь.

Пример 1.2. Расчет балок настила

Варианты балочной клетки сравнивают по расходу стали или по стоимости. При этом принимается стоимость 1 т стали – 200 руб.; стоимость 1 м³ железобетона – 120 руб.

В рассмотренном примере при стальном настиле более экономичным является третий вариант балочной клетки (см. рис. 1.4). При выборе окончательного варианта следует принимать во внимание также возможную высоту главной балки, зависящую от строительной высоты перекрытия, трудоемкости монтажа, зависящую от количества элементов, сложность узлов сопряжения балок настила с главной балкой и другие факторы.

В рассмотренном примере окончательно принимаем второй вариант. Так как по стоимости и расходу стали он лишь на 4 % уступает третьему, но выгоднее по трудоемкости, так как проще. Кроме того, он дает больше возможностей по выбору высоты главной балки.

Для выбранного варианта по указанию руководителя может выполняться расчет угловых швов прикрепления листов настила к балкам на срез (условный) по двум сечениям по формулам:

$$\frac{N}{\beta_f k_f l_w} \le R_{wf}, \qquad (1.3)$$

$$\frac{N}{\beta_f k_f l_w} \le R_{wz}. \tag{1.4}$$

Расчетные сопротивления R_{wf} принимают по табл. 4 прил. 2, коэффициенты β_f , *b*, β_z – по табл. 5 прил. 2. Значение R_{wz} вычисляется в зависимости от временного сопротивления стали настила

$$R_{wz} = 0,45 \ R_{un} \,. \tag{1.5}$$

Пример 1.3. Расчет швов прикрепления настила.

Исходные данные – по примеру 1.2, вариант 2. Сварка ручная электродами Э42.

Находим усилие *N* на единицу длины шва по [1].

$$N = n \frac{\pi^2}{4} \left[\frac{f}{l}\right]^2 E_1 t_{\mu} = 1, 2 \frac{\pi^2}{4} \frac{1}{150^2} \frac{2,06 \cdot 10^8}{1 - 0,3^2} \cdot 10^{-2} = 298 \text{ KH/M}.$$

По табл. 4 прил. 2 для стали 18 кп и электродов Э42 R_{wf} = 180 МПа.

По табл. 5 прил. 2 находим для ручной сварки: $\beta_f = 0,7$; $\beta_z = 1,0$; требуемый катет шва рассчитываем по формуле (1.3):

$$k_f = \frac{298}{0,7 \cdot 1 \cdot 180 \cdot 10^8} = 0,0023 \text{ M} = 2,3 \text{ MM}.$$

Учитывая, что $R_{wz} = 0,45 \cdot 370 = 166,5 MПа и \beta_f = 1,0$, проверку по формуле (1.4) можно не делать, так как $\beta_f R_{wf} < \beta_z R_{wz}$. Окончательно принимаем минимально допустимое значение k_f по табл. 6 прил. 2 в зависимости от толщины более толстого из свариваемых элементов, в рассматриваемом примере – полки двутавра № 30 $t_1 = 10,2$ мм, $k_f = 5$ мм.

2. РАСЧЕТ И КОНСТРУИРОВАНИЕ ГЛАВНОЙ БАЛКИ

2.1. Расчетная схема. Расчетные нагрузки и усилия

При передаче на главную балку через пять и более балок настила можно считать нагрузку равномерно распределенной. Расчетная схема и опоры усилий показаны на рис. 2.1.

Рис. 2.1. Расчетная схема главной балки. Усилия

Постоянная нагрузка (вес настила, балок настила и вспомогательных) найдена при сравнении вариантов. Собственный вес главной балки можно принять приближенно в размере 2 – 3 % от нагрузки на нее. Грузовая площадь показана на рис. 2.2 (заштрихована). Подбор сечений главной балки следует выполнять с учетом развития пластических деформаций в наиболее нагруженном сечении (в середине пролета). В реальном проектировании целесообразность учета пластических деформаций определяется при сравнении вариантов.

Рис. 2.2. К определению нагрузки на главную балку

2.2. Определение высоты главной балки

Высоту главной балки $h_{r\delta}$ целесообразно назначать близкой к оптимальной и кратной 100 мм при соблюдении условия $h_{min} \leq h_{r\delta max}$ (см. рис. 1.2.) Минимальная высота определяется из условий обеспечения предельного прогиба [f/ℓ] не более 1/400 при полном использовании расчетного сопротивления материала по формуле

$$h_{\min} = \frac{5}{24} \frac{C_1 R_y L}{E} [\frac{L}{f}] \frac{q^{\scriptscriptstyle \text{H}}}{q^{\scriptscriptstyle \text{p}}}.$$
 (2.1)

Оптимальную высоту можно определить без учета развития пластических деформаций по формуле

$$h_{\text{опт}} = \sqrt[3]{\frac{3}{2}\lambda_w W}$$
.

При этом гибкость стенки $\lambda_w = h_w/t_w$ целесообразно принимать равной 120...150 (меньшее значение при больших R_y).

Пример 2.1. Определить нагрузки и расчетные усилия в главной балке и подобрать высоту. Исходные данные – по примеру 1.2, второй вариант.

Погонная нагрузка с учетом собственного веса – 2 %.

$$q^{\text{H}} = 1,02 (p^{\text{H}} + g^{\text{H}})B = 1,02 (24 + 1,15) 5,5 = 141,1 \text{KH/M},$$
$$q^{\text{H}} = 1,02 (n_{p}p^{\text{H}} + n_{g}g^{\text{H}})B = 1,02 (1,2 \cdot 24 + 1,05 \cdot 1,15) 5,5 = 168,3 \text{KH/M}.$$

Расчетные усилия

$$M_{\max} = \frac{168,3 \cdot 16^2}{8} = 5386 \text{ kH} \cdot \text{m}; \ Q_{\max} = \frac{168,3 \cdot 16}{2} = 1346 \text{ kH}.$$

Требуемый момент сопротивления

$$W_{\rm Tp} = \frac{M_{\rm max}}{C_1 R_y} = \frac{5386}{1.1 \cdot 230 \cdot 10^8} = 21288 \cdot 10^{-6} \,\mathrm{m}^3.$$

*C*₁ = 1,1 – задаем коэффициент упруго-пластической работы материала. Расчетное сопротивление стали 18 Гпо.

 $R_y = 230$ МПа (предполагаем, что толщина поясных листов до 20 мм). При этажном сопряжении балок настила (см. рис. 1.2, *a*) $h_{\rm r6\ max} = h_{cnh1} - h_{\rm 6H} - t_{\rm H} - \Delta = (220 - 30 - 1 - 6)10^{-2} = 1,83$ м. Минимальная высота (по жесткости)

$$h_{\min} = \frac{5}{24} \frac{1.1 \cdot 230 \cdot 10^3 \cdot 16}{2.06 \cdot 10^8} 400 \frac{141.1}{168.3} = 1.38 \text{ M}.$$

Задаем гибкость стенки $\lambda_w = 150$.

Тогда $h_{\text{опт}} = \sqrt[3]{\frac{3}{2}} 150 \cdot 21288 \cdot 10^{-8} = 1,68 \text{ м}.$

Принимаем h = 1,7 м, что больше h_{\min} , меньше h_{\max} и близко к h_{\min} .

2.3. Подбор сечения главной балки

Подбор сечения главной балки состоит из следующих этапов.

Назначение толщины стенки t_w из условия прочности на срез – (2.2), местной устойчивости (без продольных ребер жесткости) – (2.3), опыта проектирования – (2.4):

$$t_w \ge \frac{1.2 \ Q_{\text{max}}}{h \ R_s},\tag{2.2}$$

$$t_w \ge \frac{h_w}{160} \sqrt{\frac{R_y}{210}},$$
 (2.3)

$$t_w \cong 7 + \frac{3h}{1000}.$$
 (2.4)

Определяем требуемую площадь поясов *A_f*, обеспечивающую необходимый момент инерции, по формулам (рис. 2.3):

$$J_{\rm Tp} = W_{\rm Tp} \, \frac{h}{2}; \ h_w \approx h - (40...50) \, {
m MM},$$

$$J_{f, \text{тр}} = J_{\text{тр}} - J_{\text{ц}} = J_{nh} - \frac{t_w h_w^3}{12},$$

 $J_f = 2 A_f (\frac{h_f}{2})^2, \text{ откуда } A_f = \frac{2J_f}{h_f^2}$

Компоновка сечения с учетом рекомендаций [1]. Следует учитывать стандартную ширину и толщину листов широкополосной универсальной стали в соответствии с сортаментом, а также зависимость расчетного сопротивления R_v от толщины листа.

 $\frac{b_f}{h} = \frac{1}{3} / \frac{1}{5}; \ \frac{b_f}{t_f} \le \sqrt{\frac{E}{R_y}}.$ (2.5)

Для окомпонованного сечения вычисляют геометрические характеристики и уточняют значение $C_1 = f(\frac{A_f}{A_w})$ по табл. 3 прил. 2, далее выполняют проверку прочности. При

этом следует учесть, что для составных сече-

Рис. 2.3. Сечение балки

ний по [3] допускается недонапряжение не более 5 %. В местах опирания сверху на главную балку балок настила необходимо проверить прочность стенки по формуле

$$\sigma_{loc} = \frac{P}{t_w \, l_{ef}} \le R_y, \tag{2.6}$$

где P – нагрузка на балку, равная сумме двух опорных реакций от балок настила (или вспомогательных балок); $l_{ef} = B + 2t_f (B - ширина полки балки настила).$

Пример 2.2. Подбор сечения главной балки.

Исходные данные – см. пример 2.1. Находим толщину стенки по формулам (2.2) – (2.4), полагая $t_f = 2$ см; $h_w = 1,7 - 2 \cdot 0,02 = 1,66$ м :

$$t_{w} \geq \frac{1,2 \cdot 1346}{1,66 \cdot 0,58 \cdot 230 \cdot 10^{3}} = 0,0073 \text{ м} = 7,3 \text{ мм},$$

$$t_{w} \geq \frac{1,66}{1,60} \sqrt{\frac{230}{210}} = 0,011 \text{ м} = 11 \text{ мм},$$

$$t_{w} \approx 7 + \frac{3 \cdot 1700}{1000} = 12,1 \text{ мм}, \text{ принимаем } t_{w} = 12 \text{ мм}.$$

Находим требуемую площадь поясов A_{flтp}:

$$\begin{split} J_{\rm Tp} &= 21288 \cdot 10^{-6} \ \frac{170 \cdot 10^{-2}}{2} = 1809480 \cdot 10^{-8} \ {\rm M}^4 \ , \\ J_w &= \frac{1.2 \cdot 10^{-2} \, (166 \cdot 10^{-2})^3}{12} = 457430 \cdot 10^{-8} \ {\rm M}^4 \ , \\ J_{f,{\rm Tp}} &= (1809480 - 457430) \, 10^{-8} = 1352050 \cdot 10^{-8} \ {\rm M}^4 \ , \\ A_{f,{\rm Tp}} &= \frac{2 \cdot 1352050 \cdot 10^{-8}}{(168 \cdot 10^{-2})^2} = 96 \ {\rm cm}^2 \ . \end{split}$$

Принимаем пояса на листе 500×200 мм. При этом $A_f = 50 \times 2 = 100 \text{ см}^2$,

$$\frac{b_f}{h} = \frac{50}{170} = 0,294 \approx \frac{1}{3}; \quad \frac{b_f}{t_f} = \frac{50}{2} = 25 < \sqrt{\frac{2,06 \cdot 10^5}{230}} \approx 30.$$

Таким образом, рекомендации (2.5) выполнены. Принятое сечение балки показано на рис. 2.4.

Геометрические характеристики сечения: $J_x = 457430 \cdot 10^{-8} + 2 \cdot 100 \cdot 10^{-4} (84 \cdot 10^{-2}) =$ $= 1868630 \cdot 10^{-8} \text{ м}^4,$ $W_x = \frac{2 \cdot 1868630 \cdot 10^{-8}}{170 \cdot 10^{-2}} = 21984 \cdot 10^{-6} \text{ м}^3,$

 $\frac{A_f}{A_w} = \frac{100}{1.2 \cdot 166} = 0,5$. По табл. 3 прил. 2 на-

Рис. 2.4. Принятое сечение балки

ходим $C_1 = 1,12$. Проверка прочности $\sigma_x = \frac{5386 \cdot 10^{-3}}{1,12 \cdot 21984 \cdot 10^{-6}} = 219$ МПа.

Недонапряжение $\Delta_{\sigma} = \frac{230 - 219}{230} 100 = 4,8 \% < 5 \%$. Проверка прогиба балки не требуется, так как принятая высота h = 1,70 м больше $h_{\min} = 1,38$ м.

2.4. Изменение сечения главной балки

Изменение сечения в соответствии с п. 5.19 [3] выполняется без учета пластических деформаций за счет уменьшения ширины поясных листов на расстоянии около 1/6 пролета от опоры. При этом следует учитывать следующие требования: - уменьшенная ширина пояса e_1 должна быть не менее $0,5e_f$ и не менее 180 мм;

- должна быть обеспечена прочность растянутого станкового сварного шва, причем расчетное сопротивление швов сжатию и растяжению при физических методах контроля принимается $R_{wy} = R_y$, а при отсутствии физического контроля качества швов расчетное сопротивление растяжению понижается $R_{\lambda y} = 0.85 R_y$.

Пример 2.3. Изменение сечения сварной балки.

Исходные данные – см. пример 2.2. Принимаем место изменения сечения на расстоянии 2,7 м от опор примерно 1/6*L*, как показано на рис. 2.5, находим расчетные усилия:

$$M_{1} = \frac{q^{p} x_{1}}{2} (L - x_{1}) = \frac{168, 3 \cdot 2, 7}{2} (16 - 2, 7) = 3022 \text{ kH} \cdot \text{m},$$
$$Q_{1} = q^{p} (\frac{L}{2} - x_{1}) = 168, 3(\frac{16}{2} - 2, 7) = 892 \text{ kH}.$$

Подбираем сечение исходя из прочности стыкового шва нижнего пояса. Требуемый момент сопротивления

$$W_{1,\mathrm{Tp}} = \frac{M_1}{R_{wy}} = \frac{3022}{0.85 \cdot 230 \cdot 10^8} = 15458 \cdot 10^{-6} \mathrm{m}^3.$$

Рис. 2.5. К изменению сечения по длине

Для выполнения стыка принята полуавтоматическая сварка физического контроля качества шва.

$$J_{1,\mathrm{rp}} = 15458 \cdot 10^{-6} \frac{170 \cdot 10^{-2}}{2} = 1313930 \cdot 10^{-8} \mathrm{\ m^4},$$

$$J_{f,\mathrm{rp}} = J_{1,\mathrm{rp}} - J_w = (1313930 - 457430) \, 10^{-8} = 856500 \cdot 10^{-8} \mathrm{\ m^4},$$

$$A_{f,\mathrm{rp}} = \frac{2 \cdot 856500 \cdot 10^{-8}}{(168 \cdot 10^{-2})^2} = 61 \cdot 10^{-4} \mathrm{\ m^2}.$$

Принимаем поясной лист 320×20 мм из широкополосной универсальной стали по ГОСТу 81-70. Геометрические характеристики измененного сечения:

$$\begin{split} &A_{1,f} = 64 \cdot 10^{-4} \text{ m}^2, \\ &J_{1,f} = 457430 \cdot 10^{-8} + 2 \cdot 64 \cdot 10^{-4} (84 \cdot 10^{-2})^2 = 1360598 \cdot 10^{-8} \text{ m}^4, \\ &W_{1,x} = \frac{2 \cdot 1360598 \cdot 10^{-8}}{170 \cdot 10^{-2}} = 16007 \cdot 10^{-6} \text{ m}^3, \\ &S_f = 64 \cdot 10^{-4} \cdot 84 \cdot 10^{-2} = 5376 \cdot 10^{-6} \text{ m}^3, \\ &S_{\max} = S_f + S_{\frac{1}{2}w} = 5376 \cdot 10^{-6} + 83 \cdot 10^{-2} \cdot 1, 2 \cdot 10^{-2} \frac{83 \cdot 10^{-2}}{2} = 9509 \cdot 10^{-6} \text{ m}^3. \end{split}$$

Прочность проверяем по максимальным растягивающим напряжениям в точке А (по стыковому шву, см. рис. 2.5).

Рис. 2.6. К расчету балки в месте изменения сечения

$$\sigma_A = \frac{3022}{16007 \cdot 10^{-6}} = 188,8 \text{ МПа}.$$

 $\Delta_{\sigma} = \frac{195,5 - 188,8}{195,5} 100 = 3,4 \% < 5\%.$ Прочность по приведенным на-

пряжениям на грани стенки (точка Б) проверяем по п. 5.14 [3]. При этом $\sigma_{loc} = 0$ и $\sigma_{прив}$ наибольшие. $\sigma_{6} = \sigma_{max} \frac{0.5h_{w}}{0.5h} = 188,8 \frac{166}{170} = 184,4$ МПа.

$$\begin{aligned} \tau_{_{6}} &= \frac{Q_{_{1}}S_{_{f}}}{J_{_{1}}t_{_{w}}} = \frac{892 \cdot 5376 \cdot 10^{-6}}{1360598 \cdot 10^{-8} \cdot 1,2 \cdot 10^{-2} \cdot 10^{3}} = 29,4 \text{ MIIa},\\ \sigma_{_{\Pi P \text{UB}}} &= \sqrt{\sigma_{_{6}}^2 + 3\tau_{_{6}}^2} = \sqrt{184,4^2 + 3 \cdot 29,4^2} = 186,7 \text{ MIIa} < 1,15R_{_{y}} = 1,15 \cdot 230 \text{ MIIa}. \end{aligned}$$

Прочность опорного сечения на срез проверяем по максимальным касательным напряжениям в точке В, см. рис. 2.5:

 $\tau_{\max} = \frac{Q_{\max} \cdot S_{\max}}{J_1 t_w} = \frac{1346 \cdot 9509 \cdot 10^{-6}}{1360598 \cdot 10^{-8} \cdot 1, 2 \cdot 10^{-2} \cdot 10^3} = 78,4 \text{ M}\Pi a < R_s = 0,58 \cdot 230 = 133,4 \text{ M}\Pi a.$

Проверка прочности стенки на местное давление балок настила по формуле (2.6): $P = 30, 2 \cdot 5, 5 = 166, 1 \text{ kH}$;

$$\sigma_{loc} = \frac{166, 1 \cdot 10^{-3}}{(13, 5+4) \cdot 1, 2 \cdot 10^{-4}} = 79,1 \text{ M}\Pi a < R_y = 230 \text{ M}\Pi a$$

Таким образом, прочность принятого уменьшенного сечения главной балки обеспечена.

2.5. Проверка обеспеченности общей устойчивости балки

В соответствии с п. 5.16 [3] устойчивость балок проверять не требуется, если выполняются условия:

- нагрузка передается через сплошной жесткий настил, непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный, в частности, железобетонные плиты или стальной лист;

- при отношении расчетной длины балки ℓ_{ef} (расстояние между точками закрепления сжатого пояса от поперечных смещений) к ширине сжатого пояса *B* не более

$$\frac{l_{ef}}{b} = \delta[0,41+0,032\frac{b}{t} + (0,73-0,016\frac{b}{t})\frac{b}{h_f}]\sqrt{\frac{E}{R_y}}.$$
(2.7)

Коэффициент б принимают равным $\delta = 0,3$ при учете пластических деформаций ($\tau \le 0,5 R_s$). При отсутствии пластических деформаций $\delta = 1$ в курсовом проекте допускается пользоваться упрощенной формулой

$$\frac{l_{ef}}{b} = 0.575 \,\delta \sqrt{\frac{E}{R_y}} \,.$$

Пример 2.4. Проверить обеспеченность общей устойчивости балки. Исходные данные – по примеру 2.3.

Нагрузка на балку передается через балки настила, закрепляющие главную балку в горизонтальном направлении и установленные с шагом 1 м. Проверяем условие (2.7) в середине пролета с учетом пластических деформаций

$$0,3[0,41+0,0032\frac{50}{2}+(0,73-0,016\frac{50}{2})\frac{50}{168}]\sqrt{\frac{2,06\cdot10^5}{230}}=5,28>\frac{100}{2}=2.$$

Следовательно, устойчивость балки проверять не требуется.

2.6. Проверка местной устойчивости сжатого пояса и стенки

Устойчивость сжатого пояса при учете развития пластических деформаций по п.17.24 [3] обеспечивается выполнением условий (2.8)

При
$$\frac{h}{t_w} \le 2.7 \sqrt{\frac{E}{R_y}}; \qquad \frac{b_{ef}}{t} \le 0.3 \sqrt{\frac{E}{R_y}}.$$
 (2.8)

В остальных случаях
$$\frac{b_{ef}}{t} \le 0,11\frac{h}{t_w}$$
, но не более $0,5\sqrt{\frac{E}{R_y}}$.

В рассмотренном примере эти условия выполнены. При расчете без учета пластических деформаций устойчивость сжатого пояса про-

веряется по формуле
$$\frac{b_{ef}}{t} \le 0.5 \sqrt{\frac{E}{R_y}}$$
.

Стенку балки в соответствии с п. 7.19 [3] необходимо укреплять поперечными ребрами жесткости при $\lambda_w > 3,2$. В средней части балки на длине 0,3 *L* при подборе сечения с учетом пластических деформаций ребра жесткости по п. 5.21 [3] следует ставить под каждой балкой настила. В стальных отсеках расстояние между ребрами жесткости *a* принимается, как правило, не более 2 h_{ef} при $\lambda_w > 3,2$. (Допускается увеличить указанное расстояние до 3 h_{ef} при условии проверки обеспечения местной устойчивости стенки). Как правило, следует устанавливать односторонние ребра жесткости с шириной $B_h \ge h_{ef}/24 + 50$ мм

и толщиной $t_S = 2b_g \sqrt{\frac{R_y}{E}}$. В отдельных случаях допускается примене-

ние парных ребер жесткости (например при сопряжении балок настила с главными в одном уровне). Ширина парного симметричного ребра должна быть не менее $h_{ef}/30 + 40$ мм, толщина – как и для одностороннего ребра.

Стенки балок следует проверять на устойчивость, за исключением случаев, когда условная гибкость $\lambda_w = \frac{h_{ef}}{t_w} \sqrt{\frac{R_y}{E}}$ не превышает значений:

3,5 – в балках с двусторонними поясными швами при $\sigma_{loc} = 0$;

3,2 - то же, в балках с односторонними поясными швами;

 $2{,}5-при\;\sigma_{\ell oc} \neq 0$ в балках с двусторонними поясными швами.

Расчет на устойчивость выполняется для отсека стенки между ребрами жесткости и поясами на действие средних в пределах отсека нормальных и касательных напряжений σ_{cp} и τ_{cp} , а также местных напряжений $\sigma_{\ell oc}$. Сжимающее напряжение σ_{cp} у сжатой границы стенки и среднее касательное напряжение τ_{cp} вычисляют по формулам:

$$\sigma_{\rm cp} = \frac{M_{\rm cp} V}{J}; \quad \tau_{\rm cp} = \frac{Q_{\rm cp}}{t_w h_w}.$$

Для симметричного сечения $y = \frac{h_f}{2}$, $\sigma_{cp} = \frac{M_{cp}}{W} \frac{h_w}{h} M_{cp}$ и Q_{cp} –

средние значения момента и поперечной силы в пределах стенки. Если длина отсека *a* больше его высоты $h_{ef} = h_w$, осреднение выполняется в пределах наиболее нагруженного участка отсека *a* длиной, равной h_{ef} . Количество и расположение отсеков, в которых следует проверять устойчивость стенки, должны быть согласованы с руководителем проекта.

В курсовом проекте в целях упрощения допускается выполнять расчет приближенно по величине M и Q в наиболее характерном сечении под балкой настила, как показано в примере 2.5. Величина местных напряжений в стенке σ_{loc} определяется по формуле (2.6). Проверка устойчивости стенок балок симметричного сечения с учетом развития пластических деформаций по 7.5 [3] при $\sigma_{loc} = 0$; $\tau \le 0.9 R_s$; $A_f/A_w \ge 0.25$; $2.2 \le \lambda_w \le 6$ выполняется по формуле

$$M \le R_y \gamma_c h_{ef}^2 t_w \left(\frac{A_f}{A_w} + \alpha\right), \qquad (2.9)$$

где
$$\alpha = 0,24 - 0,15(\frac{\tau}{R_S})^2 - 8,5 \cdot 10^{-3} (\lambda_w - 2,2)^2, \gamma_c = 1, \tau = \frac{Q}{t_w h_w}.$$

Проверка устойчивости стенок балок, рассчитанных без учета пластических деформаций при отсутствии местных напряжений ($\sigma_{\ell oc} = 0$) и $\lambda_w \leq 6$, выполняется по формуле п. 7.4 [3]:

$$\sqrt{\left(\frac{\sigma}{\sigma_{cz}}\right)^2 + \left(\frac{\tau}{\tau_{cz}}\right)^2} \le \gamma_c, \qquad (2.10)$$

где $\gamma_c = 1$. Критические напряжения σ_{cr} и τ_{cr} определяются по формулам:

$$\sigma_{cr} = \frac{c_{cr}R_y}{\lambda_w^2},\tag{2.11}$$

$$\tau_{cr} = 10,3 \ (1 + \frac{0,76}{\mu^2}) \frac{R_s}{\lambda_{ef}^2} \ . \tag{2.12}$$

С_{cr} принимаем по табл. 7 прил. 2 в зависимости от значения коэффициента

$$\delta = \beta \frac{b_f}{h_{ef}} \left(\frac{t_f}{t_w}\right)^3. \tag{2.13}$$

Коэффициент $\beta = \infty$ при непрерывном опирании плит на сжатый пояс; $\beta = 0,8 - в$ остальных случаях; $\lambda_{ef} = \frac{d}{t_w} \sqrt{\frac{R_y}{E}}$, где d – меньшая из сторон отсека, то есть h_{ef} или a – см. пример 2.5.

Расчет на устойчивость при $\sigma_{\ell oc} \neq 0$ по п. 7.6 [3] выполняется по формуле

$$\sqrt{\left(\frac{\sigma}{\sigma_{cr}} + \frac{\sigma_{loc}}{\sigma_{loc.cr}}\right)^2 + \left(\frac{\tau}{\tau_{cr}}\right)^2} \le \gamma_c \qquad (\gamma_c = 1), \tag{2.14}$$

где τ_{cr} – определяется по формуле (2.12), σ_{cr} и $\sigma_{loc.cr}$ определяются:

a) при
$$\frac{a}{h_{ef}} \le 0.8$$
 $\sigma_{cq} - по формуле (2.11),$
 $\sigma_{loc.cr} = \frac{C_1 R_y}{\lambda_a^2},$ (2.15)

где $\lambda_a = \frac{a}{t_w} \sqrt{\frac{R_y}{E}}$, C_1 – коэффициент, определяемый по табл. 8 прил. 2

в зависимости от отношения $\frac{a}{h_{ef}}$ и значения δ , вычисляемого по формуле (2.13); б) при $\frac{a}{h_{ef}} > 0.8$ и $\frac{\sigma}{\sigma_{loc}}$ больше значений, указанных в табл. 9

прил. 2:

$$\sigma_{cr} = \frac{C_2 R_y}{\lambda_w^2}, \qquad (2.16)$$

где С₂ – коэффициент, определяемый по табл. 10 прил. 2;

 $\sigma_{loc.cr}$ – по формуле (2.15), в которой при $\frac{a}{h_{ef}} > 2$ следует принимать

 $a = 2h_{ef};$

в) при $\frac{a}{h_{ef}} > 0.8$ и $\frac{\sigma}{\sigma_{loc}}$ не более значений, указанных в табл. 9

прил. 2; σ_{cr} – по формуле (2.11), $\sigma_{loc.cr}$ – по формуле (2.15), но с подстановкой $\frac{a}{2}$ вместо *a* в формуле (2.15) и табл. 8 прил. 2.

В целях сокращения объема вычислений для определения критических напряжений можно использовать табл. 11 - 15 прил. 2, в которых приведены значения σ_{cr} , $\sigma_{loc.cr}$ и τ_{cr} в зависимости от геометрических параметров сечения и размеров отсека для наиболее часто встречающихся в курсовой работе случаев.

Пример 2.5. Расставить поперечные ребра жесткости и проверить местную устойчивость стенки. Исходные данные те же, что и в предыдущих примерах.

Ставим ребра жесткости, как показано на рис. 2.7.

В средней части балки, рассчитанной с учетом пластических деформаций, ставим ребра жесткости под каждой балкой настила 1 м.

Ребра жесткости принимаем односторонние шириной $b_h = \frac{1660}{24} + 50 = 120 \text{ мм}, t_s = 2 \cdot 120 \sqrt{\frac{230}{2,06 \cdot 10^5}} = 8 \text{ мм}.$ Проверку устойчи-

вости в отсеке № 1 выполняем с учетом пластических деформаций по формуле (2.9):

$$\lambda_{w} = \frac{166}{1,2} \sqrt{\frac{230}{2,06 \cdot 10^{5}}} = 4,62; \quad \tau = 0; \quad \frac{A_{f}}{A_{w}} = 0,5;$$

$$\alpha = 0,24 - 8,5 \cdot 10^{-3} (4,62 - 2,2)^{2} = 0,19;$$

$$230 \cdot 10^{3} (166 \cdot 10^{-2})^{2} 1,2 \cdot 10^{-2} (0,5 + 0,19) = 5248 \text{ kH} \cdot \text{M} < M_{\text{max}} = 5386 \text{ kH} \cdot \text{M}.$$

Рис. 2.7. Расстановка ребер жесткости. Расчетные усилия для проверки устойчивости стенки

Устойчивость стенки не обеспечена. Увеличиваем сечение поясов до 520×20 мм. Тогда $\frac{A_f}{A_w} = \frac{104}{1,2 \cdot 166} = 0,522$; 230 ·10³ (166 ·10⁻²)²1,2 ·10⁻² (0,522 + 0,19) = 5415 кH · м > 5386 кH · м. Принятое сечение достаточно по условиям местной устойчивости стенки. Проверка напряжения: $C_1 = 1,118$, $J_x = 457430 \cdot 10^{-8} + 2 \cdot 104 \cdot 10^{-4} (84 \cdot 10^{-2})^2 = 1925078 \cdot 10^{-8} \text{ м}^4$, $W_x = \frac{2 \cdot 1925078 \cdot 10^{-8}}{170 \cdot 10^{-2}} = 22648 \cdot 10^{-6} \text{ m}^3$, $\sigma = \frac{5386 \cdot 10^{-3}}{1,118 \cdot 22648 \cdot 10^{-6}} = 212,7 \text{ МПа}$. Недонапряжение $\Delta_{\sigma} = \frac{230 - 212,7}{230} = 100 = 7,5 %$ (по прочности). В отсеке № 3 стенка работает в упругой стадии и проверка устойчивости выполняется по формуле (2.14).

Расчетные усилия приближенно принимаем по сечению $x_3 = 2,5$ м под балкой настила. В запас не учитываем снижение нормальных напряжений в правой части отсека (при x > 2,7 м).

$$\begin{split} M_{3,cp} &= M(x-2,5) = \frac{168,3}{2} 2,5(16-2,5) = 2840 \text{ KH} \cdot \text{M};\\ Q_{cp} &= Q(x-2,5) = 168,3(8-2,5) = 926 \text{ KH};\\ \sigma_{cp} &= \frac{2840 \cdot 10^{-3}}{16007 \cdot 10^{-6}} \frac{1,66}{1,7} = 173,24 \text{ MIIa}; \sigma_{\ell oc} = 79,1 \text{ MIIa};\\ \tau_{cp} &= \frac{926 \cdot 10^{-3}}{1,2 \cdot 10^{-2} \cdot 1,66} = 46,5 \text{ MIIa};\\ \delta &= 0,8 \frac{32}{166} (\frac{2}{1,2})^3 = 0,714; \quad \frac{a}{h_{ef}} = 1,205; \quad \frac{\sigma_{loc}}{\sigma} = 0,457. \end{split}$$

Предельное значение $\frac{\sigma_{loc}}{\sigma} = 0,269$ по табл. 9 прил. 2. Так как $\frac{a}{h_{ef}} > 0,8$ и $\frac{\sigma_{loc}}{\sigma} > 0,269$, критические напряжения $\sigma_{cч}$ и $\sigma_{loc.cr}$ находим

по п. «б» (формулы (2.15), (2.16)):

$$\sigma_{cr} = \frac{45,4\cdot230}{4,62^2} = 489,2 \text{ МПа} (C_2 = 45,4 \text{ по табл. 10 прил. 2});$$

$$\sigma_{loc.cr} = \frac{22,22\cdot230}{5,56^2} = 165,3 \text{ МПа} (C_1 = 22,22 \text{ по табл. 8 прил. 2});$$

$$\lambda_a = \frac{200}{1,2} \sqrt{\frac{230}{2,06\cdot10^5}} = 5,56; \ \mu = \frac{200}{166} = 1,205; \ \lambda_{ef} = \lambda_w = 4,62;$$

$$\tau_{cr} = 10,3 \ (1 + \frac{0,76}{1,205^2}) \ \frac{0,58\cdot230}{4,62^2} = 98,1 \text{ МПа}.$$

Проверка устойчивости стенки отсека № 3:

$$\sqrt{\left(\frac{173,2}{489,2} + \frac{79,2}{165,3}\right)^2 + \left(\frac{46,5}{98,1}\right)^2} = 0,96 < 1.$$

Устойчивость стенки обеспечена.

Устойчивость отсека стенки \mathbb{N} 2 можно не проверять, так как он находится в зоне полного сечения, и напряжения σ и τ ниже, чем в отсеке \mathbb{N} 3 при одинаковых размерах отсеков.

Устойчивость стенки отсека \mathbb{N}_2 4 можно также не проверять, так как касательные напряжения в крайнем отсеке невелики ($\tau_{max} = 0.5 R_s$), нормальные напряжения значительно меньше, чем в отсеке \mathbb{N}_2 3, а критические напряжения выше, так как длина отсека *а* меньше.

2.7. Проверка прочности поясных швов

Поясные швы главных балок, рассчитанных с учетом пластических деформаций, рекомендуется выполнять двусторонними. Расчет поясных швов выполняется с учетом местных напряжений под балками настила (рис. 2.8, а) по формулам (1.3), (1.4), которые после подстановки значений расчетных усилий принимают вид:

$$\frac{\sqrt{T^2 + V^2}}{2\beta_f k_f} \le R_{wf} \gamma_{wf} \gamma_c , \qquad (2.17)$$

$$\frac{\sqrt{T^2 + V^2}}{2b_z k_f} \le R_{wz} \gamma_{wz} \gamma_c, \qquad (2.18)$$

где
$$\sqrt{T^2 + V^2} = N = \sqrt{\left(\frac{QS_f}{J_x}\right)^2 + \left(\frac{P}{l_{ef}}\right)^2}.$$
 (2.19)

Значения γ_{wf} , γ_{wz} , γ_c – те же, что и в формулах (1.3), (1.4). Сварка – автоматическая. Для двусторонних швов при $\sigma_{loc} = 0$ расчет выполняется по формулам (1.3), (1.4) на усилие N = T/2.

Пример 2.6. Расчет поясных швов главной балки. Исходные данные те же, что и в предыдущих примерах.

Поясные швы выполняются угловыми двусторонними (рис. 2.8, δ), так как сечение подобрано с учетом пластических деформаций и $\sigma_{loc} \neq 0$. Расчет выполняем для наиболее нагруженного участка шва у опоры на единицу длины шва:

$$T = \frac{QS_f}{J_x} = \frac{1346 \cdot 5376 \cdot 10^{-6}}{1360598 \cdot 10^{-8}} = 532 \text{ KH/M}.$$
$$V = \frac{166,1}{(13,5+4)10^{-2}} = 949.$$

Сварка автоматическая, выполняется в положении в лодочку сварочной проволокой Св-08ГА. Для этих условий и стали 18 Г по табл. 5.5 прил. 2 $R_{wf} = 200$ МПа; $R_{wz} = 0.45 \cdot 370 = 166.5$; $\beta_f = 1.1$; $\beta_z = 1.15$. Принимаем минимальную толщину шва $k_f = 6$ мм по табл. 2 при $t_w = 20$ мм.

Рис. 2.8. К расчету поясных швов: сечение 1 – по металлу шва; 2 – по металлу границы сплавления

Проверка прочности шва:
По (2.17):
$$\frac{\sqrt{532^2 + 949^2} \cdot 10^{-3}}{2 \cdot 1.1 \cdot 6 \cdot 10^{-3}} = 82,4 \text{ МПа} < R_{wf} = 200 \text{ МПа}.$$
По (2.18):
$$\frac{\sqrt{532^2 + 949^2} \cdot 10^{-3}}{2 \cdot 1.15 \cdot 6 \cdot 10^{-3}} = 78,8 \text{ МПа} < R_{wz} = 166,5 \text{ МПа}.$$

Таким образом, минимально допустимая толщина шва достаточна по прочности.

2.8. Конструирование и расчет опорной части балки

Конструирование опорной части балки состоит в выборе места расположения и конструкции опорных ребер и способа приварки этих ребер к стенке балки. Целесообразно принимать один из вариантов, показанных на рис. 2.9.

Рис. 2.9. Варианты опорной части балки

В варианте 2 опорные ребра должны быть плотно пригнаны к нижнему поясу. Расчет опорной части выполняют в приведенной последовательности:

- находят размеры опорного ребра из условия прочности на смятие его торцевой поверхности реакцией $F_{\rm on}$ по формуле

$$b_{\rm p} t_{\rm p} \ge \frac{F_{\rm on}}{R_{\rm p}}, \qquad (2.20)$$

где b_p – ширина ребра в варианте 1 или суммарная ширина опорной поверхности двух ребер (за вычетом вырезов 2 (15 – 20) мм в варианте 2);

- проверяют по п. 7.12 [3] устойчивость опорной части балки из плоскости балки как стойки, нагруженной опорной реакцией F_{on} . В расчетное сечение стойки A_{on} включаются сечение ребра и примыкающие к нему участки стенки (см. рис. 2.9, варианты 4 и 5) шириной $b_1 = 0.65t_w \sqrt{\frac{E}{R_y}}$. Расчетную длину стойки ℓ_{ef} принимают равной высо-

те стенки h_w :

$$\frac{F_{\rm orr}}{A_{\rm orr}\phi} \le R_y. \tag{2.21}$$

Значения коэффициента продольного изгиба φ определяют по табл. 16 прил. 2 в зависимости от гибкости $\lambda = l_{ef}/i_x$,

где
$$i_x = \sqrt{J_{x,0\Pi} / A_{0\Pi}}$$
. (2.22)

Необходимость выполнения этапа 2 определяет руководитель;

- проверяется местная устойчивость ребра по формуле

$$\frac{b_{ef}}{t} \le (0,36+0,1\lambda) \sqrt{E/R_y};$$
(2.23)

- подбирается размер k_1 швов, прикрепляющих опорные ребра к стенке балки по формулам (1.3), (1.4). При этом расчетное усилие $F_{\text{оп}}$ в варианте 1 воспринимается двумя, а в варианте 2 – четырьмя швами. Расчетная длина ℓ_w швов с учетом односторонней передачи усилия принимается $\ell_w = 85 \beta_f k_f$.

Пример 2.7. Сконструировать и рассчитать опорную часть балки, рассмотренной в предыдущих примерах.

Принимаем конструкцию опорной части по варианту 1 (см. рис. 2.9). Ребро крепится к стенке полуавтоматической сваркой в углекислом

газе сварочной проволокой Св-08Г2С. Размер выступающей части опорного ребра принимаем 20 мм. Из условия смятия (2.21) находим

$$A_{\rm p, \tau p} = (b_{\rm p} t_{\rm p})_{\rm \tau p} = \frac{F_{\rm ou}}{R_{\rm p}} = \frac{1346}{360 \cdot 10^3} = 37,4 \cdot 10^{-4} \text{ m}^2 = 37,4 \text{ cm}^2.$$

Принимаем ребро из листа 320×12 мм. Площадь $A_p = 32 \cdot 1, 2 = 38, 4 \text{ см}^2 > A_{p, \text{тр}}$.

Проверяем устойчивость опорной части (рис. 2.10, поз. 1) (выполняется по указанию руководителя): $e_1 = 0,65 \cdot 1,2 \sqrt{\frac{2,06 \cdot 10^5}{230}} = 23,4 \text{ см}$

$$J_{x,\text{OII}} = \frac{1,2 \cdot 32^{3}}{12} = 3277 \text{ cm}^{4};$$

$$A_{\text{OII}} = 38,4 + 23,4 \cdot 1,2 = 66,5 \text{ cm}^{2} = 66,5 \text{ m}^{-4};$$

$$i_{x} = \sqrt{\frac{3277}{66,5}} = 7 \text{ cm}; \quad \lambda = \frac{166}{7} = 23,7.$$

По табл. 16 прил. 2 с помощью интерполяции находим $\phi = 0,953$. *F* 1346 $\cdot 10^{-3}$

Рис. 2.10. К расчету опорной части балки

Проверяем местную устойчивость опорного ребра (рис. 2.10, поз. 2). $b_{ef} = (32 - 1, 2) 0,5 = 15,4 \text{ см}; \ \lambda = 23,7 \sqrt{\frac{230}{2,06 \cdot 10^5}} = 0,8,$ $\frac{15,4}{1,2} = 12,8 < (0,36 + 0,1 \cdot 0,8) \sqrt{\frac{2,06 \cdot 10^5}{230}} = 13,2.$

Подбираем размер катета швов по формуле (1.3):
$$\rho_f = 0.9$$
;
 $\rho_z = 1.05$; $R_{wf} = 215$ МПа; $R_{wz} = 166.5$ МПа,
 $\frac{F_{on}}{2\beta_f k_f (85\beta_f k_f)} \le R_{wf}$, откуда
 $k_f \ge \frac{1}{\beta_f} \sqrt{\frac{F_{on}}{2 \cdot 85 R_{wf}}} = \frac{1}{0.9} \sqrt{\frac{1346}{2 \cdot 85 \cdot 215 \cdot 10^3}} = 0.007 \text{ M} = 7 \text{ MM}.$

Проверку по металлу границы оплавления делать не нужно, так как $\beta_f \sqrt{R_{wf}} < \beta_z \sqrt{R_{wz}}$. Принимаем $k_f = 7$ мм.

2.9. Конструирование и расчет укрупненного стыка балки

Конструирование сварного стыка выполняется по [1] и заключается в выборе способов обработки стыкуемых кромок, зазоров в стыке и последовательности сварки швов в стыке. В большинстве случаев укрупнительный стык выполняется без физических методов контроля сварки. Стык растянутого пояса проектируется с равнопрочным косым стыковым швом (тангенс угла наклона линии стыка к оси пояса равен двум). Стык сжатого пояса выполняется прямым, стык на высокопрочных болтах – в среднем сечении ($Q_{x=L/2} = 0$). Конструирование стыка заключается в выборе диаметров и материалов болтов, размеров накладок, поясов и стенки, размещения болтов и способов обработки стыкуемых поверхностей. Расчет стыка состоит в определении количества болтов в стыке поясов и проверке прочности стыка стенки по усилию в наиболее нагруженном болте. Расчетное усилие на один болт по п. 11.13 [3], которое может быть воспринято каждой поверхностью трения соединяемых элементов, определяется по формуле

$$Q_{bh} = \frac{R_{bh} \gamma_b A_{bn} \mu}{\gamma_h}, \qquad (2.24)$$

где R_{bh} – расчетное сопротивление высокопрочного болта растяжению, $R_{bh} = 0,7 R_{bun}$. Значение R_{bun} определяют по табл. 17 прил. 2 в зависимости от принятой марки стали для болтов; γ_b – коэффициент условий работы, зависящий от количества болтов:

μ, γ_h – коэффициенты трения и надежности соответственно, принимаемые по табл. 18 прил. 2; A_{bn} – площадь сечения болта нетто, определяемая по табл. 19 прил. 2.

Количество *n* высокопрочных болтов в стыке поясов определяется по формуле

$$n \ge \frac{N}{m_{\rm Tp} \gamma_c Q_{bh}},\tag{2.25}$$

где $m_{\rm тp}$ – количество поверхностей трения в стыке; γ_c – коэффициент условий работы; N – расчетное усилие на стык, которое приближенно вычисляют по формуле

$$N = \frac{M_f}{h_f} = \frac{M_{\text{max}} J_f}{J h_f}.$$
 (2.26)

Можно также принимать $N = \sigma_{\max} A_f$, где $\sigma_{\max} = R_y C_1$ при учете пластических деформаций. Усилие в наиболее нагруженном болте в стыке стенки зависит от $M_w = \frac{M_{\max} J_w}{J}$ по формуле

$$N_{\max} = \frac{M_w h_{\max}}{m \sum h_i^2}, \qquad (2.27)$$

где m – количество вертикальных рядов болтов с одной стороны стыка стенки; h_{max} – расстояние между крайними болтами в вертикальном ряду; h_i – расстояние между парами симметрично расположенных болтов (рис. 2.11).

Рис. 2.11. Схема монтажного стыка на высокопрочных болтах

Пример 2.8. Запроектировать стык на высокопрочных болтах главной балки, рассмотренной в предыдущих примерах. Принимаем болты диаметром 20 мм из стали 40Х «Селект», отверстия диаметром 23 мм. Тогда $R_{bun} = 1100$ МПа, $A_{bn} = 2,45$ см². Способ подготовки поверхности – газопламенный без конверсии; способ регулирования натяжения – по углу поворота гайки. Для этих условий по табл. 18 прил. 2: $\mu = 0,42, \gamma_h = 1,02,$

$$Q_{bh} = \frac{0.7 \cdot 1100 \cdot 10^3 \cdot 2.45 \cdot 10^{-4} \cdot 0.42}{1.02} = 77.7 \text{ kH}.$$

Стык поясов перекрываем накладками из стали 18Гпс сечением размерами 520×12 с наружной и 2×240×12 с внутренней сторон поясов. При этом суммарная площадь сечения накладок $A_{\rm H} = 120 \text{ см}^2$, что несколько больше площади сечения поясов.

Усилие в поясах $N = 1,118 \cdot 230 \cdot 10^3 \cdot 104 \cdot 10^4 = 2674 \text{ кH}$.

Требуемое количество болтов в стыке поясов $n = \frac{2674}{2 \cdot 77,7} = 17,2$.

Принимаем 18 болтов. Размещаем их, как показано на рис. 2.11 в соответствии с требованиями табл. 20 прил. 2. Стык стенки перекрываем парными накладками из листа t = 10 мм. Болты устанавливаем в двух вертикальных рядах с каждой стороны на расстояниях в ряду a = 100 мм (максимально допустимое расстояние $a_{\text{max}} = 12t = 120$ мм). Число болтов в ряду 16 шт. $h_{\text{max}} = 15 \cdot 10 = 150$ см. Момент, приходящийся на стенку,

$$M_{w} = 5386 \frac{457430 \cdot 10^{-8}}{1925078 \cdot 10^{-8}} = 1280 \text{ kH} \cdot \text{M},$$

$$\sum h_{i}^{2} = 0,1^{2} + 0,3^{2} + 0,5^{2} + 0,7^{2} + 0,9^{2} + 1,1^{2} + 1,3^{2} + 1,5^{2} = 6,8 \text{ m}^{2}.$$

Проверка прочности: $N_{\text{max}} = 1280 \frac{1.5}{2 \cdot 6.8} = 141.2 \text{ кH} < 2 \cdot 77.7 = 155.4 \text{ кH}$.

2.10. Проектирование примыкания балок настила к главной балке

(Выполняется по указанию руководителя)

При сопряжении в одном уровне необходимо запроектировать соответствующие узлы с учетом рекомендаций [1], [2]. При этом необходимо выполнить расчет болтов и сварных швов. Пример 2.9. Рассчитать узел примыкания балок настила к главной балке по примеру 1.1 вариант 1 (рис. 2.12) при сопряжении в одном уровне.

Рис. 2.12. К расчету узла сопряжения балок

Принимаем болты нормальной прочности М24 класса 5.6. Диаметр отверстий d = 27 мм. По табл. 21 и 23 прил. 2 расчетные сопротивления болтов срезу $R_{es} = 190$ МПа, расчетное сопротивление смятию соединяемых элементов $R_{ep} = 370$ МПа. Площадь болта $A = \frac{\pi \cdot 2.4^2}{4} = 4.52$ см² (см. табл. 19 прил. 2). Несущая способность односрезного болта ($n_s = 1$) по срезу при $\gamma_e = 0.9$ по табл. 22 прил. 2.

 $N_{bs} = R_{bs} \gamma_b A = 190 \cdot 10^3 \cdot 0.9 \cdot 4.52 \cdot 10^{-4} = 77.3 \text{ kH}.$

Несущая способность по смятию более тонкого элемента (ребра) $N_{bp} = R_{bp} \gamma_b d \sum t = 370 \cdot 10^3 \cdot 0.9 \cdot 22.4 \cdot 10^{-2} \cdot 1 \cdot 10^{-2} = 79.9 \text{ кH}.$

Так как $N_{bs} < N_{bp}$, необходимое количество болтов подбираем по срезу по усилию $F = \frac{q_{6H}^p l}{2} = \frac{106, 2 \cdot 5, 5}{2} = 292 \text{ кH}$; $n \ge \frac{292}{77, 3} = 3, 8$. Принимаем 4 болта и ставим их, как показано на рис. 2.12.

Проверка прочности накладки на срез по площади сечения нетто:

$$\tau = \frac{F}{A_{sn}} = \frac{292 \cdot 10^{-3}}{(40 - 4 \cdot 2, 7) \, 1, 2 \cdot 10^4} = 83,3 \, \text{M}\Pi\text{a} < R_s = 133,4 \, \text{M}\Pi\text{a}$$

Проверяем прочность швов на совместное действие момента *Fe* и сдвигающей силы *F* (см. рис. 2.12). Приближенно считаем, что уси-

лие распределяется между обоими швами поровну. Эксцентриситет с учетом размеров на рис. 2.12. равен e = 260 + 10 + 50 - (126 - 50) == 244 мм. Принимаем катет шва $k_f = 10$ мм, учитывая большую величину силы и эксцентриситета. Сварка выполняется вручную электродами 846. По табл. 4,5 прил. 2 $R_{wf} = 200$ МПа; $\beta_f = 0,7$; $\beta_z = 1,0$. Как и в предыдущих примерах, $R_{wz} = 166,5$ МПа и $\beta_f R_{wf} < \beta_z R_{wz}$, поэтому проверку выполняем только по металлу шва. Момент сопротивления шва $\beta_f k_f l_{w}^2$

 $W = \frac{\beta_f k_f l_w^2}{6}$. Напряжения в швах от сдвигающей силы

$$\tau(F) = \frac{F}{2\beta_f k_f l_w} = \frac{292 \cdot 10^{-3}}{2 \cdot 0.7 \cdot 1 \cdot 10^{-2}} = 52.2 \text{ MIIa}.$$

Напряжение от момента

$$τ(M) = \frac{Fe}{2W} = \frac{292 \cdot 0.244 \cdot 10^{-3}}{2 \cdot 0.7 \cdot 1 \cdot 10^{-2} (40 \cdot 10^{-2})^2} = 190.8 \text{ MΠa}.$$

Проверка прочности шва

 $\sqrt{\tau(F)^2 + \tau(M)^2} = \sqrt{52,2^2 + 190,8^2} = 197,8 \text{ M}\Pi a < R_{wf} = 200 \text{ M}\Pi a$.

3. РАСЧЕТ И КОНСТРУИРОВАНИЕ КОЛОНН

3.1. Расчетная схема. Расчетное усилие

В курсовом проекте, как правило, принимается шарнирное закрепление концов колонны. При большой длине и малых нагрузках возможно жесткое защемление нижнего конца. Несмещаемость верха колонны обеспечивается системой вертикальных связей по колоннам. Расчетная длина колонны $\ell_{ef} = \mu \ell_c$ определяется с учетом заглубления подошвы колонны ниже нулевой отметки на 0,6 – 1,0 м. Значение коэффициента µ принимается в соответствии с [1]. Тип сечения колонн указывается в задании либо принимается в соответствии с рекомендациями [1]. Усилие N в колонне можно принять равным сумме двух опорных реакций главных балок с коэффициентом 1,01, учитывающим собственный вес колонн (1 % нагрузки на нее).

3.2. Подбор сечения колонны

Расчет колонн на устойчивость в соответствии с п. 5.3 [3] выполняется по формуле

$$\frac{N}{\varphi A} \le R_y. \tag{3.1}$$

Значение коэффициента продольного изгиба ф следует определять по табл. 16 прил. 2.

Сечение сплошной колонны выполняется в виде сварного двутавра (рис. 3.1, *a*) с учетом обеспечения возможности автоматической сварки по указаниям [1]. В сплошных колоннах необходимо проверить местную устойчивость элементов по п. 7.14, 7.23 [3] по формулам:

стенки при
$$\lambda \le 0.8$$
 $\frac{h_{ef}}{t_w} \le \sqrt{\frac{E}{R_y}}$, (3.2)
при $\lambda > 0.8$ $\frac{h_{ef}}{t_w} \le (0.36 + 0.8\lambda) \sqrt{\frac{E}{R_y}}$,
но не более $2.9 \sqrt{\frac{E}{R_y}}$,
полки $\frac{b_{ef}}{t_f} \le (0.36 + 0.1\lambda) \sqrt{\frac{E}{R_y}}$. (3.3)

При
$$\frac{h_{ef}}{t_w} \le 2.2 \sqrt{\frac{E}{R_y}}$$
 стенку следует укреплять поперечными

ребрами жесткости, расположенными на расстоянии (2,5-3) h_{ef} одно от другого, но не менее чем два ребра на каждый отправочный элемент. Размеры ребер жесткости принимаются в соответствии с рекомендациями п. 2.6 настоящих указаний. Сквозные колонны в курсовом проекте рекомендуется выполнять в виде двух ветвей из швеллеров или двутавров, соединенных планками (рис. 3.1, δ). Их расчет материальной оси ведется аналогично сплошностенчатым колоннам по формуле (3.1). Расчет относительно свободной оси y = y по п. 5.6 [3] выполняется также по формуле (3.1) с заменой фактической гибкости на приведенную гибкость A_{ef} при нахождении коэффициента φ .

Приведенную гибкость λ_{ef} определяют по формулам:

при
$$\frac{J_s l}{J_b b} < 5$$
 $\lambda_{ef} = \sqrt{\lambda_y^2 + 0.82\lambda_1^2(1+n)}$, (3.4)

при
$$\frac{J_s l}{J_b b} \ge 5$$
 $\lambda_{ef} = \sqrt{\lambda_y^2 + \lambda_1^2}$, (3.5)

где J_s – момент инерции сечения одной планки относительно собственной оси *x-x* (см. рис. 3.1, *б*); J_b – момент инерции сечения ветви относительно ее оси *y-y*; λ_1 – гибкость отдельной ветви при изгибе ее в плоскости, перпендикулярной оси *y-y* (рис. 3.1, *б*), принимаемая не более 40; $n = \frac{J_b b}{J_s l}$ – отношение погонных жесткостей ветви и планки.

Рис. 3.1. Типы сечений колонн

3.3. Расчет планок сквозной колонны

Расчет планок по п. 5.8 [3] должен выполняться на условную поперечную силу Q_{fic} , принимаемую постоянной по всей длине стержня и определяемую по формуле

$$Q_{fic} = 7,15 \cdot 10^{-6} A E \beta \left(2330 \frac{R_y}{E} - 1\right), \qquad (3.6)$$

где β – коэффициент, принимаемый равным меньшему из двух значений $\frac{\phi_{\min}}{\phi}$ или $\frac{\sigma}{\phi R_y}$. Здесь ϕ – коэффициент продольного изгиба в плоскости планок (относительно оси *y-y*); ϕ_{\min} – меньший из коэффициентов ϕ_x или ϕ_y ; $\sigma = \frac{N}{A}$ – напряжение сжатия в элементе.

Условная поперечная сила распределяется поровну между планками, лежащими в плоскостях, перпендикулярных свободной оси *у-у*. Расчет планок и их прикрепления (см. рис. 3.1, б) должен выполняться как расчет элементов безраскосных ферм:

- на силу среза планки $F_{пл}$, определяемую по формуле

$$F_{\Pi\Pi} = \frac{Q_s l}{b}; \qquad (3.7)$$

- момент M_{nn} , изгибающий планку в ее плоскости, определяемый по формуле

$$M_{\Pi\Pi} = \frac{Q_s l}{2}, \qquad (3.8)$$

где $Q_s = \frac{Q_{fic}}{2}$ – условная поперечная сила, приходящаяся на планку.

Пример 3.1. Подобрать сечение сплошной колонны. Исходные данные см. пример 2.1. Материал – сталь 18кп, лист t = 4 + 20 мм, $R_y = 220$ МПа.

Принимаем шарнирное закрепление концов колонн, как показано на рис. 3.2, δ (коэффициент $\mu = 1$).

Рис. 3.2. К определению расчетной длины колонны

Отметка верха колонны за вычетом толщины настила, высоты балок настила и главной балки с учетом выступающей части опорного ребра составляет (рис. 3.2, *a*) 8,0-0,01-0,3-1,72 = 5,97 м. Расчетная длина колонны ($\mu = 1$) $l_{ef} = 1l_c = 5,97+0,6 = 6,57$ м. Усилие в колонне N = 2.13461,01 = 2719 кН. Задаемся $\lambda = 60$;

$$\lambda = 60 \sqrt{\frac{220}{2,06 \cdot 10^5}} = 1,96$$
. По табл. 16 прил. 2 $\phi = 0,816$ (при $R_y =$

= 220 по интерполяции).

$$A_{\rm rp} = \frac{N}{\varphi R_y} = \frac{2719}{0.816 \cdot 220 \cdot 10^3} = 151.5 \cdot 10^{-4} \text{ m}^2 = 151.5 \text{ cm}.$$
$$i_{e,\rm rp} = \frac{l_{ef}}{\lambda} = \frac{657}{60} = 11 \text{ cm}; \ b_{f,\rm rp} = \frac{i_{y,\rm rp}}{\alpha_{\rm H}} = \frac{11}{0.24} = 45.8 \text{ cm}.$$

Значения коэффициента $L_y = 0,24$ взяты из таблицы, в которой приведены коэффициенты, связывающие размеры сечений с их радиусами инерции для рекомендованных в курсовой работе сечений. Чтобы обеспечить возможность автоматической сварки, назначаем $h_w = 460$ мм. Толщину стенки t_w принимаем минимальной по условию ее местной устойчивости по формуле (3.2):

$$\frac{h_{ef}}{t_{w}} \le (0,36+0,8\cdot1,96) \sqrt{\frac{2,06\cdot10^5}{220}} = 59$$

Принимаем $t_w = 8$ мм, при этом $\frac{h_{ef}}{t_w} = \frac{46}{0.8} = 57.5 < 59$.

Коэффициенты для определения размеров сечений колонн

Схема сечения	Двутавр Два швеллера		Два швеллера развернуты	Два двутавра
$L_x = i_x/h$	0,43	0,38	0,38	0,39
$L_y = i_y / \theta_z$	0,24	0,44	0,60	0,52

Требуемая площадь поясов
$$A_{f \text{ тр}} = \frac{151,5 - 46 \cdot 0,8}{2} = 57,4 \text{ см}^2$$

Принимаем пояса из листов 420×14 мм. При этом $A_f = 58,8 \text{ см}^2$ и обеспечена местная устойчивость пояса по формуле (3.3) $b_{ef} = (40 - 0,8)/2 = 19,6 \text{ см}^2$; $\frac{b_{ef}}{t_f} = \frac{19,6}{1,4} = 14 < (0,36 + 0,1 \cdot 1,96) \sqrt{\frac{2,06 \cdot 10^5}{220}} = 17$.

Размеры полученного сечения показаны на рис. 3.3. Геометрические характеристики сечения:

$$A = 2 \cdot 58,8 + 46 \cdot 0,8 = 154,4 \text{ cm}^2;$$
 $J_e = 2 \frac{1,4 \cdot 42^3}{12} = 17287,2 \text{ cm}^4;$

 $i_y = \sqrt{\frac{17287,2}{154,4}} = 10,6$ см. Так как $i_x \approx 0,4$ $h > i_y$, проверку устойчивости

выполняем относительно оси *y-y*. $\lambda_y = 657/10, 6 = 62; \phi_y = 0,806$ по табл. 16 прил. 2.

Таким образом, подобранное сечение удовлетворяет требованиям общей и местной устойчивости и может быть выполнено с помощью автоматической сварки. Поперечные ребра не нужны, так как

$$\frac{h_{ef}}{t_{w}} = 57,5 < 2,2 \ \sqrt{\frac{2,06 \cdot 10^{5}}{220}} = 67,3.$$

Пример 3.2. Подобрать сечение сквозной колонны балочной площадки. Исходные данные: материал колонны – сталь марки 18 кп, фасон t = 4 + 20 мм; $R_y = 230$ МПа.

Отметка верха колонны – 7,0 м. Шаг колонн в продольном направлении A = 16 м. Шаг колонны в поперечном направлении в = 5,0 м. Временная нагрузка – 18 кПа. Постоянная нагрузка от собственного веса конструкций – 1,5 кПа. Принимаем расчетную схему колонн с шарнирным опиранием по концам. С учетом глубины заложения 0,6 м расчетная длина $l_{ef} = 1$ (7 + 0,6) = 7,6, расчетное усилие в колонне с учетом коэффициента перегрузки $N = 1,01(n_p p + n_g g) = 1,01(1,2 \cdot 18 + 1,05 \cdot 1,5) = 1873$ кН. Задаемся гибкостью относительно материальной оси $\lambda_x = 70$.

Тогда
$$\lambda_x = 70 \sqrt{\frac{230}{2,06 \cdot 10^5}} = 2,34$$
.

По табл. 16 прил. 2 $\varphi_x = 0,761$. Требуемая площадь $A_{\rm Tp} = \frac{1873}{0,761 \cdot 230 \cdot 10^3} = 107 \cdot 10^{-4} {\rm m}^2$, $i_{x {\rm Tp}} = \frac{760}{70} = 10,9 {\rm ~cm}$. По сортаменту (ГОСТ 8240-72) подбираем два швеллера № 36: $A = 2 \times 53,4 \text{ cm}^2$; $i_x = 14,2 \text{ cm}$; z = 2,68 cm; $J_{1y} = 513 \text{ cm}^4$; $i_{1y} = 3,1 \text{ cm}$. Проверяем устойчивость относительно материальной оси:

$$\lambda_x = \frac{760}{14,2} = 53,5; \quad \varphi_x = 0,84;$$

$$\sigma = \frac{1873 \cdot 10^{-3}}{0,84 \cdot 106,8 \cdot 10^{-4}} = 208,8 \text{ МПа} < R_y = 230 \text{ МПа}.$$
Из условия рав-

ноустойчивости находим требуемую гибкость относительно свободной оси, задавшись гибкостью ветви $\lambda_x = 30$.

$$\begin{split} \lambda_{y \text{ tp}} &= \sqrt{\lambda_{ef}^2 - \lambda_1^2} = \sqrt{53.5^2 - 30^2} = 44.3 \text{ ;} \\ i_{y \text{ tp}} &= \frac{l_{ef}}{\lambda_y} = \frac{760}{44.3} = 17.2 \text{ cm} \text{ .} \end{split}$$

Требуемая ширина сечения *b_z* из двух швеллеров в соответствии с вышеприведенной таблицей;

$$b_{z \text{ tp}} = \frac{i_{y \text{ tp}}}{\alpha_{y}} = \frac{17,2}{0,44} = 39,1 \text{ cm}$$

Принимаем $b_z = 40$ см, что обеспечивает необходимый зазор b_1 между полками (рис. 3.4) $b_1 = 400 - 2 \cdot 110 = 180$ мм > 150 мм.

Проверяем сечение относительно свободной оси *y-y*. Длина ветви $l_e = \lambda_1 i_{1y} = 30 \cdot 3, 1 = 93$ см. Принимаем планки сечением 270×8 мм.

$$J_{s} = \frac{0.8 \cdot 27^{3}}{12} = 1312.2 \text{ см}^{4}; \quad b = b_{z} - 2z_{0} = 400 - 2 \cdot 26.8 = 346.4 \text{ мм};$$

$$J_{y} = 2[513 + 53.4 (20 - 2.68)^{2}] = 33064 \text{ см}^{4};$$

$$i_{y} = \sqrt{\frac{33064}{106.8}} = 17.6 \text{ см}; \quad \lambda_{y} = \frac{760}{17.6} = 43.2;$$

$$\frac{J_{s}l}{J_{b}b} = \frac{1312.2 \cdot 120}{513 \cdot 31.64} = 8.86 > 5, \text{ поэтому приведенную гибкость на-}$$

ходим по формуле (3.5):

 $\lambda_{ef} = \sqrt{43,2^2 + 30^2} = 52,6; \ \phi = 0,844; \ \lambda_{ef} < \lambda_{x}$ следовательно, проверку относительно свободной оси можно не делать.

Расчет планок.

 $\frac{\phi_{\min}}{\phi} = \frac{0.84}{0.844} = 0.995 ;$

 $\frac{\sigma}{\varphi R_y} = \frac{1873 \cdot 10^{-3}}{0,844 \cdot 230 \cdot 106,8 \cdot 10^{-4}} = 0,903$. Следовательно, условная поперечная сила

$$Q_{fic} = 7,15 \cdot 10^{-6} \cdot 106,8 \cdot 10^{-4} \cdot 2,06 \cdot 10^{8} \cdot 0,903 (2330 \frac{230}{2,06 \cdot 10^{5}} - 1) = 22,8 \text{ kH};$$

$$Q_{s} = 0,5; \ Q_{fic} = 11,4 \text{ kH};$$

$$F_{nn} = 11,4 \ \frac{120}{34,64} = 39,5 \text{ kH}; \quad M_{nn} = 11,4 \ \frac{1,2}{2} = 6,8 \text{ kH} \cdot \text{m}.$$

Планки привариваем к полкам швеллеров угловыми швами $k_f =$

Рис. 3.4. Сечение сквозной колонны

= 6 мм. Проверка прочности швов выполняется в точке Б на совместное действие сдвигающей силы $F_{пл}$ и изгибающего момента $M_{пл}$ (рис. 3.5). Сварка полуавтоматическая в углекислом газе сварочной проволокой Св-08Г2С, R_{wf} = 215 МПа, R_{wz} = 0,45 · 365 = 164,2 МПа. Коэффициенты β_f , β_z выбираем по табл. 5 прил. 2: β_f = 0,7, β_z = 1,0.

Рис. 3.5. К расчету крепления планки

Проверку выполняем только по металлу шва, так как $\beta_f R_{wf} < \beta_z R_{wz}$. Момент сопротивления шва (точка Б):

$$W_f = \frac{\beta_z k_f l_w^2}{6} = \frac{0.7 \cdot 0.6 \cdot 27^2 \cdot 10^{-6}}{6} = 51 \cdot 10^{-6} \text{ m}^3.$$

Напряжения от сдвигающей силы F_{nn} :

$$\tau = \frac{F}{A_w} = \frac{39,5 \cdot 10^{-3}}{0,7 \cdot 27 \cdot 10^{-4} \cdot 0,6} = 34,8 \text{ M}\Pi a.$$

Напряжения в точке Б от момента $M_{\text{пл}}$:

$$\sigma = \frac{M}{W_f} = \frac{6.8 \cdot 10^{-3}}{51 \cdot 10^{-6}} = 133.3 \text{ M}\Pi \text{a}.$$

Проверка прочности шва

 $\sqrt{34,8^2 + 133,3^2} = 137,8 \text{ M}\Pi a < R_{wf} = 215 \text{ M}\Pi a$.

3.4. Конструкция и расчет оголовка колонны

Конструктивное решение оголовка колонны принимается с учетом рекомендаций [1], [2] и согласовывается с руководителем. В зависимости от конкретного варианта выполняют расчет элементов оголовка на срез и смятие, а также расчет сварных швов.

Пример 3.3. Законструировать и рассчитать оголовок сплошной колонны, рассмотренной в примере 3.1.

Принимаем плиту оголовка толщиной $t_{nn} = 25$ мм и размерами 530×420 мм. Давление главных балок передается колонне через ребро, приваренное к стенке колонны четырьмя угловыми швами (рис. 3.6).

Рис. 3.6. Оголовок колонны

Сварка полуавтоматическая в углекислом газе проволокой Св-08Г2С, $R_{wf} = 215$ МПа, $\beta_f = 0,7$, $\beta_z = 1,0$. Принимаем ширину ребер 200 мм, что обеспечивает необходимую длину участка смятия $b_{cm} = b_{on,p} + 2t_n = 320 + 2.25 = 370$ мм. Толщину ребер находим по условию смятия

$$t_{\rm p} \ge \frac{N}{b_{\rm cm} R_{\rm p}} = \frac{2 \cdot 1346}{37 \cdot 10^{-2} \cdot 365 \cdot 10^3} = 0,02 \text{ м} = 20 \text{ мм}.$$
 Принимаем $t_{\rm p} = 20 \text{ мм}.$

Длину ребра ℓ_p находим из расчета на срез шва Д его прикрепления. Примем $k_f = 10$ мм. Тогда

$$l_w = \frac{2F_{\text{OII}}}{4\beta_f k_f R_{wf}} = \frac{2 \cdot 1346}{4 \cdot 0.7 \cdot 1 \cdot 10^{-2} \cdot 215 \cdot 10^3} = 0.45 \text{ M} = 45 \text{ cm}.$$
 Принимаем

 $\ell_p = 46$ см. При этом условие $\ell_w \le 85 \beta_f k_f = 59,5$ см выполнено. Шов Е принимаем таким же, как и шов Д. Проверяем стенку на срез вдоль ребра

$$\tau = \frac{2F_{0\Pi}}{2l_{p}t_{w}} = \frac{1346 \cdot 10^{-3}}{46 \cdot 10^{-3} \cdot 0.8 \cdot 10^{-2}} = 366 \text{ M}\Pi a > R_{s} = 127.6 \text{ M}\Pi a .$$

Необходимо устройство вставки в верхней части стенки. Принимаем ее толщину 24 мм, а длину $l_{bcc} = l_p + 140 = 600$ мм.

$$\sigma = \frac{1346 \cdot 10^{-3}}{2,4 \cdot 10^{-2} \cdot 46 \cdot 10^{-2}} = 122 \text{ M}\Pi a < R_s = 127,6 \text{ M}\Pi a .$$

Торец колонны фрезеруем после ее сварки, поэтому шов Γ можно не рассчитывать. По табл. 6 прил. 2 принимаем конструктивно минимально допустимый катет шва $k_f = 7$ мм. Стенку колонн у конца ребра укрепляем поперечными ребрами, сечение которых принимаем 100×8 мм.

3.5. Конструкция и расчет базы колонны

При конструировании базы колонны следует руководствоваться рекомендациями [1], [2]. Расчет базы колонн состоит из следующих этапов:

- определение требуемой площади плиты и ее размеров в плане из условия смятия бетона;
- определение толщины плиты из расчета на изгиб;
- определение высоты траверсы из расчета ее прикрепления к полкам колонны;

- проверка прочности швов крепления траверсы к плите;
- проверка прочности траверсы на изгиб и срез.

В случае наличия дополнительных ребер и других элементов необходимо проверить их сечение и швы крепления на прочность.

В колоннах с фрезерованными торцами без траверс выполняют только два первых этапа и рассчитывают шов крепления колонны к плите на 15 % усилия.

Пример 3.4. Законструировать и рассчитать базу сплошной колонны из примера 3.1.

Конструкция базы показана на рис. 3.7.

Рис. 3.7. База колонны

Требуемая площадь плиты из условия смятия бетона $A_{\text{пл.тр}} = \frac{N}{R_{\text{см.6}}}$, где $R_{\text{см.6}} = \gamma R_{\text{пр}}$. Значение коэффициента γ зависит от отношения площадей фундамента и плиты. В курсовом проекте можно приближенно принимать $\gamma = 1,2$. Для бетона марки 150 $R_{\text{пр}} = 7$ МПа.

 $R_{\text{см.б}} = 1,2 \cdot 7 = 8,4$ МПа (при марке бетона 200 следует принять $R_{\text{пр}} = 9$ МПа).

$$A_{\text{пл.тр}} = \frac{2719}{8.4 \cdot 10^3} = 3237 \text{ cm}^2.$$

Принимаем плиту размерами 600×560 мм. Тогда $A_{\Pi\Pi} = 56 \cdot 60 =$ = 3360 см²;

 $\sigma_{\phi} = \frac{2719 \cdot 10^{-3}}{3360 \cdot 10^{-4}} = 8,1 \text{ МПа} < R_{_{\text{см.б}}}$. Изгибающий момент на единицу длины d = 1 см. Участок 1 – балочная плита, так как отношение сторон 460/206 = = 2,04 > 2 (рис. 3.8).

$$M = \frac{\sigma_{\phi} a^2}{8} = \frac{8.1 \cdot 10^3 \cdot 1 \cdot 10^{-2} (20.6 \cdot 10^{-2})^2}{8} = 0.43 \text{ kH} \cdot \text{M}.$$

Участок 2 – консольный (рис. 3.9).

$$M = \frac{\sigma_{\phi} c^2}{2} = \frac{8.1 \cdot 10^3 \cdot 1 \cdot 10^{-2} (6 \cdot 10^{-2})^2}{2} = 0.146 \text{ kH} \cdot \text{m}.$$

Рис. 3.8. Схема 1-го участка плиты

Участок 3 работает так же, как консольный, так как отношение сторон 420/56 = 7,5 > 2. Свес консоли 56 мм меньше, чем на участке 2, поэтому расчет можно не делать. В случае, если бы отношение сторон на участках 1 и 3 оказалось меньше двух, их следовало бы рассчитывать как опертые по четырем и по трем сторонам соответственно

с помощью таблиц коэффициентов, приведенных в [1].

Толщину плиты подбираем по наибольшему моменту из условия $\frac{M_{\text{max}}}{W_{\text{пл}}} \leq R_y$. Момент сопротивления полоски плиты шириной d = 1 см равен

Рис. 3.9. Схема 2-го участка плиты

 $W_{\text{пл}} = \frac{1 t_{\text{пл}}^2}{6}$, откуда, учитывая, что для стали 18 кп при t = 21 - 40 мм $R_y = 210$ МПа,

$$t_{\text{пл}} \ge \sqrt{\frac{6M_{\text{max}}}{1 \cdot 10^{-2} R_y}} = \sqrt{\frac{6 \cdot 0.43}{10^{-2} \cdot 210 \cdot 10^3}} = 0.035 \text{ M} = 35 \text{ MM}.$$

Принимаем $t_{пл} = 36$ мм. Прикрепление траверсы к колонне выполняем полуавтоматической сваркой в углекислом газе сварочной проволокой Св-08Г2С. Соответствующие характеристики: $R_{wf} = 215$ МПа; $R_{qz} = 164,2$ МПа; $\beta_f = 0,7$; $\beta_z = 1,0$. Как и в предыдущих примерах, расчет достаточно выполнить по металлу шва, так как $\beta_f \sqrt{R_{wf}} < \beta_z \sqrt{R_{wz}}$. Учитывая условие $l_w \le 85\beta_f k_f$, находим требуемую величину катета шва k_f из условия (см. пример 2.7).

$$k_f \ge \frac{1}{\beta_f} \sqrt{\frac{N}{4 \cdot 85 \ R_{wf}}} = \frac{1}{0.7} \sqrt{\frac{2179}{4 \cdot 85 \cdot 215 \cdot 10^3}} = 9 \cdot 10^{-3} \ \mathrm{m} = 9 \ \mathrm{mm} \ .$$

Принимаем $k_f = 9$ мм. При этом требуемая длина шва $l_w = 85 \cdot 0, 7 \cdot 9 = 536$ мм, поэтому высоту траверс принимаем равной 550 мм. Крепления траверсы к плите выполняем конструктивно швом с катетом 8 мм по табл. 6 прил. 2, так как принят торец колонны фрезерованный. Прочность траверсы на изгиб и срез можно не проверять, так как вылет консольной части мал при относительно большой высоте траверсы.

4. ГРАФИЧЕСКОЕ ОФОРМЛЕНИЕ РАБОТЫ

Графическую часть работы выполняют на листах формата A2. При выполнении графической части рекомендуется пользоваться альбомом [2] и имеющимися на кафедре образцами.

ПРИЛОЖЕНИЯ

Приложение 1

Основные буквенные обозначения величин

- А площадь сечения брутто
- *А*_{bn} площадь сечения болта нетто
- *А_f* площадь сечения полки
- *А_n* площадь сечения нетто
- *А_w* площадь сечения стенки
- *А_{wf}* площадь сечения по металлу углового шва
- A_{wz} площадь сечения по металлу границы сплавления
- Е модуль упругости
- *F* сила
- J_x , J_y моменты инерции сечения относительно осей *x*-*x*, *y*-*y*
- J_s момент инерции сечения ребра, планки
- М изгибающий момент, момент
- N продольная сила
- *Q* поперечная сила, сила сдвига
- Q_{fic} условная поперечная сила для соединительных элементов
- *Q*_s условная поперечная сила, приходящаяся на систему планок, расположенных в одной плоскости
- R_{bh} расчетное сопротивление растяжению высокопрочных болтов
- *R*_{bp} расчетное сопротивление смятию болтовых соединений
- *R_p* расчетное сопротивление стали смятию торцевой поверхности
- R_s расчетное сопротивление стали сдвигу
- R_{bs} расчетное сопротивление срезу болтов
- *R_u* расчетное сопротивление стали растяжению, сжатию, изгибу по временному сопротивлению
- R_{un} временное сопротивление стали разрыву
- *R_{wf}* расчетное сопротивление угловых швов срезу (условному) по металлу шва
- *R_{wu}* расчетное сопротивление стыковых сварных соединений сжатию, растяжению, изгибу по временному сопротивлению
- *R_{wun}* нормальное сопротивление металла шва по временному сопротивлению
- *R_{wy}* расчетное сопротивление стыковых сварных соединений сжатию, растяжению и изгибу по пределу текучести

- *R_{wz}* расчетное сопротивление угловых швов по металлу границы сплавления
- *R_y* расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести
- *R*_{vn} предел текучести стали
- S статический момент сдвигаемой части сечения брутто относительно нейтральной оси
- *W_x*, *W_y* моменты сопротивления сечения брутто относительно осей *x-х* и *y-y*

b – ширина

*b*_{ef} – расчетная ширина

- *b*_f ширина полки (пояса)
- *b_h* ширина выступающей части ребра, свеса
- е эксцентриситет силы
- *h* высота
- *h*_{ef} расчетная высота стенки
- *h*_w высота стенки
- і радиус инерции сечения
- *i*_{min} наименьший радиус инерции сечения
- i_x , i_y радиусы инерции сечений относительно осей *x*-*x*, *y*-*y*
- *k*_f катет углового шва
- *l* длина, пролет
- *l*_с длина колонны, стойки
- *l_{ef}* расчетная, условная длинна
- *l*_s длина планки
- l_w длина сварного шва
- l_x , l_y расчетные длины элемента в плоскостях, перпендикулярных осям *x*, *y*
- *t* толщина
- t_f толщина полки (пояса)

*t*_н – толщина настила

- *t*_w толщина стенки
- β_f, β_z коэффициенты для расчета углового шва соответственно по металлу шва и металлу границы сплавления
- γ_b коэффициент условий работы соединения
- ү_с коэффициент условий работы
- ү_{wf}, ү_{wz} то же, для сварных швов

 λ – гибкость

λ_{ef} – приведенная гибкость стержня сквозного сечения

λ_w – условная гибкость стенки

 λ_x , λ_y – расчетные гибкости элемента в плоскостях, перпендикулярных осям *x*-*x*, *y*-*y*

v – коэффициент поперечной деформации стали (Пуассона)

σloc – местное напряжение

σ_x, σ_y – нормальные напряжения, параллельные осям *x*-*x*, *y*-*y*

 τ_{xy} – касательное напряжение

ф – коэффициент продольного изгиба

p – временная нагрузка

g – собственный вес конструкций

q^н, *q*^р – нормативная и расчетная нагрузки

n_p, *n_g* – коэффициенты перегрузки для временной нагрузки и собственного веса конструкций

f – прогиб конструкции

Приложение 2

Таблица 1

Нормативные и расчетные сопротивления проката для стальных

конструкций

Марка	Вид	Толщина,	Нормат	гивное	Расч	етное
стали	проката	ММ	сопроти	ивление	сопротивление	
			Предел	Времен-	По	По вре-
			текучести	ное со-	пределу	менному
				против-	текучести	сопро-
				ление		тивлению
18 кп	Лист	4 - 20	225	365	220	355
	То же	21 - 40	215	365	210	355
	Фасон	4 - 20	235	365	230	355
18 Гпс	Лист	4 - 20	235	370	230	360
	То же	21 - 30	225	370	220	360
	Фасон	4 - 20	245	370	240	360
10Г2C1	Лист	5-9	345	490	330	465
	То же	10 - 20	334	480	320	455
	» »	21 - 32	325	470	310	450
	Фасон	5 – 9	345	490	330	465
	Лист	10 - 20	335	480	320	455
Вст3кп2	Лист	41 - 100	205	365	195	350

Примечания: 1. За толщину фасонного проката следует принимать толщину полки. 2. Применение стали ВСт3кп2 разрешается в виде исключения.

Таблица 2

Расчетный пролет плиты.	Толщина плиты, см, при временной нормативной нагрузке, кПа									
М	15 - 20	20 - 25	25 - 30	30 - 35						
1,5-2,0	10	12	12	14						
2,0-2,5	12	12	14	16						
2,5 - 3,0	14	14 14 16 18								

Толщина железобетонной плиты

Таблица 3

Коэффициенты для расчета на прочность изгибаемых элементов с учетом пластических деформаций

Схема сечения	A_f / A_w	Значение коэффициента C ₁
	0,25	1,19
Пруторр	0,5	1,12
двутавр	1,0	1,07
	2,0	1,04

Таблица 4

Рекомендуемые материалы для сварки и их расчетные сопротивления

Марка стали	Марка сварочной	Тип электродов	<i>R_{wf}</i> , МПа
1	проволоки	1 / 1	ng y
18кп ВСт3кп2	Св-08А	Э42	180
18Гпс	Св-08ГА	Э46	200
	Св-08Г2С	Э46	215
10Г2С1	Св-10ГА	Э50	215
	Св-08Г2С	Э50	215

Вид сварки,	Положение	0	Значение коэффициентов					
<i>d</i> мм	шва	р	3-8	9 – 12	14 – 16	18+		
	В лодочку	β_{f}	1,1	1,1	1,1	0,7		
Автоматическая		β_z	1,15	1,15	1,15	1,0		
при $d = 3 - 5$	Нижнее	β_f	1,1	0,9	0,9	0,7		
		β_z	1,15	1,05	1,05	1,0		
	В лодочку	β_f	0,9	0,9	0,8	0,7		
Автоматическая		β_z	1,05	1,05	1,0	1,0		
и полуавтоматическая	Нижнее	β_f	0,9	0,8	0,7	0,7		
		β_z	1,05	1,0	1,0	1,0		
Ручная и полуавтоматическая при <i>d</i> < 1,4	Любое	$egin{array}{c} eta_f \ eta_z \end{array}$	0,7 1,0	0,7 1,0	0,7 1,0	0,7 1,0		

Значение коэффициентов β_f и β_z

Таблица б

Минимальные катеты швов

Вид	Вид сварки	<i>R_{un}</i> стали.	K_f при толщине более толстого из свариваемых элементов t , мм							
соединения		МПа	4 –	6 –	11 –	17 –	23 –	33 –	41 –	
			5	10	16	22	32	40	80	
Таррория	Ручная	До 430	4	5	6	7	8	9	10	
Тавровые		Св. 430	5	6	7	8	9	10	12	
с двухсто- ронними швами	Автоматиче- ская	До 430 Св. 430	3 4	4 5	5 6	6 7	7 8	8 9	9 10	
Тавровое с односто- ронними швами	Ручная	До 380	5	6	7	8	9	10	12	
	Автоматиче- ская	До 380	4	5	6	7	8	9	10	

Значение С _{сг} для сварных балов	Значение	C_{cr} для	сварных	балок
--	----------	--------------	---------	-------

δ	Не больше 0,8	1,0	2,0	4,0	6,0	10,0	Не меньше 30,0
C_{cr}	30,0	31,5	33,3	34,6	34,8	35,1	35,5

Таблица 8

Значение С₁ для сварных балок

		Значения C ₁ при <i>a/h_{ef}</i> , равном									
8	He								Не		
0	больше	0,6	0,8	1,0	1,2	1,4	1,6	1,8	меньше		
	0,5								2,0		
Не больше 1	11,5	12,4	14,8	18,0	22,1	27,1	32,6	38,9	45,6		
2	12,0	13,0	16,1	20,4	25,7	32,1	39,2	46,5	55,7		
4	12,3	13,3	16,6	12,6	28,1	36,3	45,2	54,9	65,1		
6	12,4	13,5	16,8	22,1	29,1	38,3	48,7	59,4	70,4		
10	12,4	13,6	16,9	22,5	30,0	39,7	51,0	63,3	76,5		
Не меньше 30	12,5	13,7	17,0	22,9	31,0	41,6	53,8	68,2	83,6		

Таблица 9

Предельные значения σ_{loc}/σ для сварных балок

	Предельные значения σ_{loc}/σ									
δ								He		
0	0,8	0,9	1,0	1,2	1,4	1,6	1,8	меньше		
								2,0		
Не больше 1	0	0,146	0,183	0,267	0,359	0,445	0,540	0,618		
2	0	0,109	0,169	0,277	0,406	0,543	0,652	0,799		
4	0	0,072	0,129	0,281	0,479	0,711	0,930	1,132		
5	0	0,066	0,127	0,288	0,536	0,874	1,192	1,468		
10	0	0,059	0,122	0,296	0,574	1,002	1,539	2,154		
Не меньше 30	0	0,047	0,112	0,300	0,633	1,283	2,249	3,939		

Таблица 10

Значение коэффициента С2

a/h _{ef}	0,8	0,9	1,0	1,2	1,4	1,6	1,8	Не меньше 2,0
C_2	30,0	37,0	39,2	45,2	52,8	62,0	72,6	84,7

Критические	напряжения	при	$\sigma_{loc} =$	= 0
	manp	11P11	\circ_{i0c}	0

t_w ,	8		Значения о _{сг}						
ММ	0	1000	1100	1250	1400	1500	1600	1800	2000
	0,8	396	327	253	202	176			
	1,0	415	343	266	212	185			
8	2,0	439	363	281	224	195	_	—	—
	4,0	456	377	292	233	203			
	6,0	459	379	294	234	204			
	0,8	618	511	396	315	275	241	191	
	1,0	649	536	415	331	288	253	200	
10	2,0	686	567	439	350	305	268	212	_
	4,0	713	589	456	364	317	278	220	
	6,0	717	592	459	366	318	280	221	
	0,8	890	735	569	454	396	348	275	222
	1,0	934	772	598	477	415	365	288	234
12	2,0	988	816	632	504	439	386	305	247
	4,0	1026	848	657	524	456	401	317	256
	6,0	1032	853	661	527	459	403	318	258
	0,8			775	618	538	473	374	303
	1,0			814	649	565	497	392	318
14	2,0	_	_	860	686	597	525	415	336
	4,0			894	713	621	546	431	349
	6,0			899	717	624	549	434	351
	0,8				807	703	618	488	396
	1,0				847	738	649	513	415
16	2,0	_	_	_	896	780	686	542	439
	4,0				931	811	713	563	456
	6,0				936	816	717	566	459
	0,8					890	782	618	501
	1,0					934	821	649	526
18	2,0	—	—	—	—	988	868	686	556
	4,0					1026	902	713	577
	6,0					1032	907	717	581

Критические напряжения при $\sigma_{\textit{loc}} \neq 0$

t_w ,	a. /1.				Значен	ния σ _{сг}			
ММ	a/n _{ef}	1000	1100	1250	1400	1500	1600	1800	2000
	1,0	517	427	331	264	230	202	160	129
	1,2	596	492	381	304	265	233	184	149
0	1,4	696	575	446	355	309	272	215	174
8	1,6	817	676	523	417	363	319	252	204
	1,8	957	791	613	488	425	374	295	239
	2,0	1117	923	715	570	496	436	345	279
	1,0	808	667	517	412	359	315	249	202
	1,2	931	770	596	475	414	364	287	233
10	1,4	1088	899	696	555	483	425	336	272
10	1,6	1277	1056	817	652	568	499	394	319
	1,8	1496	1236	957	763	665	584	462	374
	2,0	1745	1442	1117	890	775	682	539	436
	1,0	1163	961	744	593	517	454	359	291
	1,2	1341	1108	858	684	596	524	414	335
12	1,4	1566	1294	1002	799	696	612	483	392
	1,6	1839	1520	1177	938	817	718	568	460
	1,8	2154	1780	1378	1099	957	841	665	538
	2,0	2513	2076	1608	1282	1117	981	775	628
	1,0	1583	1308	1013	808	703	618	488	396
	1,2	1825	1508	1168	931	811	713	563	456
14	1,4	2132	1762	1364	1088	947	833	568	566
17	1,6	2503	2069	1602	1277	1113	978	773	626
	1,8	2931	2423	1876	1498	1303	1145	905	433
	2,0	3420	2826	2189	1745	1520	1336	1056	855
	1,0	2067	1708	1323	1055	919	808	638	517
	1,2	2384	1970	1526	1216	1059	931	736	596
16	1,4	2784	2301	1782	1421	1238	1088	859	696
10	1,6	3270	2702	2093	1668	1453	1277	1009	817
	1,8	3829	3164	2450	1953	1702	1496	1182	957
	2,0	4467	3692	2859	2279	1485	1745	1379	1117
	1,0		2162	1674	1335	1163	1022	808	654
	1,2		2493	1931	1539	1341	1178	931	754
18	1,4	_	2912	255	1798	1566	1377	1088	881
10	1,6		3420	2648	2111	1839	1616	1277	1035
	1,8		4005	3101	2472	2154	1893	1496	1211
	2,0		4672	3618	2884	2513	2208	1745	1413

Местные критические напряжения о	С
1 1	~

2	a/h				Значен	ия σ _{loc}			
0	a/n _{ef}	120	140	160	180	200	220	260	300
	1,0	257	189	145	114	93	77	55	41
	1,2	316	232	178	141	114	94	67	51
1	1,4	388	285	218	172	140	115	83	62
1	1,6	466	343	262	207	168	139	99	75
	1,8	556	409	313	247	200	166	119	89
	2,0	652	4798	367	290	235	194	139	104
	1,0	292	214	164	130	105	87	62	47
	1,2	358	270	207	163	132	109	78	59
2	1,4	459	337	258	204	165	137	98	73
2	1,6	561	412	315	249	202	167	119	90
	1,8	665	489	374	296	239	198	142	106
	2,0	797	585	448	354	287	237	170	127
	1,0	309	227	174	137	11	92	66	49
	1,2	402	295	226	179	145	120	86	64
4	1,4	519	382	292	231	187	154	111	83
4	1,6	647	475	364	287	233	192	138	103
	1,8	785	577	442	349	283	234	167	126
	2,0	931	684	524	414	335	277	198	149
	1,0	316	232	178	141	114	94	67	51
	1,2	416	306	234	185	150	124	89	67
6	1,4	548	403	308	244	197	163	117	88
0	1,6	697	512	392	310	251	207	148	111
	1,8	850	624	478	378	306	253	181	136
	2,0	1007	740	566	448	363	300	215	161
	1,0	322	236	181	143	116	96	69	51
	1,2	429	315	241	191	154	128	91	69
10	1,4	568	417	319	252	204	169	121	91
10	1,6	730	536	410	324	263	217	155	117
	1,8	906	665	509	402	326	269	193	145
	2,0	1094	804	616	486	394	326	233	175

Местные критические напряжения $\sigma_{loc.cr}$									
S	/1	Значения о <i>loc.cr</i>							
0	a/h _{ef}	120	140	160	180	200	220	260	300
	1,0	685	483	370	292	237	196	140	105
	1,2	710	521	399	315	255	211	151	114
1	1,4	778	572	438	346	280	232	166	124
1	1,6	847	622	476	376	305	252	180	136
	1,8	938	689	528	417	338	279	200	150
	2,0	1030	757	579	458	371	306	219	165
	1,0	687	504	386	305	247	204	146	110
	1,2	744	546	418	331	268	221	158	119
2	1,4	833	612	468	370	299	248	177	133
2	1,6	921	67	518	409	332	274	196	147
	1,8	1024	767	587	464	376	311	222	167
	2,0	1167	858	657	519	420	347	249	187
	1,0	704	517	396	313	253	209	150	113
	1,2	761	559	428	338	274	226	162	122
4	1,4	855	628	481	380	308	254	182	137
4	1,6	950	698	534	422	330	283	202	152
	1,8	1093	803	615	486	393	325	233	175
	2,0	1236	908	695	549	445	368	263	198
	1,0	710	521	399	315	255	211	151	114
	1,2	772	568	434	343	278	230	165	124
6	1,4	867	637	488	385	312	258	185	139
0	1,6	961	706	540	427	346	286	205	154
	1,8	1113	818	626	495	401	331	237	178
	2,0	1265	929	711	562	455	376	269	202
	1,0	710	521	399	315	255	211	151	114
	1,2	778	272	438	346	280	232	166	124
10	1,4	873	641	491	388	314	260	186	140
10	1,6	967	410	544	430	348	288	206	155
	1,8	1127	828	634	501	406	335	240	180
	2,0	1288	946	724	582	464	383	274	206

Критические касательные напряжения τ_{cr}

t_w ,	а,	Значения т _{сг}							
MM	ММ	1000	1100	1250	1400	1500	1600	1800	2000
	800	183	173	161	154	150	146	142	138
	1000	139	128	117	109	105	102	97	94
0	1200	120	107	93	85	81	78	73	70
8	1500	105	92	77	67	62	58	53	50
	2000	94	80	65	55	50	46	39	35
	$3h_{ef}$	85	71	55	44	38	33	26	21
	800	188	167	145	133	127	122	114	109
	1000	165	143	120	104	96	91	84	78
10	1200	146	125	102	86	78	71	61	54
10	1500	138	117	94	78	70	63	53	46
	2000	133	112	89	73	65	58	48	41
	$3h_{ef}$	_	110	85	68	59	52	41	33
	800	237	206	173	150	139	131	120	112
	1000	211	180	147	124	112	103	88	78
12	1200	199	168	135	112	100	91	76	66
12	1500	192	161	128	105	94	84	70	59
	2000	188	157	124	101	90	80	66	55
	$3h_{ef}$	—	—	_	98	85	75	59	48
	800	323	281	236	205	189	179	164	153
	1000	287	245	200	169	153	140	120	106
14	1200	271	229	184	152	137	124	104	90
14	1500	262	220	175	143	128	115	95	81
	2000	256	214	169	138	122	109	89	75
	$3h_{ef}$	_	_	167	133	116	102	81	65
	800	421	367	308	267	246	234	214	200
	1000	375	320	261	221	200	183	157	139
16	1200	353	299	240	199	178	161	136	117
10	1500	342	287	228	187	167	150	124	105
	2000	335	280	221	180	160	146	117	98
	$3h_{ef}$	_	_	219	174	152	133	105	85
	800		464	390	338	312	296	271	253
	1000		405	331	279	253	232	199	175
18	1200	_	378	304	252	226	204	172	148
10	1500		363	289	237	211	189	157	133
	2000		354	280	228	202	180	148	124
	$3h_{ef}$		—	277	221	192	169	133	103

Гибкость	Расчетное сопротивление R_y , МПа					
λ	200	240	320			
10	988	987	984			
20	967	962	955			
30	939	931	917			
40	906	894	873			
50	869	852	822			
60	827	805	766			
70	782	754	687			
80	734	686	602			
90	665	612	522			
100	599	542	448			
110	537	478	381			
120	479	419	321			

Коэффициент ф продольного изгиба центрально сжатых элементов (увеличен в 1000 раз)

Таблица 17

Механические свойства высокопрочных болтов

Номинальный диаметр резьбы, мм	Марка стали	<i>R_{bun},</i> МПа
От 16 до 27	40X «селект» 38XC «селект», 40ХФА «селект»	1100 1350
30	40Х «селект» 30Х3МФ, 35Х2АФ	950 1200

Таблица 18

Площади сечения болтов

<i>d</i> , мм	16	20	24	30	36
A_b , cm^2	2,01	3,14	4,52	7,06	10,17
$A_{bn}, \operatorname{cm}^2$	1,57	2,45	3,52	5,60	8,26

Способ обработки соединяемых поверхностей	Способ натяжения	Коэффициент трения	Коэффициент при статической нагрузке
Пескоструйный, дробометный или дробеструйный	По <i>М</i> По а	0,58 0,58	1,62 1,02
То же, с консервацией, металлизацией	Πο <i>Μ</i>	0,50	1,12
	Πο α	0,50	1,02
Газопламенный двух поверхностей без консервации	По <i>М</i> По а	0,42 0,42	1,12 1,02
Стальными щетками двух поверхностей	По <i>М</i>	0,35	1,17
без консервации	По а	0,35	1,06
Без обработки	Πο <i>Μ</i>	0,25	1,30
	Πο α	0,25	1,20

Расчетные коэффициенты для соединений на высокопрочных болтах

Таблица 20

Расчетные сопротивления срезу и растяжению болтов

Напряженное состояние	Условное обозначение	Расчетное сопротивление, МПа, болтов классов					
		4,6	4,8	5,6	5,8	6,6	8,8
Срез	R_{bs}	150	160	190	200	230	320
Растяжение	R_{bt}	175	160	210	200	250	400

Таблица 21

N⁰	Характеристика расстояния	Расстояние
п/п		1 dec loxime
1	Расстояние между центрами болтов в любом	
	направлении:	
	- минимальное	2,5 <i>d</i>
	- максимальное в крайних рядах при отсутствии	8 <i>d</i> или 12 <i>t</i>
	окаймляющих уголков	
	Максимальное в средних рядах:	
	- при растяжении	16 <i>d</i> или 24 <i>t</i>
	- при сжатии	12 <i>d</i> или 18 <i>t</i>
2	Расстояние от центра болта до края элемента:	
	- минимальное вдоль усилия	2d
	- то же, при размещении болтов в шахматном	a + 1,5d
	порядке	
	то же, поперек усилия:	
	- при обрезных кромках	1,5 <i>d</i>
	- при прокатных кромках	1,2 <i>d</i>
	- максимальное	4 <i>d</i> или 8 <i>t</i>
	- минимальное	1,3 <i>d</i>

Размещение болтов в узлах и соединениях

Примечание. *d* – диаметр отверстия для болта, *t* – толщина наиболее тонкого наружного элемента, *a* – расстояние между рядами поперек усилия.

Таблица 22

Коэффициент условий работы болтовых соединений

N⁰	Соединение	γ_b
Π/Π		
	Многоболтовое в расчетах на срез и смятие при болтах:	
1	повышенной точности,	1,0
	грубой и нормальной точности	0,9
	Болтовое в элементах из стали с $R_{yn} = 380$ МПа в расчете на	
2	смятие при расстояниях: <i>а</i> – вдоль усилия от края элемента	0,85
	до ближайшего отверстия; <i>b</i> – между центрами отверстий	

Примечание. Коэффициенты, установленные в п. 1 и 2, следует учитывать одновременно.

Временное	<i>R</i> _{bp} , МПа, при болтах		
сопротивление	повышенной	нормальной и грубой	
стали <i>R_{un}</i> , МПа	точности	точности	
356	400	365	
370	410	370	
470	600	535	
480	620	555	
490	640	570	

Расчетные сопротивления смятию элементов, соединяемых болтами R_{bp}

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Металлические конструкции. Общий курс : учеб. для вузов / Е. И. Беленя [и др.]. – 6-е изд., перераб. доп. – М. : Стройиздат, 1986. – 560 с.
- 2. Металлические и железобетонные конструкции. Каркас одноэтажного промышленного здания : метод. указания к курсовому проекту и дипломному проектированию / Вологод. политехн. ин-т ; сост. В. М. Колодонов. – Вологда, 1997. – 38 с.
- СП 16.13330.2011. Стальные конструкции. Актуализированная редакция СНиП II-23-81*. – М. : Министерство регионального развития Российской Федерации, 2011. – 172 с.
- 4. СП 20.13330.2011. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. М. : М-во регион. развития Рос. Федерации, 2011. 96 с.
- Металлические конструкции : метод. указания по курсовому проектированию «Расчет внецентренно-сжатых колонн производственного здания / Вологод. политехн. ин-т ; сост. В. М. Колодонов. – Вологда, 1985. – 45 с.
- Лихтарников, Я. М. Расчет стальных конструкций : справ. пособие / Я. М. Лихтарников, Д. В. Ладыженский, В. М. Клыков. Киев : Будивельник, 1984. – 368 с.
- Михайлов, А. М. Металлические конструкции в примерах : учеб. пособие для техникумов / А. М. Михайлов. – М. : Стройиздат, 1976. – 320 с.
- Мандриков, А. П. Примеры расчета металлических конструкций : учеб. пособие для техникумов / А. П. Мандриков. – М. : Стройиздат, 1991. – 431 с. – ISBN 5-903034-01-2.

оглавление

ОБЩИЕ У	УКАЗАНИЯ	3
1. ВЫБО	Р СХЕМЫ БАЛОЧНОЙ КЛЕТКИ	4
2. РАСЧИ	ЕТ И КОНСТРУИРОВАНИЕ ГЛАВНОЙ БАЛКИ	9
2.1.	Расчетная схема. Расчетные нагрузки и усилия	9
2.2.	Определение высоты главной балки	10
2.3.	Подбор сечения главной балки	11
2.4.	Изменение сечения главной балки	13
2.5.	Проверка обеспеченности общей устойчивости балки	16
2.6.	Проверка местной устойчивости сжатого пояса и стенки.	17
2.7.	Проверка прочности поясных швов	23
2.8.	Конструирование и расчет опорной части балки	24
2.9.	Конструирование и расчет укрупненного стыка балки	27
2.10.	Проектирование примыкания балок настила к главной	
	балке	29
3. РАСЧЕ	Т И КОНСТРУИРОВАНИЕ КОЛОНН	31
3.1.	Расчетная схема. Расчетное усилие	
3.2.	Подбор сечения колонны	31
3.3.	Расчет планок сквозной колонны	33
3.4.	Конструкция и расчет оголовка колонны	
3.5.	Конструкция и расчет базы колонны	40
4. ГРАФИ	ИЧЕСКОЕ ОФОРМЛЕНИЕ РАБОТЫ	43
ПРИЛОЖ	СЕНИЯ	44
БИБЛИО	ГРАФИЧЕСКИЙ СПИСОК	59