Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Владимирский государственный университет

Кафедра строительных конструкций

РАСЧЕТ ВНЕЦЕНТРЕННО-СЖАТЫХ ЭЛЕМЕНТОВ

Методические указания к практическим занятиям

Составители: М.В. ПОПОВА Н.Г. ГОНЬШАКОВ В.А. РЕПИН

Владимир 2006

УДК 624.014(07) ББК 38.54 Р24

Рецензент

Кандидат технических наук, доцент Владимирского государственного университета *С.И. Рощина*

Печатается по решению редакционно-издательского совета Владимирского государственного университета

Расчет внецентренно-сжатых элементов : метод. указания к Р24 практ. занятиям / Владим. гос. ун-т ; сост. : М. В. Попова, Н. Г. Гоньшаков, В. А. Репин. – Владимир : Изд-во Владим. гос. унта, 2006. – 44 с.

Содержат требования по проектированию всех элементов и узлов внецентренносжатой колонны одноэтажного промышленного здания и указания по компоновке и подбору сечения колонны. Приводятся конструкция и расчет сопряжения верхней и нижней частей колонны. Рассматривается конструкция базы колонны.

Составлены в помощь студентам дневной и заочной форм обучения специальности 270102 – промышленное и гражданское строительство в соответствии с программой курса «Металлические конструкции».

Табл. 16. Ил. 24. Библиогр.: 8 назв.

УДК 624.014(07) ББК 38.54

введение

Настоящие методические указания предназначены для выполнения раздела курсового проекта "Проектирование стального каркаса одноэтажного промышленного здания и для разработки проекта одноэтажного производственного здания со стальным каркасом" при дипломном проектировании студентами специальности 270102 – промышленное и гражданское строительство.

Указания содержат последовательность расчета ступенчатой внецентренно-сжатой колонны и справочные данные для расчета. Они составлены в соответствии с основными положениями учебника [4].

В них применена международная система единиц СИ: сила выражается в килоньютонах (кН); моменты – в килоньютон на метр (кН·м); расчетные сопротивления материалов и соединений, модуль упругости, напряжения – в мегапаскалях (МПа). В ходе вычислений мегапаскали следует переводить в килопаскали (кПа) (1кПа = 1кН/м²) умножением на 10⁻³ и наоборот. Геометрические размеры в расчетные формулы рассчитывают в метрах. При этом используется следующее правило перевода: 1 см^{*n*} = 10^{-2*n*} м^{*n*} (например: 1 см² = 10⁻⁴ м², 1 см³ = 10⁻⁶ м³, 1 см⁴ = 10⁻⁸ м⁴).

Предварительно для расчета внецентренно-сжатой ступенчатой колонны необходимо провести статический расчет поперечной рамы производственного здания на ЭВМ [6] или по графикам [7] и составить комбинации усилий.

Коэффициент надежности по назначению в курсовом проекте принят равным $\gamma_n = 1$.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Основной тип колонн производственных зданий – это ступенчатые колонны, работающие на внецентренное сжатие. Верхняя часть их проектируется, как правило, сплошной, нижняя – сплошной при ширине до 1м включительно и сквозной – при большей ширине.

Колонны рекомендуется проектировать с применением прокатных широкополочных двутавров [8, прил. 7].

Сечения ступенчатых колонн подбирают раздельно для каждого участка постоянного сечения. Необходимыми данными для расчета внецентренно-сжатых колонн являются расчетные усилия: продольная сила N и изгибающий момент M (в плоскости рамы).

Расчетными усилиями для подбора сечения верхней части колонны будут наибольший по модулю момент (положительный или отрицательный) и соответствующая продольная сила в сечениях 3-3 или 4-4 (рис. 1), полученные при статическом расчете рамы.Расчетными усилиями для подбора сечения нижней части колонны счита-

ются наибольшие по модулю положительный и отрицательный моменты и соответствующие продольные и поперечные силы в сечениях 1-1 или 2-2, полученные при статическом расчете рамы.

Расчетными усилиями при расчете базы колонны будут максимальные по модулю положительный и отрицательный моменты и соответствующие продольные силы в сечении 1-1, полученные при статическом расчете рамы.

Для расчета анкерных болтов составляют комбинации усилий в сечении 1-1, дающие наименьшую продольную силу и наибольшие возможные моменты (положительный и отрицательный). При этом продольная сила от постоянной нагрузки учитывается с коэффициентом надежности по нагрузке 0,9, так как она разгружает анкерные болты.

Расчетная длина колонны (или ее участка) с постоянным моментом инерции в плоскости рамы определяется по формуле 4

– для нижней части

$$l_{1efx} = \mu_1 l_1; \tag{1}$$

– для верхней части

$$l_{2efx} = \mu_2 l_2, \qquad (2)$$

где $\mu_{1(2)}$ – коэффициент, зависящий от способов закрепления концов колонны, ее типа и соотношения моментов инерции и нагрузки.

Коэффициент расчетной длины μ_1 для нижнего участка одноступенчатой колонны одноэтажного производственного здания следует принимать в зависимости от отношения

$$n = \frac{I_2 l_1}{I_1 l_2}$$
 и величины $\alpha_1 = \frac{l_2}{l_1} \sqrt{\frac{I_1}{I_2 \beta}}$

где I_1 , I_2 , l_1 , l_2 – моменты инерции сечений и длины соответственно нижнего и верхнего участков колонны (рис. 2) и $\beta = \frac{F_1 + F_2}{F_2} = \frac{N_1}{N_2}$.

Здесь N_1 и N_2 – расчетные значения продольных сил соответственно в нижней и верхней частях колонны, полученные при статическом расчете рамы): $|F_1|$

 при верхнем конце, свободном от всяких закреплений (табл. П2.1, прил. 2);

– при верхнем конце, закрепленном от поворота, и при возможности его свободного смещения (табл. П2.2, прил. 2).

Коэффициент расчетной длины μ_2 для верхнего участка колонны следует определять по формуле:

$$\mu_2 = \frac{\mu_1}{\alpha_1}, \text{ но не более 3.}$$
(3)

Расчетная длина верхнего и нижнего участков колонны из плоскости равна наибольшему расстоянию между точками закрепления колонны от смещения вдоль здания.

Такие точки для нижнего участка колонны – низ башмака и нижний пояс подкрановой балки. Иногда устанавливают промежуточные распорки, служащие специально для сокращения расчетной длины колонны. Для верхнего участка колонны такими точками будут тормозная балка или

 I_1

 I_1

 F_1+F_2

Puc. 2

ферма и распорки по колоннам в уровне нижних поясов стропильных ферм (рис. 3).

Puc. 3

2. ПОДБОР СЕЧЕНИЯ СПЛОШНЫХ КОЛОНН

2.1. Определение требуемой площади сечения

Величину требуемой площади сечения находим по формуле

$$A_{\rm rp} = \frac{N}{\varphi_e \cdot R_y \cdot \gamma_c},\tag{4}$$

где R_y – расчетное сопротивление стали по пределу текучести, принимается по прил. 1;

 $\gamma_{c} = 1 -$ коэффициент условия работы;

 Φ_e – коэффициент, который определяется по табл. П
2.3 прил. 2 в зависимости от условной гибкости стержня
 $\overline{\lambda_x}$ и приведенного относительного эксцентриситета m_{ef} .

Здесь
$$\overline{\lambda_x} = \lambda_x \sqrt{\frac{R_y}{E}} = \frac{l_{2efx}}{i_x} \sqrt{\frac{R_y}{E}}; m_{ef} = \eta m_x,$$
 (5)

где i_x – радиус инерции сечения стержня, в предварительных расчетах принять 0,42*h* (здесь *h* – высота сечения колонны);

$$E = 2,1 \cdot 10^5 \text{ MПа} - \text{модуль упругости стали;}$$

η – коэффициент влияния формы сечения, определяется по табл. П2.6
 прил. 2;

$$m_x = \frac{eA}{W_x} = \frac{e}{\rho_x}$$
 – относительный эксцентриситет.
Здесь $e = \frac{|M|}{|N|}$ – эксцентриси-

тет приложения продольной силы, A – площадь сечения колонны брутто, W_x – момент сопротивления стержня колонны относительно оси *X*–*X*, ρ_x – ядровое расстояние) (рис. 4).

В предварительных расчетах ρ_x принять равным 0,35*h*, а отношение площади полки к площади стенки $\frac{A_f}{A_w}$ равным 0,5.

Puc. 4

2.2. Компоновка сечения колонны с учетом обеспечения местной устойчивости элементов сечения

Для внецентренно-сжатых элементов двутаврового сечения отношение расчетной высоты стенки h_{ef} к толщине t_w следует принимать не более:

при
$$m_x \le 0.3$$

 $\frac{h_{ef}}{t_w} = \sqrt{\frac{E}{R_y}} (\overline{\lambda_x} \le 0.8);$ (6)
 $\frac{h_{ef}}{t_w} = (0,36+0,8\overline{\lambda_x}) \sqrt{\frac{E}{R_y}},$ но не более $2.9 \sqrt{\frac{E}{R_y}} (\overline{\lambda_x} > 0.8);$
при $m_x \ge 1.0$
 $\frac{h_{ef}}{t_w} = 1.3 \sqrt{\frac{E}{R_y}} (\overline{\lambda_x} \le 0.8);$ (7)

$$\frac{h_{ef}}{t_w} = (0,9+0,5\overline{\lambda_x})\sqrt{\frac{E}{R_y}}$$
, но не более $3,1\sqrt{\frac{E}{R_y}}(\overline{\lambda_x} > 0,8).$

При относительно большой толщине стенки сечение колонны получается неэкономичным, что приводит к перерасходу стали. В этом случае

Puc. 5

толщину стенки принимают меньше (но не менее 8 мм) и в расчетное сечение стержня колонны вводят только полки и два крайних участка стенки шириной по

$$0,85t_w \sqrt{\frac{E}{R_y}}$$
 (рис. 5). Отношение расчет-

ной ширины свеса поясного листа b_{ef} к толщине t_f следует принимать не более

$$\frac{b_{ef}}{t_f} = (0,36+0,10\overline{\lambda_x})\sqrt{\frac{E}{R_y}}$$
(7a)

2.3. Проверка принятого сечения

2.3.1. Проверка по прочности

Прочность внецентренно-сжатых колонн проверяют при приведенном относительном эксцентриситете $m_{ef} > 20$.

Для внецентренно-сжатых колонн из стали с пределом текучести до 580МПа, не подвергающихся непосредственному воздействию динамических нагрузок, при $\tau \le 0.5R_s$ и $\frac{N}{A_nR_y} > 0.1$ прочность проверяют по фор-

муле

$$\left(\frac{N}{A_n \cdot R_y \cdot \gamma_c}\right)^n + \frac{M_x}{c_x \cdot W_{xn,\min} \cdot R_y \cdot \gamma_c} + \frac{M_y}{c_y \cdot W_{yn,\min} \cdot R_y \cdot \gamma_c} \le 1, \quad (76)$$

где N и $M_{x}\,-\,$ продольная сила и изгибающий момент в плоскости рамы;

M_y – изгибающий момент из плоскости рамы (обычно он отсутствует);

А_n – площадь сечения колонны нетто;

 $W_{xn,\min}, W_{yn,\min}$ – моменты сопротивления сечения нетто относительно осей соответственно X - X и Y - Y;

n,*c*_{*x*},*c*_{*y*} – коэффициенты, принимаемые по табл. П2.5 прил. 2;

 R_s – расчетное сопротивление стали сдвигу.

$$R_s = 0.58 \frac{R_{yn}}{\gamma_m},\tag{8}$$

где R_{vn} – предел текучести стали, принимается по прил. 1;

γ_m – коэффициент надежности по материалу (см. прил. 1). В прочих случаях расчет ведут по формуле

$$\frac{N}{A_n} \pm \frac{M_x}{I_{xn}} y \pm \frac{M_y}{I_{yn}} x \le R_y \gamma_c, \qquad (9)$$

где I_{xn} , I_{yn} – моменты инерции сечения нетто относительно осей соответственно X - X и Y - Y;

x, *y* – координаты рассматриваемой точки сечения относительно его главных осей.

2.3.2. Проверка устойчивости и конструктивное оформление стержня колонны

Производится для внецентренно-сжатых колонн при приведенном относительном эксцентриситете $m_f \le 20$.

- в плоскости действия момента

$$\frac{N}{\varphi_e A} \le R_y \gamma_c, \tag{10}$$

где φ_e – определяется по табл. П2.3 прил. 2 в зависимости от условной гибкости стержня колонны $\overline{\lambda_x}$ и приведенного относительного эксцентриситета m_{ef} ;

- из плоскости действия момента

$$\frac{N}{c \cdot \varphi_{y} \cdot A} \le R_{y} \gamma_{c} , \qquad (11)$$

где φ_y – коэффициент продольного изгиба, который принимается по табл. П2.8 прил. 2 как для центрально сжатых колонн в зависимости от гибкости стержня λ_y ;

 $\mathcal{C}-$ коэффициент, принимаемый: при $m_x \leq 5$

$$c = \frac{\beta}{1 + \alpha \cdot m_x}.$$
 (12)

Здесь а, β – коэффициенты, принимаемые по табл. П2.7 прил. 2 при $m_x \ge 10$

$$c = \frac{1}{1 + m_x \frac{\varphi_y}{\varphi_b}}.$$
(13)

Здесь φ_b – коэффициент, определяемый согласно п. 5.15 и прил. 7 [1] как для балки с двумя и более закреплениями сжатого пояса; в большинстве случаев $\varphi_b = 1$ (в курсовом проекте принять его равным 1); при 5 < m_x < 10

$$c = c_5(2 - 0, 2m_x) + c_{10}(0, 2m_x - 1)$$

Здесь C_5 определяется по формуле (12) при $m_x = 5$;

 C_{10} определяется по формуле (13) при $m_x = 10$.

При определении относительного эксцентриситета m_x для стержней с шарнирно-опертыми концами, закрепленными от смещения перпендикулярно плоскости действия момента, за расчетный момент M_x следует принимать максимальный момент в пределах средней трети длины (но не менее половины наибольшего по длине стержня момента) (рис. 6).

I uc. 0

Поперечные ребра (рис. 7) ставятся на расстоянии $2h_{ef}$ при $\overline{\lambda_w} > 3,2$ и $2,5h_{ef}$ при $\overline{\lambda_w} \le 3,2$. Ширина и толщина парных поперечных ребер соответственно должны быть

$$b_h \ge \frac{h_{ef}}{30} + 40 \text{ mm}; \ t_s \ge 2b_h \sqrt{\frac{R_y}{E}}.$$
 (14)

3. ПОДБОР СЕЧЕНИЯ СКВОЗНЫХ КОЛОНН

Внецентренно-сжатую сквозную колонну можно рассматривать с одной стороны, как ферму с параллельными поясами; с другой – как единый стержень составного сечения. От действующих в колонне расчетных усилий N и M (рис. 8) в ее ветвях возникают только продольные усилия, поэтому каждая ветвь работает на центральное сжатие. Поперечную силу Q воспринимает решетка. Несущая способность колонны может быть исчерпана в результате потери устойчивости какой-либо ветви (в плоскости рамы) или в результате потери устойчивости колонны в целом. Подбор сечения сквозной колонны выполняется в следующей последовательности:

3.1. Определение усилий в ветвях колонны несимметричного сечения

Величины усилий в ветвях колонны определяются по формулам:

– во внутренней ветви

$$N_{\rm B1} = \left| N_2 \right| \frac{y_2}{h_0} + \frac{|M_2|}{h_0}; \tag{15}$$

- в наружной ветви

$$N_{\rm B2} = \left| N_1 \right| \frac{y_1}{h_0} + \frac{\left| M_1 \right|}{h_0}; \tag{16}$$

В этих формулах значения N_i и M_i принимают в комбинации, дающей наибольшие значения $N_{\rm B1}$ и $N_{\rm B2}$.

В предварительных расчетах при $N_1 \approx N_2$ принимают

$$y_1 = \frac{|M_2|}{|M_1| + |M_2|} h_0, \ y_2 = h_0 - y_1, \ (17)$$

где h_0 – расстояние между осями, проходящими через центры тяжести ветвей, принимается на 3 – 4 см меньше h (см. рис.8);

 M_1 и N_1 – момент и продольная сила по 1 комбинации усилий (берутся из таблицы расчетных усилий);

*M*₂ и *N*₂ – момент и продольная сила по 2-й комбинации усилий (берутся из таблицы расчетных усилий).

Требуемая площадь ветвей определяется по формуле

$$A_{\rm B1} = \frac{N_{\rm B1}}{(0,7-0,9)R_{\rm y}\lambda_c}; \quad A_{\rm B2} = \frac{N_{\rm B2}}{(0,7-0,9)R_{\rm y}\gamma_c}, \tag{18}$$

где $\gamma_c = 1,0$.

3.2. Компоновка сечения ветвей колонны и уточнение геометрических характеристик сечения

Отношение расчетной высоты стенки h_{ef} к толщине t_w следует принимать не более:

- для двутавровых сечений

$$\frac{h_{ef}}{t_{w}} = \sqrt{\frac{E}{R_{y}}} (\overline{\lambda_{x}} \le 0.8);$$

$$\frac{h_{ef}}{t_{w}} = (0.36 + 0.8\overline{\lambda_{x}}) \sqrt{\frac{E}{R_{y}}}, \text{ но не более } 2.9 \sqrt{\frac{E}{R_{y}}} (\overline{\lambda_{x}} > 0.8).$$
(19)

- для швеллерных сечений

$$\frac{h_{ef}}{t_w} = \sqrt{\frac{E}{R_y}} (\overline{\lambda_x} \le 0.8); \tag{20}$$

$$\frac{h_{ef}}{t_w} = (0,85+0,19\overline{\lambda_x})\sqrt{\frac{E}{R_y}}, \text{ но не более } 1,6\sqrt{\frac{E}{R_y}}(\overline{\lambda_x} > 0,8).$$

Отношение расчетной ширины свеса поясного листа b_{ef} к толщине t_f принимается как для сплошных внецентренно-сжатых колонн.

Уточнение положения центра тяжести ветви 2 (см. рис. 8)

$$z_0 = \frac{\sum (y_i \cdot A_i)}{A_{\rm B2}},\tag{21}$$

где A_i, y_i – площадь и координата центра тяжести *i*-го элемента сечения ветви 2 относительно наружной грани.

Уточнение положения центра тяжести колонны и геометрических характеристик y₁ и y₂:

$$h_{0} = h - z_{0};$$

$$y_{1} = \frac{A_{B2}}{A_{B1} + A_{B2}} h_{0}; y_{2} = h_{0} - y_{1}.$$
(22)

При большом отличи
и \mathcal{Y}_1 и \mathcal{Y}_2 от первоначально принятых требуется перерасчет продольных сил в ветвях
 $N_{\rm B1}$ и $N_{\rm B2}$.

3.3. Проверка принятого сечения

3.3.1. Проверка устойчивости ветвей

Проверка устойчивости ветвей производится по формулам:

- в плоскости колонны

$$\frac{N_{\rm B1}}{\varphi_1 \cdot A_{\rm B1}} \le R_y \gamma_c$$
(23)
– из плоскости колонны

$$\frac{N_{\rm B1}}{\varphi_{y1} \cdot A_{\rm B1}} \le R_y \gamma_c \,,$$

где φ_1 – коэффициент продольного изгиба, определяемый по гибкости ветви 1 λ_{B1} (табл. 8 прил. 2):

$$\lambda_{\rm B1} = \frac{l_{\rm B1}}{i_1},\tag{24}$$

*l*_{в1} – свободная длина ветви колонны, равная расстоянию между узлами крепления решетки (рис.9)

 i_1 – радиус инерции сечения ветви 1 относительно оси 1-1.

 ϕ_{y1} – коэффициент продольного изгиба, определяемый по гибкости λ_{y1} (табл. П2.8 прил. 2):

$$\lambda_{y1} = \frac{l_{1efy}}{i_{y1}},\tag{25}$$

 l_{1efy} – расчетная длина ветви 1 из плоскости колонны (см. рис. 3); i_{y1} – радиус инерции сечения ветви 1 относительно оси *Y* – *Y*. Аналогично делается проверка устойчивости ветви 2.

3.3.2. Проверка устойчивости колонны как единого стержня

Устойчивость сквозных стержней проверяется при относительном эксцентриситете $m_x \le 20$:

- в плоскости колонны

$$\frac{N}{\varphi_e \cdot A} \le R_y \gamma_c \,, \tag{26}$$

где φ_e – коэффициент, определяемый по табл. П2.4 прил. 2 в зависимости от условной приведенной гибкости $\overline{\lambda_{ef}}$ и относительного эксцентриситета m_x .

$$\overline{\lambda_{ef}} = \lambda_{ef} \sqrt{\frac{R_y}{E}}, \qquad (27)$$

где

 $\lambda_{ef} = \sqrt{\lambda_x^2 + \alpha_1 \frac{A}{A_d}}$ – приведенная гибкость сечения колонны;

 λ_{χ} – гибкость сечения колонны относительно *X* – *X*;

 α_1 – коэффициент, зависящий от угла наклона раскосов, определяется по табл. 7 [1]. В курсовом проекте при угле наклона раскосов $\alpha = 45 - 60^{\circ}$ можно принять $\alpha_1 = 27$;

 A_d – площадь сечения раскосов (расчет элементов решетки приводится в п. 3.4).

 из плоскости устойчивость колонны как единого стержня проверять не нужно, так как она обеспечивается проверкой устойчивости в этом направлении каждой из ветвей.

При *m_x* > 20 сквозные колонны рассчитываются на прочность аналогично сплошным внецентренно сжатым колоннам.

3.4. Расчет элементов решетки и конструктивное оформление стержня колонны

Элементы решетки сквозной внецентренно-сжатой колонны рассчитывают на поперечную силу, равную большему из значений, определенному при статическом расчете для сечения 4-4, или условную поперечную силу Q_{fic}

$$Q_{fic} = 7,15 \cdot 10^{-6} \cdot A \cdot E \cdot \beta (2330 \frac{R_y}{E} - 1),$$
(28)

где β - коэффициент, принимаемый меньшему из двух значений φ_{\min}/φ или $\sigma/\varphi R_{y}$.

φ – коэффициент продольного изгиба в плоскости элементов решетки (относительно оси *Y*-*Y*);

$$\varphi_{\min}$$
 – меньший из коэффициентов φ_x и φ_y ;
 $\sigma = \frac{N}{A}$ – напряжения сжатия в элементе.

В курсовом проекте условную поперечную силу можно определять по упрощенной формуле

при
$$R_y = 200 - 220 \text{ МПа}$$
 $Q_{fic} = 0, 2 \cdot A \text{ кH}$
 $R_y = 250 - 270 \text{ МПа}$ $Q_{fic} = 0, 3 \cdot A \text{ кH}$ (29)
 $R_y = 280 - 300 \text{ МПа}$ $Q_{fic} = 0, 4 \cdot A \text{ кH}$

где *А* – площадь сечения колонны в квадратных сантиметрах. Усилие сжатия в раскосе определяется по формуле

$$N_d = \frac{Q_{\max}}{2 \cdot \sin \alpha};\tag{30}$$

где α- угол наклона раскоса к вертикали.

Сечения элементов решетки подбирают аналогично тому, как это делается в центрально-сжатых колоннах по формуле

$$A_{\rm Tp} = \frac{N_d}{(0, 6 - 0, 7)R_y \gamma_c},\tag{31}$$

для раскосов из одиночных уголков $\gamma_c = 0,75$.

Устойчивость раскосов проверяется по формуле

$$\frac{N_d}{\varphi \cdot A_d} \le R_y \gamma_c; \tag{32}$$

где φ – коэффициент продольного изгиба, определяемый по гибкости λ_d (см. табл. П2.8).

$$\lambda_d = \frac{l_{efd}}{i_{\min}}; \tag{33}$$

Здесь *l_{efd}* – расчетная длина раскоса;

*i*_{min} – минимальный радиус инерции сечения раскоса (рис. 10).

Puc. 10

Элементы решетки необходимо центрировать на оси, проходящей через центр тяжести ветвей колонны (рис. 11, *a*).

Для уменьшения размера фасонок допускается элементы решетки центрировать на грань ветвей колонны (рис. 11, *б*).

Элементы лучше крепить изнутри стержня колонны для уменьшения повреждения их во время транспортировки и монтажа (рис. 11 *в*, *г*).

Диафрагмы жесткости ставятся для увеличения крутильной жесткости (см. рис. 11 *в*, *г*).

Puc. 11

4. КОНСТРУКЦИЯ И РАСЧЕТ СОПРЯЖЕНИЯ ВЕРХНЕЙ И НИЖНЕЙ ЧАСТЕЙ КОЛОННЫ

4.1. Расчетные комбинации усилий

Сечение 2-2: 1-я комбинация M_1 , N_1 , 2-я комбинация M_2 , N_2 – из таблицы расчетных усилий. Сечение 3-3: 1 комбинация M_1 , N_1 , 2-я комбинация M_2 , N_2 . Давление кранов – D_{max} .

Здесь M_1 и N_1 – максимальный положительный момент и соответствующая продольная сила. M_2 и N_2 – максимальный по модулю отрицательный момент и соответствующая продольная сила.

4.2. Расчет прикрепления надкрановой части к подкрановой стыковыми швами

Прочность стыковых швов «А» (рис. 12) проверяется по нормальным напряжениям в крайних точках сечения надкрановой части:

Puc. 12

1-я комбинация:

- наружная полка

$$\sigma_{\rm H1} = \frac{N_1}{A} + \frac{M_1}{W} \le R_{\omega y} \gamma_c; \qquad (34)$$

– внутренняя полка

$$\sigma_{\rm B1} = \frac{N_1}{A} + \frac{M_1}{W} \le R_{\omega y} \gamma_c. \tag{35}$$

2-я комбинация:

- наружная полка

$$\sigma_{\rm H2} = \frac{N_2}{A} + \frac{M_2}{W} \le R_{\omega y} \gamma_c; \tag{36}$$

- внутренняя полка

$$\sigma_{\rm B2} = \frac{N_2}{A} + \frac{M_2}{W} \le R_{\omega y} \gamma_c, \qquad (37)$$

где A, W – площадь и момент сопротивления надкрановой части колонны, $\gamma_c = 1,0$ – коэффициент условий работы, $R_{\omega y}$ – расчетное сопротивление стыковых сварных соединений сжатию, растяжению и изгибу по пределу текучести.

 $R_{\omega y}$ в этих формулах принимается:

– при сжатии, равным R_v ;

— при растяжении, автоматической, полуавтоматической или ручной сварке, равным 0,85 R_v .

Puc. 13

При значительной разнице в толщинах наружной ветви верхней и нижней частей колонны t_f и t_1 для передачи усилия N_{fh} от наружной полки на подкрановую часть колонны применяется накладка, прикрепляемая угловыми швами (рис. 13).

Наибольшее усилие (растяжения или сжатия) в полке определяется по формуле

$$N_{fH} = \sigma_{H \max} \cdot A_{fH}, \qquad (38)$$

где $\sigma_{\rm H\,max}$ – наибольшее растягивающее или сжимающее напряжение в наружной полке, полученное по 1-й или 2-й комбинации усилий;

А _{fн} – площадь сечения наружной полки надкрановой части колонны.

Требуемая расчетная длина угловых швов:

– по металлу шва

$$l_{\omega}^{\mathrm{TP}} = \frac{N_{f\mathrm{H}}}{n \cdot \beta_{f} \cdot k_{f} \cdot R_{\omega f} \cdot \gamma_{\omega f} \cdot \gamma_{c}} \leq 85\beta_{f} \cdot k_{f}; \qquad 39$$

- по металлу границы сплавления

$$l_{\omega}^{\mathrm{TP}} = \frac{N_{f\mathrm{H}}}{n \cdot \beta_z \cdot k_f \cdot R_{\omega z} \cdot \gamma_{\omega z} \cdot \gamma_c} \leq 85\beta_z \cdot k_f,$$

где n – количество швов, передающих усилие N_{fH} ;

 $\beta_z, \beta_f - коэффициенты, принимаемые по табл. П2.9;$

 k_f – катет шва, принимаемый не менее указанного в прил. 3;

 $R_{\omega f}$ – расчетное сопротивление угловых швов срезу (условному) по металлу шва, принимается по прил. 4;

 $R_{\omega z}$ – расчетное сопротивление угловых швов срезу (условному) по металлу границы сплавления: $R_{\omega z} = 0.45 \cdot R_{un}$;

 R_{un} – временное сопротивление стали разрыву, принимается по прил.1; $\gamma_{\omega f} = \gamma_{\omega z} = 1,0$ – коэффициент условий работы шва; $\gamma_{c} = 1,0$.

При $\beta_f \cdot R_{\omega f} \cdot \gamma_{\omega f} < \beta_z \cdot R_{\omega z} \cdot \gamma_{\omega z}$ проверку по металлу границы сплавления делать не нужно.

Половина требуемой длины накладки будет

 $l_{\rm H}^{\rm TP} = l_{\rm W}^{\rm TP} + 10 \,\,{\rm MM} \,\,. \tag{40}$

Требуемая площадь накладки

$$A_{\rm H}^{\rm Tp} = \frac{N_{f\rm H}}{R_y}.$$
(41)

4.3. Определение толщины траверсы и ребра

Расчет траверсы и ребра на смятие выполняется по формуле

$$A_{\rm p}^{\rm Tp} = \frac{D_{\rm max}}{R_{\rm p}},\tag{42}$$

где $R_{\rm p}-$ расчетное сопротивление смятию торцевой поверхности

$$R_{\rm p} = \frac{R_{un}}{\gamma_m};\tag{43}$$

$$\delta_{\rm Tp}^{\rm Tp} = \delta_{\rm p}^{\rm Tp} = \frac{A_{\rm p}^{\rm Tp}}{z}; \tag{44}$$

где $z = b_{f \Pi. \delta} + 2 \cdot \delta_{\Pi \Pi};$

*b*_{*f*п.б} – ширина опорного ребра подкрановой балки, равная ширине полки;

δ_{пл} – толщина опорной плиты, на которую опирается подкрановая балка, принимается равной 16 – 30 мм.

Толщина траверсы и ребра принимается с учетом толщины имеюще-гося листового проката.

4.4. Определение высоты траверсы

Высота траверсы определяется из прочности фланговых швов «Б» и «В». Требуемая высота траверсы

$$h^{\rm TP} = l_{\omega}^{\rm TP} + 10 \,\,{\rm MM}\,;$$
(45)

где
$$l_{\omega}^{\mathrm{Tp}} = \frac{N_{\mathrm{Tp}}}{2 \cdot \beta_f \cdot k_f \cdot R_{\omega f} \cdot \gamma_{\omega f} \cdot \gamma_c} \leq 85\beta_f \cdot k_f;$$
 (46)

Усилие *N* в этой формуле принимается:

– при
$$N_{b1} < D_{\max}$$
, равным $\frac{D_{\max}}{2}$
– при $N_{b1} > D_{\max}$, равным $\frac{N_{b1} - D_{\max}}{2}$

При замене траверсы и ребра сплошной траверсой из листа, вставляемого в прорезь стенки подкрановой ветви, все четыре шва прикрепления рассчитываются по большему из усилий: D_{\max} или N_{b1} .

Фланговые швы «Г» передают усилие с внутренней полки колонны на траверсу

$$N_{fb} = \sigma_{b\max} \cdot A_{fb}; \tag{47}$$

где $\sigma_{b\max}$ – наибольшее растягивающее или сжимающее напряжение во внутренней полке, полученное по 1-й или 2-й комбинации усилий;

А_{fb} – площадь сечения внутренней полки надкрановой части колонны.

$$l_{\omega}^{\mathrm{TP}} = \frac{N_{fb}}{4 \cdot \beta_f \cdot k_f \cdot R_{\omega f} \cdot \gamma_{\omega f} \cdot \gamma_c} \le 85\beta_f \cdot k_f.$$
(48)

При $l_{\omega}^{\text{тр}} > h^{\text{тр}}$ высоту траверсы увеличивают.

Касательные напряжения в стенке подкрановой ветви по плоскостям среза «К» (см. рис. 12) определяются

$$\tau = \frac{N}{A_s} \le R_s,\tag{49}$$

где *N* – принимается равным большему из усилий *D*_{max} или *N*_{b1};

$$A_s = 2 \cdot h_{\rm TP} \cdot \delta_{\rm CT};$$

Здесь δ_{ct} – толщина стенки двутавра подкрановой ветви.

При невыполнении условия высоту траверсы увеличивают и принимают

$$h_{\rm TpaB.}^{\rm Tp} = \frac{N}{2 \cdot \delta_{\rm CT} \cdot R_s}.$$
(50)

Существуют особенности расчета сопряжения в колонне со сплошной подкрановой частью. При таком сопряжении траверса опирается не только на полки, но и на сплошную стенку подкрановой части, поэтому условия работы прикрепления траверсы к внутренней полке подкрановой части облегчаются.

Допускается (в запас прочности) рассчитывать швы прикрепления – четыре шва «Б» и «В» (см. рис. 12) совместно – и стенку (по плоскости среза К) на полное усилие D_{\max} . Остальные расчеты аналогичны расчетам траверсы со сквозной нижней частью.

5. БАЗА ВНЕЦЕНТРЕННО-СЖАТОЙ КОЛОННЫ

База внецентренно-сжатой колонны включает в себя опорную плиту, траверсы и анкерные болты и развивается в плоскости действия изгибающего момента. Анкерные болты воспринимают растягивающие усилия от момента. Для сквозных колонн большой ширины применяют, как правило, раздельные базы. Ветви сквозных колонн работают на продольные осевые силы, поэтому базы сквозных колонн состоят, по существу, из двух баз центральносжатых колонн. Поэтому расчет и конструирование базы отдельной ветви производятся так же, как в центрально-сжатых колоннах.

Puc. 14

Перед началом расчета базы колонны определяется усилие в ветвях колонны (рис. 14).

Усилие в наружной ветви вычисляется по формуле

$$N_{b2} = \left| N_1 \right| \frac{y_1}{h_0} + \frac{M_1}{h_0}; \tag{51}$$

Усилие в подкрановой ветви определяется по формуле

$$N_{b1} = \left| N_2 \right| \frac{y_2}{h_0} + \frac{M_2}{h_0}.$$
(52)

5.1. Расчет базы наружной ветви

База внецентренно-сжатой колонны рассчитывается аналогично базе центрально-сжатой колонны.

Требуемая площадь опорной плиты находится по формуле

$$A_{\Pi \Pi}^{\rm Tp} = \frac{N_{b2}}{R_{b,loc}},\tag{53}$$

где $R_{b,loc} = R_b \cdot \varphi_b$ – расчетное сопротивление бетона смятию. Здесь R_b – расчетное сопротивление бетона осевому сжатию для бетона В 12,5 R_b = 7,5 МПа, для бетона В 15 R_b = 8,5 МПа.

 ϕ_b – коэффициент, зависящий от соотношения площадей фундамента и плиты, в курсовом проекте принять $\phi_b = 1,2$.

Размеры опорной плиты *B* и *L* определяют в пределах требуемой площади по конструктивным соображениям в зависимости от размеров ветвей колонны, траверс и укрепляющих плиту ребер. При этом должно быть $A_{\Pi\Pi} \ge A_{\Pi\Pi}^{TP}$.

Среднее напряжение в бетоне под плитой

$$\sigma_{\rm cp} = \frac{N_{b2}}{A_{\Pi\Pi}}.$$
(54)

5.2. Определение толщины опорной плиты

Опорная плита работает как плита на упругом основании, воспринимающая давление от ветвей траверсы и ребер. Ее рассчитывают как пластинку, нагруженную (снизу) равномерно распределенным давлением фундамента и опертую на элементы сечения стержня и базы колонны.

Изгибающие моменты, действующие на полосе шириной 1 см:

- в защемлении опорного свеса плиты (участок 1) (см. рис. 14)

$$M = \frac{\sigma_{\rm cp} \cdot c_{\rm l}^2}{2}; \tag{55}$$

где *c*₁ – величина консольного свеса;

– в защемлении опорного свеса плиты (участок 2) (см. рис. 14)

$$M = \frac{\sigma_{\rm cp} \cdot c_2^2}{2},\tag{56}$$

где *c*₂ – величина консольного свеса;

– в пластинах, опертых на четыре канта (участки 3 и 4) (см. рис. 14)

$$M = \alpha \cdot \sigma_{\rm cp} \cdot a^2; \tag{57}$$

где *а* – короткая сторона пластинки;

α – коэффициент, зависящий от отношения более длинной стороны пластинки «*b*» к короткой «*a*». Принимается по табл. П5.1.

Для участков опорной плиты, опертых на четыре канта и имеющих отношение большей стороны к меньшей более 2, опорную плиту рассчитывают с учетом разгружающего влияния консольных свесов по формуле:

$$M = \frac{\sigma_{\rm cp} \cdot a^2}{8} - \frac{1}{3} \cdot \frac{\sigma_{\rm cp} \cdot c_1^2}{2}; \tag{58}$$

– в пластинах, опертых на 3 канта:

$$M = \beta \cdot \sigma_{\rm cp} \cdot a_1^{\ 2}; \tag{59}$$

где *a*₁ – длина незакрепленной стороны пластины;

 β – коэффициент, зависящий от отношения длины закрепленной стороны пластинки « b_1 » к свободной « a_1 » (рис. 15). Принимается по табл. П5.2.

По наибольшему из найденных для различных участков плиты изгибающих моментов определяют требуемую площадь плиты

$$\sigma_{\Pi\Pi}^{\rm rp} = \sqrt{\frac{6 \cdot M_{\rm max}}{R_y \cdot \gamma_c}}.$$
(60)

5.3. Определение высоты траверсы и расчет анкерных болтов

Нагрузка, приходящаяся на одну ветвь траверсы (рис.16), определяется по формуле:

$$N_{\rm rp} = \sigma_{\rm cp} \cdot A_{\rm rp},\tag{61}$$

где $A_{\rm Tp} = a_{\rm Tp} \cdot B = (c_1 + \sigma_{\rm Tp} + \frac{a}{2})B.$

Высоту траверсы определяем из расчета на срез швов «А»

$$l_{\omega}^{\mathrm{TP}} = \frac{N_{\mathrm{TP}}}{2 \cdot \beta_f \cdot k_f \cdot R_{\omega f} \cdot \gamma_{\omega f} \cdot \gamma_c} \le 85\beta_f \cdot k_f.$$
(62)

Катетом шва k_f задаются конструктивно, исходя из толщины свариваемых элементов.

Puc. 16

Для определения количества и диаметра анкерных болтов находят усилия, воспринимаемые анкерными болтами.

Усилие растяжения болтов определяется по формуле

$$z = \frac{|M| - |N| \cdot y_1}{h_o}.$$
(63)

Для расчета принимается z_{max} , полученное из двух комбинаций расчетных усилий.

Требуемая площадь нетто сечения болтов

$$\sum A_{bn}^{\rm Tp} = -\frac{z_{\rm max}}{R_{ba}}.$$
(64)

где R_{ba} – расчетное сопротивление растяжению анкерных болтов, принимается по табл. П6.1.

По требуемой площади нетто принимают диаметр анкерных болтов (прил. 7).

При этом должно быть

Puc. 15

$$\sum A_{bn} \ge \sum A_{bn}^{\mathrm{TP}} \,. \tag{65}$$

База подкрановой ветви рассчитывается аналогично базе наружной ветви в изложенном выше порядке.

ПРИЛОЖЕНИЯ

Приложение 1

Нормативные и расчетные сопротивления проката для стальных конструкций зданий

				Нормативное	сопротивление,	Нормативное с	опротивление,	Коэффициент
Manka		Вил	Топцина	N	[Па	M	Па	надежности
стали	ГОСТ	- Dид проката	толщина,	Прадал	Bravauuoa	Прадац	Bravauuoa	ПО
Стали		проката	101101	такущести	опротивление	предел	опротивление	материалу
				тскучести	сопротивление	тскучести	сопротивление	γ_m
	ГОСТ	Лист	4 - 20	225	365	220	355	
18 кп	22570.70	Лист	21 - 40	215	365	210	355	1.025
	25570-79	Фасон	4 - 20	235	365	230	355	1,025
19 10	ГОСТ	Лист	4 - 16	235	370	230	360	
18 110	23570-79	Фасон	4 - 20	245	370	240	360	1,025
19 от	ГОСТ	Лист	4 - 20	235	370	230	360	
	23570-79	Фасон	4 - 20	245	370	240	360	1,025
<u>10 Гта</u>	ГОСТ	Лист	31 - 40	235	390	230	380	
181110	23570-79							1,025
	ГОСТ	Лист	4 - 20	235	370	230	360	
18 кп	1001	Лист	21 - 30	225	370	220	360	1.025
	23370-79	Фасон	4 - 20	245	370	240	360	1,025

ВСт3 кп	ГОСТ 380-71*	Лист Лист	4 - 20 21 - 40	225 215	365 365	215 205	350 350	1.05
	500 / 1	Фасон	4 - 20	235	365	225	350	1,00
	ГОСТ	Лист	4 - 20	235	370	225	350	
ВСт3 пс	380-71*	Лист	21 - 40	225	370	215	350	1.05
	500 /1	Фасон	4 - 20	245	370	235	350	1,00
	ГОСТ	Лист	4 - 20	235	370	225	350	
ВСт3 сп	280.71^{*}	Лист	21 - 40	225	370	215	350	1.05
	380-71	Фасон	4 - 20	245	370	235	350	1,05
	ГОСТ							
	19282-73	Лист	4 - 20	305	440	290	420	
09 Г2	ГОСТ	Лист	21 - 32	295	440	280	420	1.05
	19281-73	Фасон	4 - 20	305	440	290	420	1,05
09 Г2C	ГОСТ 19282-73 ГОСТ 19281-73	Лист Лист Фасон Фасон	$ \begin{array}{r} 4 - 9 \\ 10 - 20 \\ 4 - 9 \\ 10 - 20 \end{array} $	345 325 345 325	490 470 490 470	330 310 330 310	465 450 465 450	1,05

Приложение 2

Таблица П2.1

Коэффициенты расчетной длины µ1 для одноступенчатых колонн с верхним свободным концом

Расчетная										Коэфо	рицие	нты μ	₁ при ^с	η							
схема	α_1	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0	2,5	5,0	10,0	20,0
F2	0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0	2,0
	0,2	2,0	2,01	2,02	2,03	2,04	2,05	2,06	2,06	2,07	2,08	2,09	2,10	2,12	2,14	2,15	2,17	2,21	2,40	2,76	3,38
F_{t}	0,4	2,0	2,04	2,08	2,11	2,13	2,18	2,21	2,25	2,28	2,32	2,35	2,42	2,48	2,54	2,60	2,66	2,80	-	-	-
│ ┟¥Ц	0,6	2,0	2,11	2,20	2,28	2,36	2,44	2,52	2,59	2,66	2,73	2,80	2,93	3,05	3,17	3,28	3,39	-	-	-	-
	0,8	2,0	2,25	2,42	2,56	2,70	2,83	2,96	3,07	3,17	3,27	3,36	3,55	3,74	-	-	-	-	-	-	-
	1,0	2,0	2,50	2,73	2,94	3,13	3,29	3,44	3,59	3,74	3,87	4,00	-	-	-	-	-	-	-	-	-
	1,5	3,0	3,43	3,77	4,07	4,35	4,61	4,86	5,05	-	-	-	-	-	-	-	-	-	-	-	-
↑	2,0	4,0	4,44	4,90	5,29	5,67	6,03	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$F_2 + F_1$	2,5	5,0	5,55	6,08	6,56	7,00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	3,0	6,0	6,65	7,25	7,87	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Таблица П2.2

Коэффициенты расчетной длины µ1 для одноступенчатых колонн с верхним концом, закрепленным только от поворота

Расчетная	c.									Коэфо	рицие	нты μ	1 при 1	1							
схема	α_1	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,2	1,4	1,6	1,8	2,0	2,5	5,0	10,0	20,0
	0	2,0	1,92	1,86	1,80	1,76	1,70	1,67	1,64	1,60	1,57	1,55	1,50	1,46	1,43	1,40	1,37	1,32	1,18	1,10	1,05
F 2	0,2	2,0	1,93	1,87	1,82	1,76	1,71	1,68	1,64	1,62	1,59	1,56	1,52	1,48	1,45	1,41	1,39	1,33	1,20	1,11	-
<u></u>	0,4	2,0	1,94	1,88	1,85	1,77	1,75	1,72	1,69	1,66	1,62	1,61	1,57	1,53	1,50	1,48	1,45	1,40	-	-	-
П	0,6	2,0	1,95	1,91	1,86	1,83	1,79	1,77	1,76	1,72	1,71	1,69	1,66	1,63	1,61	1,59	-	-	-	-	-
F ₁	0,8	2,0	1,97	1,94	1,92	1,90	1,88	1,87	1,86	1,85	1,83	1,82	1,80	1,79	-	-	-	-	-	-	-
Ľ Ť	1,0	2,0	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	2,00	-	-	-	-	-	-	-	-	-
	1,5	2,0	2,12	2,25	2,33	2,38	2,43	2,48	2,52	-	-	-	-	-	-	-	-	-	-	-	-
	2,0	2,0	2,45	2,66	2,81	2,91	3,00	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2,5	2,5	2,94	3,17	3,34	3,50	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
A	3,0	3,0	3,43	3,70	3,93	4,12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$F_2 + F_1$																					

Коэффициенты ϕ_e для проверки устойчивости внецентренно-сжатых сплошностенчатых стержней в плоскости действия момента, совпадающей с плоскостью симметрии

Условная			Коэ	ффициен	пы φ _е пр	и привед	енном от	носителн	ьном экст	риситете	e m _{ef}		
гибкость										-			
$\overline{\lambda} = \lambda \cdot \sqrt{R_y / E}$	0,1	0,25	0,5	0,75	1,0	1,25	1,5	1,75	2,0	2,5	3,0	3,5	4,0
0.5	067	022	950	700	722	660	620	577	520	460	417	270	227
0,3	907	922	830	782	(52	009	<u> </u>	520	338	409	417	370	207
1,0	925	834	716	/11	<u> </u>	600	505	520	484	427	382	341	307
1,5	8/5	804	/16	64 /	593	548	507	4/0	439	388	347	312	283
2,0	813	742	653	587	536	496	457	425	397	352	315	286	260
2,5	742	672	587	526	480	442	410	383	357	317	287	262	238
3,0	667	597	520	465	425	395	365	342	320	287	260	238	217
3,5	587	522	455	408	375	350	325	303	287	258	233	216	198
4,0	505	447	394	356	330	309	289	270	256	232	212	197	181
4,5	418	382	342	310	288	272	257	242	229	208	192	178	165
5,0	354	326	295	273	253	239	225	215	205	188	175	162	150
5,5	302	280	256	240	224	212	200	192	184	170	158	148	138
6,0	258	244	223	210	198	190	178	172	166	153	145	137	128
6,5	223	213	196	185	176	170	160	155	149	140	132	125	117
7,0	194	186	173	163	157	152	145	141	136	127	121	115	108
8,0	152	146	138	133	128	121	117	115	113	106	100	095	091
9,0	122	117	112	107	103	100	098	096	093	088	085	082	079
10,0	100	0.97	093	091	090	085	081	080	079	075	072	070	069
11,0	083	0.79	077	076	075	073	071	069	068	063	062	061	060
12,0	069	0.67	064	063	062	060	059	059	058	055	054	053	052
13,0	062	0.61	054	053	052	051	051	050	049	049	048	048	047
14,0	052	049	049	048	048	047	047	046	045	044	043	043	042

Окончание табл. П2.3

Условная			Коэ	ффициен	ты φ _е пр	и привед	енном от	носитель	ном экст	риситете	mef		
гибкость													
$\overline{\lambda} = \lambda \cdot \sqrt{R_y / E}$	4,5	5,0	5,5	6,0	6,5	7,0	8,0	9,0	10	12	14	17	20
0,5	307	280	260	237	222	210	183	164	150	125	106	090	077
1,0	283	259	240	225	209	196	175	157	142	121	103	086	074
1,5	262	240	223	207	195	182	163	148	134	114	099	082	070
2,0	240	222	206	193	182	170	153	138	125	107	094	079	067
2,5	220	204	190	178	168	158	144	130	118	101	090	076	065
3,0	202	187	175	166	156	147	135	123	112	097	086	073	063
3,5	183	172	162	153	145	137	125	115	106	092	082	069	060
4,0	168	158	149	140	135	127	118	108	098	088	078	066	057
4,5	155	146	137	130	125	118	110	101	093	083	075	064	055
5,0	143	135	126	120	117	111	103	095	088	079	072	062	053
5,5	132	124	117	112	108	104	095	089	084	075	069	060	051
6,0	120	115	109	104	100	096	089	084	079	072	066	057	049
6,5	112	106	101	097	094	089	083	080	074	068	062	054	047
7,0	102	098	094	091	087	083	078	074	070	064	059	052	045
8,0	087	083	081	078	076	074	068	065	062	057	053	047	041
9,0	075	072	069	066	065	064	061	058	055	051	048	043	038
10,0	065	062	060	059	058	057	055	052	049	046	043	039	035
11,0	057	055	053	052	051	050	048	046	044	040	038	035	032
12,0	051	050	049	048	047	046	044	042	040	037	035	032	029
13,0	045	044	043	042	041	041	039	038	037	035	033	030	027
14,0	014	040	040	039	039	038	037	036	036	034	032	029	026

Примечания: 1. Значения коэффициентов ϕ_e увеличены в 1000 раз.

2. Значения φ_e принимать не выше значений φ.

Коэффициенты ϕ_e для проверки устойчивости внецентренно-сжатых сквозных стержней в плоскости действия момента, совпадающей с плоскостью симметрии

Условная приведен-				Коэфф	ициенты	φ _е при о	тноситеј	іьном эк	сцентрис	итете т			
ная гибкость													
$\overline{\lambda_{ef}} = \lambda_{ef} \cdot \sqrt{R_y/E}$	0,1	0,25	0,5	0,75	1,0	1,25	1,5	1,75	2,0	2,5	3,0	3,5	4,0
0,5	908	800	666	571	500	444	400	364	333	286	250	222	200
1,0	872	762	640	553	483	431	387	351	328	280	243	218	197
1,5	830	727	600	517	454	407	367	336	311	271	240	211	190
2,0	774	673	556	479	423	381	346	318	293	255	228	202	183
2,5	708	608	507	439	391	354	322	297	274	238	215	192	175
3,0	637	545	455	399	356	324	296	275	255	222	201	182	165
3,5	562	480	402	355	320	294	270	251	235	206	187	170	155
4,0	484	422	357	317	288	264	246	228	215	191	173	160	145
4,5	415	365	315	281	258	237	223	207	196	176	160	149	136
5,0	350	315	277	250	230	212	201	186	178	161	149	138	127
5,5	300	273	245	223	203	192	182	172	163	147	137	128	118
6,0	255	237	216	198	183	174	165	156	149	135	126	119	109
6,5	221	208	190	178	165	157	149	142	137	124	117	109	102
7,0	192	184	168	160	150	141	135	130	125	114	108	101	095
8,0	148	142	136	130	123	118	113	108	105	097	091	085	082
9,0	117	114	110	107	102	098	094	090	087	082	079	075	072
10,0	097	094	091	090	087	084	080	076	073	070	067	064	062
11,0	082	078	077	076	073	071	068	066	064	060	058	056	054
12,0	068	066	064	063	061	060	058	057	056	054	053	050	049
13,0	060	059	054	053	052	051	050	049	049	048	047	046	045
14,0	050	049	048	047	046	046	045	044	043	043	042	042	041

Условная				Коэффи	циенты	ф _е при о	гносител	ьном экс	сцентрис	итете т			
гибкость													
$\overline{\lambda_{ef}} = \lambda_{ef} \cdot \sqrt{R_y/E}$	4,5	5,0	5,5	6,0	6,5	7,0	8,0	9,0	10	12	14	17	20
0,5	182	167	154	143	133	125	111	100	091	077	067	056	048
1,0	180	165	151	142	131	121	109	098	090	077	066	055	046
1,5	178	163	149	137	128	119	108	096	088	077	065	053	045
2,0	170	156	143	132	125	117	106	095	086	076	064	052	044
2,5	162	148	136	127	120	113	103	093	083	074	062	051	043
3,0	153	138	130	121	116	110	100	091	081	071	061	051	042
3,5	143	130	123	115	110	106	096	088	078	069	059	050	041
4,0	133	124	118	110	105	100	093	084	076	067	057	049	040
4,5	124	116	110	105	100	096	089	079	073	065	055	048	039
5,0	117	108	104	100	095	092	086	076	071	062	054	047	039
5,5	110	102	098	095	091	087	091	074	068	059	052	046	038
6,0	103	097	093	090	085	083	077	070	065	056	051	045	037
6,5	097	092	088	085	080	077	072	066	061	054	050	044	036
7,0	091	087	083	079	076	074	068	063	058	051	047	043	035
8,0	079	077	073	070	067	065	060	055	052	048	044	041	035
9,0	069	067	064	062	059	056	053	050	048	045	042	039	035
10,0	060	058	056	054	052	050	047	045	043	041	038	036	033
11,0	053	052	050	048	046	044	043	042	041	038	035	032	030
12,0	048	047	045	043	042	040	039	038	037	034	032	030	028
13,0	044	044	042	041	040	038	037	036	035	032	030	028	026
14,0	041	040	039	039	038	037	036	035	034	031	029	027	025

Примечания: 1. Значения коэффициентов *ф*е увеличены в 1000 раз.

2. Значения ϕ_e принимать не выше значений ϕ .

Приложение 3

		Предел	Ми	нимальные	катеты шво	ов <i>k_f</i> , мм, пр	ои толщине	более толс	гого
Вид соединения	Вид сварки	текучести,			из сварива	емых элеме	ентов <i>t</i> , мм		
		МПа	4 - 5	6 – 10	11 - 16	17 - 22	23 - 32	33 - 40	41 - 80
		До 430	4	5	6	7	8	9	10
Тавровое с двухсторонними угловыми	Ручная	Св.430 До 580	5	6	7	8	9	10	12
швами; нахлесточное и		До 430	3	4	5	6	7	8	9
угловое	полуавтоматическая и	Св.430 До 580	4	5	6	7	8	9	10
Тавровое с	Ручная		5	6	7	8	9	10	12
Тавровое с односторонними угловыми швами	Автоматическая и полуавтоматическая	До 380	4	5	6	7	8	9	10

Минимальные катеты швов

Приложение 7

Сталь горячекатанная. Двутавры с параллельными гранями полок. Сортаменты. Технические условия ТУ 14-2-24-72

оминальный мер профиля, мм	мер профиля		Pa		Площадь юперечного сечения, см ²	сса 1 м длины, кг		Спр	авочны	е величи	ны для (осей			
H pag	Hc	h	Ь	c	+	r	цо	$= \begin{bmatrix} x - x \\ L - x \end{bmatrix}$					<u>y-y</u>		
		п	U	ు	l	/		[I_x, cm^4	W_x , cm ³	i_x , CM	S_x, cm^3	$I_{\rm y}, {\rm cm}^4$	W_y , cm ³	i_y , CM
	35Б1	346,6	155	6	8,8		48,7	38,2	10000	577	14,3	328	547	70,6	3,35
350×155	35Б2	350	155	6	10,5	14	54	12,4	11600	663	14,7	371	653	84,2	3,48
	35Б3	352,4	155,5	6,5	11,7		59,5	46,7	12930	734	14,7	411	735	94,5	3,52
	40Б1	395,8	165	6,8	9,8		601	47,2	15810	799	16,2	453	736	89,2	3,5
400×165	40Б2	400	166	6,8	11,9	16	67	52,6	18560	928	16,6	522	893	108	3,65
	40Б3	402,4	165,6	7,4	13,1		73,4	57,6	20480	1020	16,7	573	994	120	3,68
	45Б1	445,4	180	7,6	11		74,6	58,5	24690	1110	18,2	629	1070	119	3,79
450×180	45Б2	450	180	7,6	13,3	18	82,8	65	28840	1280	18,7	722	1300	144	3,69
	45Б3	452,8	180,7	8,3	14,7		91	71,5	31950	1410	18,7	797	1450	160	3,99
	50Б1	495,6	200	8,4	12,2		91,8	72,1	37620	1520	20,3	863	1630	163	4,22
500×200	50Б2	500	200	8,4	14,4	20	101	79	43120	1720	20,7	972	1920	192	4,37
	50Б3	503,2	200,6	9	16		110	86,4	47790	1900	20,8	1070	2160	215	4,43

Окончание прил. 7

юминальный змер профиля, мм	впифоди дэмс		Ра	змеры,	ММ		Площадь топеречного сечения. см ²	сса 1 м длины, кг		Спра	авочные	величи	ны для о	сей	
pa	Η	h	h	S	t	r		Ma	4	<i>x-y</i>	c	1 2	4	<i>y-y</i>	T
			U	5	ľ	,			I_x, cm^4	W_x, cm^3	i_x , CM	S_x, cm^3	I_y, cm^4	W_y, cm^3	i_y , CM
	55Б1	545,2	215	9,2	13,7		110	86,3	54480	2000	22,3	1130	2280	212	4,59
550×215	55Б2	550	215	9,2	16,1	20	120	94,4	62220	2260	22,7	1280	2970	249	4,71
	55Б3	553,2	215,8	10	17,7		132	103	68520	2480	22,3	1400	2970	275	4,75
	60Б1	594,2	230	10	15,4		131	103	77430	2610	24,3	1480	3130	272	4,88
600×230	60Б2	600	230	10	18,3	22	145	114	89320	2980	24,8	1680	3720	323	5,07
	60Б3	603,4	231	11	20		159	124	98230	3260	24,9	1840	4120	357	5,1
	70Б1	693,6	260	11,5	15,5		162	127	125800	3630	27,9	2080	4550	350	5,31
700×260	70Б2	700	260	11,5	18,7	24	178	140	146000	4170	28,6	2370	5940	422	5,59
	70Б3	705,6	260,5	12	21,5		196	154	165440	4690	29	2450	6350	488	5,69
	80Б1	791,6	270	13	17,2		197	155	194370	4910	31,4	2840	5670	420	5,36
800×270	80Б2	800	270	13	21,4	26	220	173	230280	5760	32,4	3290	7040	522	5,66
	80Б3	805,2	270,8	13,8	24		240	189	256370	6370	32,7	3640	7970	589	5,76
900×310	90Б	887,2	308,7	13	15,6	30	215	169	264600	5960	35,1	3450	7680	497	5,97
1000×320	100Б	981,6	318,5	14	16,8	30	247	194	365330	7440	38,4	4330	9080	570	6,06
	50Ш1	484,2	300	10,4	15		143	112	60510	2500	20,6	1390	6760	451	6,88
500×300	50III2	489,8	300	10,4	17,8	26	160	125	70470	2880	21	1590	8020	535	7,08
	50III3	489.8	303.8	11.2	17.8		178	140	74190	3030	20,4	1710	8340	549	6,84
700	70Ш1	683	320	12,8	19,2	20	213	167	171660	5030	28,4	2830	10510	657	7,02
700×320	70III2	689,4	320,3	13,1	22,4	30	236	185	196590	5700	28,9	3200	12290	768	7,22

Таблица П2.5

Коэффициенты для расчета на прочность элементов стальных конструкций с учетом развития пластических деформаций

Тип оонония	1./ 1	Знач	ения коэффицие	ентов
Типсечения	A_f / A_W	C_x	C_y	п
$\frac{x}{y} = \frac{y}{A_{t}}$	0,25 0,50 1,00 2,00	1,19 1,12 1,07 1,04	1,47	1,5

Таблица П2.6

Коэффициенты влияния формы сечения ү

		Значение у при:						
Схема сечения	A_f/A_w	$0 \le \overline{\lambda}$	≤5	$\overline{\lambda} > 5$				
		0,1≤ <i>m</i> ≤5	$5 < m \le 20$	0,1≤ <i>m</i> ≤5	$5 < m \le 20$			
$\frac{x}{y} \xrightarrow{A_f} \frac{x}{y}$	0.25	(1,450,05 <i>m</i>)-	1.2	1,2				
	0.23	$0.01(5-m) \overline{\lambda}$	1,2					
	0.50	(1,75-0,1 <i>m</i>)-	1.25	1,25				
		$0,02(5-m) \overline{\lambda}$	1,23					
	> 1	(1,90-0,1 <i>m</i>)-	1,4-0,02	1.2				
	≥1	$0,02(6-m) \overline{\lambda}$	$\overline{\lambda}$	1	,,,			

Таблица П2.7

Коэффициенты α и β										
	Значения коэффициентов									
Тип сечения	α при		βг	три						
	$m_x \leq 1$	$1 < m_x \leq 5$	$\lambda_y \leq \lambda_c$	$\lambda_y > \lambda_c$						
x x	0,7	$0.65+0.05 m_x$	1	$\sqrt{\frac{\varphi_c}{\varphi_y}}$						

Примечание: φ_c –значение φ_y при $\lambda_y = \lambda_c = 3,14 \sqrt{\frac{E}{R_y}}$

Коэффициент ф продольного изгиба центрально сжатых элементов

Гибкость λ	Расчетные сопротивления стали R_y , МПа							
	200	240	280	320				
10	988	987	985	984				
20	967	962	959	955				
30	939	931	924	917				
40	906	894	883	873				
50	869	852	836	822				
60	827	805	785	766				
70	782	754	724	687				
80	734	686	641	602				
90	665	612	565	522				
100	599	542	493	448				
110	537	478	427	381				
120	479	419	366	321				

Примечание. Значения коэффициента ф увеличены в 1000 раз.

Таблица П2.9

	11	• 5	•				
Вид сварки при диаметре сварной	Положение шва	ффициент	Значения коэффициентов β _f и β _z при катетах швов, мм				
проволоки а, мм		Коэс	3-8	9-12	14-16	18 и более	
	D налания.	β_f		1,1		0,7	
Автоматическая	Б ЛОДОЧКУ	β_z	1,15			1	
при <i>d</i> = 3 – 5	Циницаа	β_f	1,1	0,9		0,7	
	пижнее	β_z	1,15	1,05		1	
	Р полоничи	β_f	0,9		0,8	0,7	
Автоматическая и	В лодочку	β_z	1,05 1		1	,0	
полуавтоматическая при $d = 1.4 - 2$	Нижнее, горизонталь-	β_f	0,9	0,8	0	,7	
при и 1,4 2	ное, вертикальное	β_z	1,05		1		
Ручная;		β_f	0,9				
полуавтоматическая проволокой сплошного сечения при <i>d</i> < 1,4 или порошковой проволокой	В лодочку, нижнее, горизонтальное, вертикальное, потолочное	β_z		1,	,0		

Коэффициенты β_f и β_z

Примечание. Значения коэффициентов соответствуют нормальным режимам сварки.

Приложение 4

Рекомендуемые материалы для сварки и их расчетные сопротивления

Марка стали	Марка сварочной проволоки (по ГОСТ 2246-70 [*])	Тип электродов (по ГОСТ 9647-75)	<i>R_{wf}</i> , МПа	
18 кп, 18 пс, 18 сп,	Св-08	Э 42	180	
18 Гпс, 18 Гсп, ВСт 3 кп,	Св-08 А	Э 42	180	
ВСт 3 пс, ВСт 3 сп.	Св-08 ГА	Э 46	200	
09 Г2, 09 Г2С,	Св-08 Г2	Э 46	200	
10 Г2С1.	Св-10 Г2	Э 50	215	

Приложение 5

Таблица П5.1

Коэффициенты α для расчета на изгиб плит, опертых на четыре канта

b/a	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2	Более 2
α	0,048	0,055	0,063	0,069	0,075	0,081	0,086	0,091	0,094	0,098	0,1	0,125

Таблица П5.2

Коэффициенты в для расчета на изгиб плит, опертых на два или три канта

b_1/a_1	0,5	0,6	0,7	0,8	0,9	1	1,2	1,4	2	Более 2
β	0,06	0,074	0,088	0,097	0,107	0,112	0,12	0,126	0,132	0,133

Приложение 6

Таблица Пб.1

Расчетные сопротивления растяжению анкерных болтов

Диаметр болтов, мм	Расчетные сопротивления анкерных болтов из стали марок, МПа						
	ВСт 3 кп 2	09 Г2С	10 Г2С1				
33 - 60	145	180	180				
61 - 80	145	175	170				
81 - 100	145	170	170				

Таблица Пб.2

Анкерные болты

Наружный диаметр стержня, мм	30	36	42	48	56	64	72	80	90	100
A_s, cm^2	5,6	8,2	11,3	14,8	20,5	26,9	34,7	43,5	56,0	72,0