Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Владимирский государственный университет

Н.А. ОРЛИН

ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

Практикум для студентов химических, химико-технологических и экологических специальностей УДК 54(076) ББК 24.1 О66

Рецензенты:

Профессор, заведующий кафедрой химии Владимирского государственного педагогического университета $H.\Pi.\ Ларионов$

Кандидат химических наук, доцент кафедры химии Владимирского государственного педагогического университета $\it C.HO.\ Mopes$

Печатается по решению редакционно-издательского совета Владимирского государственного университета

Орлин, Н. А.

Обб Общая и неорганическая химия: практикум для студентов химических, химико-технологических и экологических специальностей / Н. А. Орлин; Владим. гос. ун-т. – Владимир: Изд-во Владим. гос. ун-та, 2006. – 80 с. – ISBN 5-89368-648-9.

Содержит задания для самостоятельной (курсовой) работы по общей и неорганической химии, выполняемой студентами в рамках СРС.

Предназначен для студентов дневного отделения химических, химикотехнологических и экологических специальностей.

Библиогр.: 21 назв.

УДК 54(076) ББК 24.1

ISBN 5-89368-648-9

© Владимирский государственный университет, 2006

ПРЕДИСЛОВИЕ

Основная цель самостоятельной (курсовой) работы — применение знаний, полученных студентом на лекции, к решению ряда практических задач, развитие элементов творчества, повышение качества практической подготовки специалистов, улучшение навыков работы с научной и справочной литературой, умение отбирать и анализировать информацию.

Задания курсовой работы выдаются индивидуально каждому студенту на первой-второй неделях семестра. При выдаче задания преподаватель рекомендует студенту необходимую литературу, дает индивидуальные консультации по отдельным разделам работы и выдает график ее поэтапного выполнения.

Практикум содержит девять тем для семестровой курсовой работы, которая выполняется в три этапа: по три темы на каждом этапе. Выполненную работу студент предоставляет преподавателю на проверку. После проверки происходит защита выполненных на этапе заданий путем собеседования преподавателя со студентом.

Курсовая работа включается в рейтинговую систему, и число баллов, полученных студентом за каждый этап выполненной работы, учитывается в общей сумме баллов за данную дисциплину.

Курсовую работу оформляют в виде отдельного отчета, в котором перед каждым разделом формулируется задача, а затем представляется ее решение.

При окончательной защите курсовой работы, которая проводится не позднее, чем за неделю до экзаменационной сессии, проверяется глубина освоения знаний студентом за весь курс общей и неорганической химии. Студент, не выполнивший курсовую работу или не защитивший ее, не может получить зачет и не допускается к экзамену по химии.

Тема 1. ЭКВИВАЛЕНТ. ЗАКОН ЭКВИВАЛЕНТОВ

- 1.1. a) Имеем 100 мл 0,5 М раствора Na₂SO₄. Сколько эквивалентов соли содержится в данном растворе?
 - б) Сколько эквивалентов щелочи вступит в реакцию с 20 г сульфата железа (III)?
 - в) В каком количестве NaOH содержится столько же эквивалентов, сколько в 140 г KOH?
 - г) При восстановлении водородом 2,68 г оксида металла до чистого металла образовалось 0,648 г H_2O . Вычислить эквивалент металла.
- 1.2. а) Имеем 500 мл 0,1 M раствора $Al_2(SO_4)_3$. Сколько эквивалентов соли содержится в данном растворе?
 - б) Сколько эквивалентов H₂SO₄ вступит в реакцию с 20 г Са(OH)₂?
 - в) В каком количестве КОН содержится столько же эквивалентов, сколько в 60 г NaOH?
 - г) После обработки нитратом серебра 0,986 г хлорида металла образовалось 1,732 г AgCl. Вычислить эквивалент металла.
- 1.3. а) Имеем 150 мл 0,3 М раствора хлорида алюминия. Сколько эквивалентов соли содержится в данном растворе?
 - б) Сколько эквивалентов ортофосфорной кислоты вступит в реакция с $20 \ \Gamma \ \text{Ca}(\text{OH})_2$?
 - в) В каком количестве $Ba(OH)_2$ содержится столько же эквивалентов, сколько в 120 г NaOH?
 - г) На нейтрализацию $100 \text{ мл H}_2\text{SO}_4$ израсходовано 2,14 г КОН. Сколько эквивалентов кислоты содержалось в растворе?
- 1.4. a) Имеем 50 мл 0,6 М раствора К₂CrO₄. Сколько эквивалентов соли содержится в этом растворе?
 - б) Сколько граммов ортофосфорной кислоты вступит в реакцию с 0,2 эквивалента Ca(OH)₂, если образуется средняя соль?
 - в) В каком количестве NaOH содержится столько же эквивалентов, сколько в 250 мл 0,5 M раствора КOH?
 - г) 27,26 г двухвалентного металла вытеснили из кислоты 10 л водоро-

- да при температуре 18 °C и давлении 760 мм рт.ст. Вычислить атомную массу металла. Назвать металл.
- 1.5. а) Имеем 150 мл 0,5 М раствора $Cr_2(SO)_4$. Сколько эквивалентов соли содержится в этом растворе?
 - б) Сколько литров кислорода вступит в реакцию с 0,5 эквивалента магния? Сколько эквивалентов оксида образовалось?
 - в) В каком объеме 10%-ного раствора H_2SO_4 содержится столько же эквивалентов, сколько их в 100 мл 0.5 М раствора HCI?
 - г) Некоторый элемент образует кислородное соединение, содержащее 31,58 % кислорода. Вычислить эквивалентную массу этого элемента.
- 1.6. a) Сколько эквивалентов соли содержится в 200 мл 0,2 M раствора CrCl₃?
 - б) Сколько граммов $Ca(OH)_2$ вступит в реакцию с 100 мл 10%-ного раствора H_2SO_4 ?
 - в) В каком количестве $Mg(OH)_2$ содержится столько же эквивалентов, сколько в 50 г $Ca(OH)_2$?
 - г) 0,864 г металла при взаимодействии с хлором образует 1,148 г хлорида. Вычислить эквивалентную массу металла.
- 1.7. а) Сколько эквивалентов кислоты содержится в 50 мл 0.5 M раствора H_3PO_4 ?
 - б) Сколько эквивалентов КОН вступит в реакцию с 7,3 г НСІ?
 - в) В каком количестве HCI содержится столько же эквивалентов, сколько в 100 мл 0,1 М раствора H_2SO_4 ?
 - г) Эквивалентная масса металла составляет 56,2 г. Вычислить процентное содержание металла в его кислородном соединении.
- 1.8. а) Определить число эквивалентов соли, содержащееся в 150 мл 0,3 М раствора $K_2Cr_2O_7$.
 - б) Сколько эквивалентов H_2SO_4 вступит в реакцию с 4,24 г карбоната натрия?
 - в) Определить эквивалент серебра, если известно, что при нагревании его оксида до полного разложения масса оксида уменьшилась на 6,9 %.
 - г) В каком количестве 10%-ного раствора H_2SO_4 (плотность 1,07 г/мл) содержится столько же эквивалентов, сколько содержит 0,5 моля H_2SO_4 ?
- 1.9. а) Определить число эквивалентов кислоты содержащихся в 200 мл 0,3

- M раствора H_2SO_4 ?
- б) Сколько эквивалентов $Ca(OH)_2$ вступит в реакцию с 150 мл 0,1 М раствора HNO_3 ?
- в) Определить эквивалент двухвалентного металла, если из 48,15 г его оксида можно подучить 88,65 г нитрата.
- г) Некоторое количество оксида серебра (I) при разложении образовало 2,158 г металла, причем выделилось 0,16 г кислорода. Вычислить эквивалент металла.
- 1.10. а) Определить число эквивалентов гидроксида, содержащихся в 300 мл 0.5 M раствора $\text{Ca}(\text{OH})_2$.
 - б) Сколько эквивалентов H_2SO_4 нужно израсходовать на нейтрализацию 150 мл 0,1 M раствора КОН?
 - в) 4,086 г металла вытесняют из кислоты 1,4 л водорода (н.у.). Эта же масса данного металла вытесняет 12,95 г свинца из раствора его соли. Вычислить эквивалент свинца.
 - г) Сколько литров кислорода вступят в реакцию с 2,4 г магния?
- 1.11. а) Сколько эквивалентов соли содержится в 250 мл 0,3 М раствора карбоната натрия?
 - б) Сколько эквивалентов кислоты вступит в реакцию с 6,36 г карбоната натрия?
 - в) В каком количестве $Ba(OH)_2 \cdot 8 H_2O$ содержится столько же эквивалентов, сколько в 156 г $Al(OH)_3$?
 - г) Вычислить эквивалент цинка, если 1,168 г его вытеснили из кислоты 438 мл водорода, измеренного при температуре 17 °C и давлении 750 мм рт.ст.
- 1.12. а) Сколько эквивалентов соли содержится в 400 мл 0,5 M раствора $Al(NO_3)_3$?
 - б) Сколько эквивалентов кислоты вступит в реакцию с 100 мл 0,2 М раствора $Ba(OH)_2$?
 - в) При восстановлении 5,1 г оксида металла (III) образовалось 2,7 г воды. Определить эквивалент металла.
 - г) При взаимодействии 5,8 г металла с серой образовалось 10 г сульфида. Определить эквивалент металла, если эквивалент серы равен 16.

- 1.13. a) Определить число эквивалентов соли, содержащихся в 500 мл 0,5 M раствора ZnSO₄.
 - б) Сколько эквивалентов H_3PO_4 вступят в реакции с 150 мл 0,3 М раствора КОН, если образуется средняя соль?
 - в) Сколько эквивалентов соли образуется при реакции, приведенной в предыдущей задаче (п.б)?
 - г) 1 г четырехвалентного металла соединяется с 0,27 г кислорода. Назвать металл.
- 1.14. а) Определить число эквивалентов гидроксида кальция, содержащееся в 500 мл его 0,3 М раствора.
 - б) Сколько эквивалентов соли образуется при взаимодействии 150 мл 0,5 М раствора серной кислоты с эквивалентным количеством гидроксида натрия?
 - в) Определить эквивалент двухвалентного металла, если 1,188 г его вытесняют из HCI 438 мл водорода, измеренного при температуре $20~^{\circ}$ С и давлении 740 мм рт.ст. Назвать металл.
 - г) Сколько эквивалентов щелочи NaOH останутся ненейтрализованными при смешивании 100 мл 0,5 M раствора H_2SO_4 и 500 мл 0,5 M раствора NaOH?
- 1.15. а) Определить число эквивалентов соли, содержащееся в 500 мл 0,5 M раствора $CuSO_4$.
 - б) Сколько эквивалентов кислоты останутся ненейтрализованными, если смешать 500 мл 0,5 M раствора H_2SO_4 и 500 мл 0,5 M раствора NaOH?
 - в) Сколько миллилитров 0,5 M раствора Ca(OH)₂ можно получить из 0,3 эквивалента этого гидроксида?
 - г) Определить эквивалент металла, если при сгорании 10 г этого металла образуется 18,88 г оксида.
- 1.16. а) Определить число эквивалентов соли, содержащееся в 400 мл 0,5 М раствора ${\rm K_3PO_4}$.
 - б) Сколько эквивалентов железа вступит в реакцию с 500 мл 2 М раствора CuSO₄?
 - в) В каком количестве КОН содержится столько же эквивалентов, сколько их в 250 г Ca(OH)₂?

- г) Мышьяк образует 2 оксида, из которых один содержит 65,2 % (мас.) As, а другой 75,7 % (мас.) As. Определить эквивалентные массы мышьяка в обоих случаях.
- 1.17. а) Сколько эквивалентов соли содержится в 280 мл 0,3 M раствора $Cr_2(SO_4)_3$?
 - б) Сколько эквивалентов Ca(OH)₂ вступит в реакцию с 80 г сульфата железа (III)?
 - в) В каком количестве $CuSO_4$ содержится столько же эквивалентов, сколько их в 500 мл 0,5 M раствора $Mg(OH)_2$?
 - г) 1 г некоторого металла соединяется с 8,89 г брома и с 1,78 г серы. Найти эквивалентные массы брома и металла, если эквивалентная масса серы равна 16 г/моль.
- 1.18. а) Определить число эквивалентов соли, содержащееся в 800 мл 0,8 М раствора H_2SO_4 .
 - б) Каким количеством эквивалентов $Ba(OH)_2$ можно заменить 250 мл 0,5 M раствора $Ca(OH)_2$?
 - в) В каком объеме 0.5 М раствора H_2SO_4 содержится столько же эквивалентов серной кислоты, сколько их в 250 мл 0.2 М раствора HNO_3 ?
 - г) Эквивалентная масса хлора равна 35,5 г/моль, атомная масса меди равна 63,5 г/моль. Эквивалентная масса хлорида меди равна 99,5 г/моль. Определить и написать формулу хлорида меди.
- 1.19. а) Определить число эквивалентов кислоты, содержащееся в 250 мл 1,5 M раствора $H_2Cr_2O_7$.
 - б) Сколько эквивалентов Zn прореагирует с 150 мл 16%-ного раствора HCI (плотность 1,08 г/мл)?
 - в) Каким количеством эквивалентов HCI можно заменить 200 мл 0.5 M раствора H_2SO_4 ?
 - г) На восстановление 1,68 г оксида металла израсходовано 883 мл водорода, приведенных к нормальным условиям. Вычислить эквивалентные массы оксида и металла.
- 1.20. а) Определить число эквивалентов соли, содержащееся в 20 мл 0,2 М раствора $Fe_2(SO_4)_3$.
 - б) Определить число эквивалентов магния, способное прореагировать с 500 мл 10%-ного раствора H_2SO_4 (плотность 1,06 г/мл)?

- в) Каким количеством эквивалентов КОН можно заменить для реакции нейтрализации 250 мл 1 M раствора NaOH?
- г) 1,6 г кальция и 2,16 г цинка вытесняют из кислоты одинаковое количество водорода. Вычислить эквивалентную массу цинка, зная, что эквивалентная масса кальция равна 20 г/моль.
- 1.21. а) Определить число эквивалентов соли, содержащееся в 350 мл 0,5 M раствора $FeSO_4$.
 - б) Сколько эквивалентов КОН будет израсходовано на нейтрализацию 1500 мл 0,5 М раствора H₂SO₄?
 - в) Каким количеством эквивалентов H_2SO_4 можно заменить 500 мл 1 М раствора КСІ? Сколько при этом потребуется 10%-ного раствора H_2SO_4 (плотность 1,06 г/мл)?
 - г) При взаимодействии 5,95 г некоторого вещества с 2,75 г хлорводорода получилось 4,4 г соли. Вычислить эквивалентные массы вещества и образовавшейся соли.
- 1.22. а) Определить число эквивалентов соли, содержащееся в 290 мл 0,5 M раствора K_2CrO_4 .
 - б) Сколько эквивалентов Ca(OH)₂ будет нейтрализовано 500 мл 0,8 М раствора HCI?
 - в) Сколько эквивалентов кислой соли K_2HPO_4 образуется при взаимодействии 250 мл 0,5 M раствора КОН с ортофосфорной кислотой?
 - г) Для растворения 16,8 г металла потребовалось 14,7 г серной кислоты. Определить эквивалентную массу металла и объем выделившегося водорода (при температуре 20 °C и давлении 740 мм рт. ст.).
- 1.23. а) Определить число эквивалентов соли, содержащееся в 200 мл 0,5 M раствора $A1Br_3$.
 - б) Каким объемом 0.5 М раствора H_2SO_4 можно заменить 0.5 эквивалента соляной кислоты?
 - в) Серная и ортофосфорная кислоты имеют одинаковую молярную массу. Каково отношение масс этих кислот, пошедших на нейтрализацию одного и того же количества щёлочи, если образовались соответственно сульфат и дигидроортофосфат?
 - г) Эквивалентная масса металла в 2 раза больше, чем эквивалентная масса кислорода. Во сколько раз масса оксида больше массы металла?

- 1.24. а) Определить число эквивалентов соли, содержащееся в 150 мл 2 М раствора $Al_2(SO_4)_3$.
 - б) Сколько эквивалентов H_2SO_4 понадобится для замены 300 мл 10%ного раствора HNO_3 (плотность 1,08 г/мл) в реакции нейтрализации щелочи?
 - в) Рассчитать эквивалентную массу металла, если при взаимодействии 7,2 г металла с хлором было получено 28,2 г соли. Эквивалентная масса хлора равна 35,45 г/моль.
- 1.25. а) Определить число эквивалентов кислоты, содержащееся в 500 мл $0.3~\mathrm{M}$ раствора $\mathrm{H_3PO_4}$.
 - б) Сколько эквивалентов НСІ будет нейтрализовано 200 мл 10%-ного раствора КОН (плотность 1,08 г/мл)?
 - в) Каким количеством граммов $Ca(OH)_2$ можно заменить 0,5 эквивалента NaOH?
 - г) На осаждение хлора, содержащегося в 6,66 г соли, израсходовано 10,88 г AgNO₃. Вычислить эквивалентную массу соли.
- 1.26. а) Определить число эквивалентов соли, содержащееся в 300 мл 0,5 M раствора $Fe(NO_3)_3$.
 - б) Сколько эквивалентов соли образуется при взаимодействии H_2SO_4 с 500 мл 1 M раствора $Ca(OH)_2$?
 - в) Каким количеством граммов алюминия можно заменить 0,2 эквивалента магния в реакции взаимодействия с соляной кислотой?
 - г) Рассчитать эквивалентную массу металла, если при взаимодействии 14,4 г металла с хлором получено 56,4 г соли. Эквивалентную массу хлора принять равной 35,45 г/моль.
- 1.27. a) Определить число эквивалентов соли, содержащееся в 500 мл 1,5 M раствора NiSO₄.
 - б) Сколько эквивалентов NaOH вступит в реакцию нейтрализации с 250 мл 2 M раствора H_2SO_4 ?
 - в) При взаимодействии 3,6 г металла с серой образовалось 10 г сульфида. Вычислить эквивалентную массу металла, если эквивалентная масса серы равна 16 г/моль.
 - г) В каком количестве $Ca(OH)_2$ содержится столько же эквивалентов, сколько в 100 г NaOH?

- 1.28. а) Определить число эквивалентов соли, содержащееся в 200 мл 0,5 М раствора $Co(NO_3)_2$.
 - б) Каким количеством эквивалентов HC1 можно заменить 500 мл 20%ного раствора H_2SO_4 (плотность 1,14 г/мл)?
 - в) Сколько эквивалентов соли образуется при взаимодействии 500 мл 0,5 M раствора NaOH с 500 мл 0,5 M раствора H₂SO₄?
 - г) На нейтрализацию 4 г основания израсходовано 8,56 г HCI. Вычислить эквивалент основания.
- 1.29. а) Определить число эквивалентов соли, содержащееся в 300 мл 0,5 М раствора K_3PO_4 .
 - б) Каким количеством эквивалентов H_2SO_4 можно заменить 200 мл 10%-ного раствора HCI (плотность 1,05 г/мл)?
 - в) Сколько эквивалентов соли образуется при нейтрализации 100 мл 0,5 M раствора Ca(OH)₂ с 100 мл 0,5 M раствора HCI?
 - г) При нагревании 40,12 г металла было получено 43,12 г оксида. Определить эквивалентную массу металла.
- 1.30. а) Определить число эквивалентов гидроксида содержащееся в 200 мл $0.5~{\rm M}$ раствора ${\rm Ba(OH)_2}$.
 - б) Каким количеством эквивалентов HCI можно заменить 500 мл 0,2 M раствора HBr?
 - в) В скольких граммах КОН содержится столько же эквивалентов сколько их в 50 г NaOH?
 - г) При взаимодействии 1,296 г металла с хлором образуется 1,722 г хлорида. Вычислить эквивалентную массу металла, если эквивалентная масса хлора равна 35,5 г/моль.

Тема 2. РАСТВОРЫ

- 2.1. а) Сколько граммов $Na_2CO_3\cdot 7H_2O$ необходимо взять для приготовления 1,5 л 0,2 н. раствора Na_2CO_3 ?
 - б) Какой объем 30%-ного раствора HCl (плотность 1,15 г/мл) нужно взять для приготовления 50 мл 0,5 М раствора HCl?
 - в) По стехиометрическому уравнению для химических реакций необходимо 25 г H_2SO_4 . Сколько миллилитров 90%-ного раствора серной

- кислоты (плотность 1,8 г/мл) нужно взять, чтобы иметь необходимое количество H_2SO_4 ?
- г) Вычислить молярность и молярную концентрацию эквивалента 20%-ного раствора H_2SO_4 (плотность 1,14 г/ мл).
- д) Вычислить молярность 1,5 н. раствора H₃PO₄. Оценить процентную концентрацию этого раствора.
- е) Сколько граммов 6%-ного раствора Na₂SO₄ надо прибавить к 800 г 30%-ного раствора этой соли, чтобы получить 10%-ный раствор?
- 2.2. а) Сколько граммов $CuSO_4$ · $5H_20$ необходимо взять для приготовления 0,5 л 0,3 н. раствора $CuSO_4$?
 - б) Какой объем 30%-ного H_2SO_4 (плотность 1,225 г/мл) нужно взять для приготовления 100 мл 1,5 М раствора серной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 30 г H_2SO_4 . Какой объем 2 н. раствора серной кислоты нужно взять, чтобы иметь необходимое количество H_2SO_4 ?
 - г) Вычислить молярность и молярную концентрацию эквивалента 30%-ного раствора H_2SO_4 (плотность 1,225 г/мл).
 - д) Вычислить молярную концентрацию эквивалента 0,5 M раствора K_3PO_4 . Оценить процентную концентрация этого раствора.
 - е) Какой объем 4%-ного раствора соляной кислоты (плотность 1,02 г/мл) нужно прибавить к 1 л 20%-ного раствора этой кислоты, чтобы получить 8%-ный раствор HCI?
- 2.3. а) Сколько граммов $CuSO_4 \cdot 5H_2O$ необходимо взять для приготовления 400 мл 0,2 н. раствора сульфата меди?
 - б) Какой объем 30%-ного раствора азотной кислоты (плотность -1,315 г/мл) нужно взять для приготовления 500 мл 0,5 М раствора азотной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 30 г соляной кислоты. Какой объем 36%-ного раствора соляной кислоты (плотность 1,18 г/мл) нужно взять, чтобы иметь необходимое количество соляной кислоты?
 - г) Вычислить молярность и молярную концентрацию эквивалента 25%-ного раствора серной кислоты (плотность 1,19 г/мл).
 - д) Вычислить молярную концентрацию эквивалента 0,5 М раствора

- ортофосфорной кислоты. Оценить процентную концентрацию этого раствора.
- е) Сколько воды нужно прибавить к 300 мл 30%-ного раствора серной кислоты (плотность 1,22 г/мл), чтобы получить 5%-ный раствор этой кислоты (плотность 1,036 г/мл)?
- 2.4. а) В 250 мл воды растворили 10,6 г карбоната натрия. Какова молярность полученного раствора?
 - б) Какой объем 96%-ной серной кислоты (плотность 1,84 г/мл) необходимо взять для приготовления 200 мл 0,5 н. раствора серной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 30 г азотной кислоты. Какой объем 50%-ного раствора азотной кислота (плотность 1,315 г/мл) нужно взять, чтобы иметь необходимое количество азотной кислоты?
 - г) Вычислить молярность и молярную концентрацию эквивалента 30%-ного раствора серной кислоты (плотность 1,22 г/мл).
 - д) Вычислить молярность 0,3 н. раствора сульфата алюминия. Оценить процентную концентрацию этого раствора.
 - е) Сколько воды нужно прибавить к 1 л 36%-ного раствора гидроксида калия (плотность 1,36 г/мл), чтобы получить 10%-ный раствор гидроксида калия?
- 2.5. а) Сколько граммов $Na_2CO_3 \cdot H_2O$ необходимо взять для приготовления 850 мл 0,5 M раствора карбоната натрия?
 - б) Какой объем 30%-ной серной кислоты (плотность 1,22 г/мл) нужно взять для приготовления 200 мл 0,2 н. раствора серной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 15 г серной кислоты. Какой объем 80%-ного раствора серной кислоты (плотность 1,73 г/мл) нужно взять, чтобы иметь необходимое количество серной кислоты?
 - г) Вычислить молярность и молярную концентрацию эквивалента 20%-ного раствора азотной кислоты (плотность 1,12 г/мл).
 - д) Вычислить молярную концентрацию эквивалента 2 М раствора дихромата калия. Оценить процентную концентрацию этого раствора.
 - е) В каком соотношении надо смешать 35%-ный раствор сульфата меди с 5%-ным раствором этой соли, чтобы получить 100 г 20%-ного раствора соли?

- 2.6. а) Сколько граммов $MgSO_4 \cdot 7H_2O$ необходимо взять для приготовления 300 мл 0.3 н. раствора сульфата магния?
 - б) Какой объем 20%-ного раствора гидроксида калия (плотность 1,17 г/мл) нужно взять для приготовления 150 мл 0,2 н. раствора гидроксида калия?
 - в) По стехиометрическому уравнению для химической реакции необходимо 20 г азотной кислоты. Какой объем 70%-ного раствора азотной кислоты (плотность 1,42 г/мл) нужно взять, чтобы иметь необходимое количество азотной кислоты?
 - г) Вычислить молярность и молярную концентрацию эквивалента 25%-ного раствора серной кислоты (плотность 1,19 г/мл).
 - д) Вычислить молярную концентрацию эквивалента 1,5 М раствора гидроксида кальция. Оцените процентную концентрацию этого раствора.
 - е) Рассчитать процентную концентрацию раствора, полученного смешиванием 50 мл 40%-ного раствора азотной кислоты (плотность 1,25 г/мл) и 800 мл 5%-ного раствора азотной кислоты (плотность 1,03 г/мл).
- 2.7. а) Сколько граммов $Na_2SO_4\cdot 10H_2O$ необходимо взять для приготовления 400 мл 0,3 н. раствора сульфата натрия?
 - б) Какой объем 20%-ной соляной кислоты (плотность 1,1 г/мл) нужно взять для приготовления 150 мл 0,5 М раствора соляной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 20 г гидроксида натрия. Какой объем 15%-ного раствора гидроксида натрия (плотность 1,17 г/мл) нужно взять, чтобы иметь необходимое количество гидроксида натрия?
 - г) Вычислить молярность и молярную концентрацию эквивалента 30%-ного раствора азотной кислоты (плотность 1,185 г/мл).
 - д) Вычислить молярную концентрацию эквивалента 0,25 М раствора сульфата меди. Оценить процентную концентрацию этого раствора.
 - е) Определить концентрацию раствора, полученного прибавлением 5 л воды к 1 л 36%-ного раствора соляной кислоты (плотность 1,185 г/мл).
- 2.8. а) Сколько граммов $ZnSO_4\cdot 7H_2O$ необходимо взять для приготовления 300 мл 0.5 н. раствора сульфата цинка?

- б) Какой объем 96%-ной серной кислоты (плотность 1,84 г/мл) нужно взять для приготовления 500 мл 0,5 М раствора серной кислоты?
- в) По стехиометрическому уравнению для химической реакции необходимо 40 г азотной кислоты. Какой объем 90%-ной азотной кислоты (плотность 1,493 г/мл) нужно взять, чтобы иметь необходимое количество азотной кислоты?
- г) Вычислить молярность 0,3 н. раствора сульфата хрома (III). Оценить процентную концентрацию этого раствора.
- д) Сколько требуется 10%-ного раствора серной кислоты для реакция со 100 г 10%-ного раствора гидроксида натрия?
- е) Вычислить молярность и молярную концентрацию эквивалента 25%-ного раствора серной кислоты (плотность 1,18 г/мл).
- 2.9 а) Сколько граммов сульфата натрия необходимо взять для приготовления 250 мл 20%-ного раствора (плотность 1,2 г/мл)?
 - б) Какой объем 56%-ной серной кислоты (плотность 1,47 г/мл) нужно взять для приготовления 190 мл 0,5 н. раствора серной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 15 г серной кислоты. Какой объем 15%-ного раствора серной кислоты (плотность 1,1 г/мл) нужно взять, чтобы иметь необходимое количество серной кислоты?
 - г) Вычислить молярность и молярную концентрацию эквивалента 28%-ного раствора гидроксида калия (плотность 1,283 г/мл).
 - д) Вычислить молярную концентрацию эквивалента 0,5 M раствора сульфата железа (III). Оценить процентную концентрацию раствора.
 - е) Какой объем 10%-ного раствора соляной кислоты (плотность 1,1 г/мл) потребуется для реакции с 10 г карбоната кальция? Сколько миллилитров газа образовалось?
- 2.10. а) Сколько граммов $CuSO_4 \cdot 5H_2O$ необходимо взять для приготовления 650 мл 0,3 н. раствора сульфата меди?
 - б) Какой объем 50%-ной азотной кислоты и сколько воды необходимо взять для приготовления 500 мл 0,5 н. раствора?
 - в) По стехиометрическому уравнению для химической реакции необходимо 40 г серной кислоты. Какой объем 2 н. раствора серной кислоты нужно взять, чтобы иметь необходимое количество серной кислоты?

- г) Вычислить молярность и молярную концентрацию эквивалента 30%-ного раствора серной кислоты (плотность 1,255 г/мл).
- д) Определить молярную концентрацию эквивалента 0,3 М раствора хлорида алюминия. Оценить процентную концентрацию этого раствора.
- е) Определить, достаточно ли будет 20 мл 30%-ного раствора серной кислоты (плотность 1,22 г/мл) для реакции с 6,54 г цинка. Рассчитать молярную концентрацию образующейся соли.
- 2.11. а) Сколько граммов $FeSO_4$ ·7 H_2O необходимо взять для приготовления 200 мл 0,5 M раствора сульфата железа?
 - б) Какой объем 96%-ного раствора серной кислоты (плотность 1,8 г/мл) необходимо взять для приготовления 8,5 л 0,9 н. раствора кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 20 г соляной кислоты. Какой объем 36%-ного раствора соляной кислоты (плотность 1,185 г/мл) нужно взять, чтобы иметь необходимое количество соляной кислоты?
 - г) Определить молярность и молярную концентрацию эквивалента 20%-ного раствора гидроксида натрия (плотность 1,23 г/мл).
 - д) Определить молярность 0,8 н. раствора дихромата калия. Оценить процентную концентрацию этого раствора.
 - е) Какой объем 10%-ного раствора соляной кислоты (плотность 1,049 г/мл) потребуется для нейтрализации 100 мл 2%-ного раствора гидроксида натрия (плотность 1,022 г/мл)? Определите молярную концентрацию полученной соли.
- 2.12. а) Сколько граммов $MgSO_4$ · $6H_2O$ необходимо взять для приготовления 150 мл 0,6 н. раствора хлорида магния?
 - б) Какой объем 50%-ной азотной кислоты (плотность 1,32 г/мл) нужно взять для приготовления 500 мл 1,2 М раствора кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 45 г серной кислоты. Какой объем 90%-ного раствора серной кислоты (плотность 1,8 г/мл) необходимо взять, чтобы иметь нужное количество серной кислоты?
 - г) Определить молярность и молярную концентрацию эквивалента 35%-ной серной кислоты (плотность 1,31 г/мл).

- д) Определить молярную концентрацию эквивалента 8 М раствора гидроксида кальция. Оценить процентную концентрацию этого раствора.
- е) В результате выпаривания 200 мл 0,5 н. раствора сульфата натрия объем раствора уменьшился на 50 мл. Оцените новую молярную концентрацию раствора.
- 2.13. а) Сколько граммов $CaC1_2 \cdot 6H_2O$ необходимо взять для приготовления 150 мл 0,8 н. раствора хлорида кальция?
 - б) Сколько воды необходимо добавить к 200 г 15%-ного раствора сульфата натрия, чтобы получить 5%-ный раствор этой соли?
 - в) По стехиометрическому уравнению для химической реакции необходимо 20 г серной кислоты. Какой объем 50%-ной серной кислоты (плотность 1,4 г/мл) нужно взять, чтобы иметь это количество серной кислоты?
 - г) Рассчитать молярность и молярную концентрацию эквивалента 22%-ной соляной кислоты (плотность 1,16 г/мл).
 - д) Определите молярную концентрацию эквивалента 6 М раствора сульфата алюминия. Оцените процентную концентрацию этой соли.
 - е) Смешали 200 мл 5%-ного раствора соляной кислоты (плотность 1,025 г/мл) и 400 мл 6 н. раствора НСІ. Определите молярность полученного раствора.
- 2.14. а) Сколько граммов $CrC1_3 \cdot 5H_2O$ необходимо взять для приготовления 300 мл 0,3 н. раствора хлорида хрома (III)?
 - б) К 400 мл 0,5 н. раствора хлорида кальция добавили 50 мл воды. Рассчитать новую молярную концентрацию соли.
 - в) По стехиометрическому уравнению для химической реакции необходимо 10 г азотной кислоты. Какой объем 20%-ной азотной кислоты (плотность 1,12 г/мл) нужно взять, чтобы иметь это количество азотной кислоты?
 - г) Рассчитать молярность и молярную концентрацию эквивалента 18%-ной серной кислоты (плотность 1,13 г/мл).
 - д) Определить молярную концентрацию эквивалента 3 М раствора сульфата хрома (III). Оценить процентную концентрацию этой соли.
 - е) Смешали два раствора: 150 мл 2 н. сульфата натрия и 150 мл 10%-

- ного раствора сульфата натрия (плотность 1,1 г/мл). Какова молярная концентрация нового раствора?
- 2.15. а) Сколько граммов $MgSO_4$ · $7H_2O$ необходимо взять для приготовления 150 мл 1,5 н. сульфата магния?
 - б) Какой объем 0,5 М раствора серной кислоты можно приготовить из 15 мл 2,5 М раствора серной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 20 г гидроксида натрия. Какой объем 20%-ного раствора щелочи (плотность 1,23 г/мл) нужно взять для того, чтобы иметь данное количество гидроксида натрия?
 - г) Рассчитать молярность и молярную концентрацию эквивалента 15%-ной азотной кислоты.
 - д) Определить молярную концентрацию эквивалента 0,9 М раствора сульфата калия. Оценить процентную концентрацию этой соли.
 - е) После нагревания 500 мл 0,5 М раствора хлорида железа (III) объем уменьшился на 50 мл. Определить молярную концентрацию эквивалента соли после ее выпаривания.
- 2.16. а) Сколько граммов $CaCI_2 \cdot 6H_2O$ необходимо взять для приготовления 300 мл 0,3 н. раствора хлорида кальция?
 - б) Какой объем 0,1 М раствора ортофосфорной кислоты можно приготовить из 75 мл 0,75 н. раствора?
 - в) По стехиометрическому уравнению для химической реакции необходимо 15 г серной кислоты. Какой объем 75%-ной серной кислоты (плотность 1,68 г/мл) нужно взять, чтобы иметь это количество серной кислоты?
 - г) Определить молярную концентрацию эквивалента и молярность 15%-ной соляной кислоты (плотность 1,075 г/мл).
 - д) Определить молярность 0,75 н. раствора ортофосфорной кислоты. Оценить процентную концентрацию этой кислоты.
 - е) Смешали 250 мл 0,5 н. раствора азотной кислоты и 250 мл 20%-ной азотной кислоты (плотность 1,12 г/мл). Определить молярность полученного раствора.
- 2.17. а) Сколько граммов $Ba(OH)_2 \cdot 8H_2O$ необходимо взять для приготовления 125 мл 0,8 н. раствора гидроксида бария?

- б) Какой объем 60%-ной азотной кислоты (плотность 1,37 г/мл) нужно взять для приготовления 60 мл 0,6 М раствора азотной кислоты?
- в) По стехиометрическому уравнению для химической реакции нужно 42 г серной кислоты. Какой объем 42%-ной серной кислоты (плотность 1,325 г/мл) необходим для того, чтобы иметь это количество серной кислоты?
- г) Рассчитать молярность и молярную концентрацию эквивалента 32%-ного раствора соляной кислоты (плотность 1,165 г/мл).
- д) Определите молярную концентрацию эквивалента 3,2 М раствора гидроксида кальция. Оценить процентную концентрацию этого раствора.
- е) При выпаривании 150 мл 0,6 н. раствора сульфата алюминия объем уменьшился на 30 мл. Какова молярная концентрация раствора после выпаривания?
- 2.18.а) Сколько граммов $CuSO_4 \cdot 5H_2O$ необходимо взять для приготовления 130 мл 1,3 н. раствора сульфата меди?
 - б) Определить молярную концентрацию раствора сульфата натрия, полученного при смешивании 150 мл 0,3 н. сульфата натрия и 150 мл 3 М раствора этой соли.
 - в) По стехиометрическому уравнению для химической реакции необходимо 25 г гидроксида натрия. Какой объем 25%-ного раствора гидроксида натрия (плотность 1,285 г/мл) нужно взять для этой реакции?
 - г) Рассчитать молярность и молярную концентрацию эквивалента 18%-ного раствора серной кислоты (плотность 1,13 г/мл).
 - д) Определить молярную концентрацию эквивалента 1,2 М раствора ортофосфорной кислоты. Оценить процентную концентрацию этого раствора.
 - е) При выпаривании 250 мл 0,6 М раствора фосфата калия его объем уменьшился на 50 мл. Какова молярная концентрация соли после выпаривания?
- 2.19. а) Сколько граммов $ZnSO_4\cdot 7H_2O$ необходимо взять для приготовления 120 мл 0,6 н. раствора сульфата цинка?
 - б) Какой объем 96%-ной серной кислоты (плотность 1,84 г/мл) нужно взять для приготовления 500 мл 0,5 М раствора серной кислоты?

- в) По стехиометрическому уравнению для химической реакции необходимо 36 г азотной кислоты. Какой объем 70%-ной азотной кислоты нужно взять для того, чтобы иметь это количество азотной кислоты?
- г) Рассчитать молярность и молярную концентрацию эквивалента 22%-ного раствора серной кислоты (плотность 1,16 г/мл).
- д) Определить молярную концентрацию эквивалента 6,2 М раствора гидроксида кальция. Оценить процентную концентрацию этого раствора.
- е) Смешали два раствора: 100 мл 0,5 М раствора сульфата алюминия и 450 мл 6,3 н. раствора этой соли. Рассчитать новую молярную концентрацию сульфата алюминия.
- 2.20. а) Сколько граммов $MgSO_4 \cdot 7H_2O$ необходимо взять для приготовления 700 мл 0,7 н. раствора сульфата магния?
 - б) Какой объем 36%-ной соляной кислоты (плотность 1,185 г/мл) нужно взять для приготовления 500 мл 0,5 н. раствора соляной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 40 г серной кислоты. Какой объем 90%-ной серной кислоты (плотность 1,82 г/мл) нужно взять, чтобы иметь это количество серной кислоты?
 - г) Рассчитать молярность и молярную концентрацию эквивалента 30%-ного раствора гидроксида калия (плотность 1,29 г/мл).
 - д) Определить молярную концентрацию эквивалента 5 М раствора хлорида алюминия. Оцените процентную концентрацию этого раствора.
 - е) Смешали 120 мл 30%-ной соляной кислоты (плотность 1,151 г/мл) и 120 мл 0,5 М раствора соляной кислоты. Определить молярную концентрацию соляной кислоты после смешивания растворов.
- 2.21. а) Сколько граммов $MgSO_4$ · H_2O необходимо взять для приготовления 250 мл 2,5 н. раствора сульфата марганца?
 - б) Какой объем 90%-ной азотной кислоты (плотность 1,412 г/мл) нужно взять для приготовления 500 мл 1,5 М раствора азотной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 17 г серной кислоты. Какой объем 52%-ной серной кислоты (плотность 1,42 г/мл) нужно взять, чтобы иметь это количество серной кислоты?

- г) Определить полярность и молярную концентрацию эквивалента 30%-ного раствора гидроксида кадия (плотность 1,36 г/мл).
- д) Какова молярная концентрация эквивалента 1,2 М раствора хлорида цинка? Оценить процентную концентрацию этой соли.
- е) В результате выпаривания 200 мл 0,36 М раствора хлорида кальция удалено 40 мл воды. Определить молярную концентрацию соли после выпаривания.
- 2.22. а) Сколько граммов $Na_2HPO_4\cdot 12H_2O$ необходимо взять для приготовления 300 мл 0,3 н. раствора гидрофосфата натрия?
 - б) Какой объем 25%-ного раствора гидроксида натрия (плотность 1,29 г/мл) нужно взять для приготовления 400 мл 0,6 н. раствора щелочи?
 - в) По стехиометрическому уравнению для химической реакции необходимо 42 г азотной кислоты. Какой объем 65%-ной азотной кислоты (плотность 1,565 г/мл) нужно взять, чтобы иметь это количество кислоты?
 - г) Определить молярность и молярную концентрацию эквивалента 15%-ной серной кислоты (плотность 1,105 г/мл).
 - д) Какова молярность 3,8 н. раствора фосфата натрия? Оцените процентную концентрации этого раствора.
 - е) Смешали 40 мл 20%-ного раствора гидроксида калия (плотность 1,18 г/мл) и 420 мл 1 М раствора гидроксида калия. Какова новая молярная концентрация щелочи?
- 2.23. а) Сколько граммов $CoSO_4 \cdot 7H_2O$ необходимо взять для приготовления 450 мл 0,6 н. раствора сульфата кобальта?
 - б) Какой объем 75%-ной серной кислоты (плотность 1,58 г/мл) и воды нужно ваять для приготовления 300 мл 0,3 М раствора серной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 28 г соляной кислоты. Какой объем 36%-ной соляной кислоты, (плотность 1,182 г/мл) нужно взять, чтобы иметь это количество кислоты?
 - г) Определить молярность и молярную концентрацию эквивалента 16%-ной серной кислоты (плотность 1,098 г/мл).

- д) Какова молярная концентрация эквивалента 1,2 M раствора хлорида железа (II)? Оцените процентную концентрацию соли.
- е) При выпаривании 180 мл 0,6 М раствора сульфата цинка объем его стал 115 мл. Какова молярная концентрация полученной соли?
- 2.24. а) Сколько граммов $SrCI_2 \cdot 6H_2O$ необходимо взять для приготовления 80 мл 2,5 н. раствора хлорида стронция?
 - б) Какой объем 50%-ной азотной кислоты нужно взять для приготовления 800 мл 0,2 М раствора азотной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 25 г гидроксида кальция. Какой объем 2,5 н. раствора гидроксида кальция нужно взять, чтобы иметь это количество щелочи?
 - г) Определить молярность и молярную концентрацию эквивалента 36%-ной серной кислоты (плотность 1,273 г/мл).
 - д) Какова молярность 0,06 н. раствора ортофосфорной кислоты? Оценить процентную концентрацию этого раствора.
 - е) Смешали 25 мл 5 н. раствора соляной кислоты и 175 мл 15%-ного раствора соляной кислоты (плотность 1,092 г/мл). Какова молярная концентрация подученного раствора?
- 2.25. а) Сколько граммов $SrBr_2 \cdot 8H_2O$ нужно взять для приготовления 150 мл 1,5 н. раствора бромида стронция?
 - б) Какой объем 65%-ной азотной кислоты нужно взять для приготовления 450 мл 2,5 М раствора азотной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 12 г серной кислоты. Какой объем 70%-ной серной кислоты (плотность 1,82 г/мл) нужно взять, чтобы иметь это количество серной кислоты?
 - г) Рассчитать молярность и молярную концентрацию эквивалента 10%-ного раствора гидроксида калия (плотность 1,21 г/мл).
 - д) Какова молярная концентрация эквивалента 0,02 М раствора хлорида магния? Оцените процентную концентрацию этого раствора.
 - е) К 200 мл 5 н. раствора сульфата алюминия добавили 800 мл воды. Какова молярная концентрация полученного раствора?
- 2.26. а) Сколько граммов $Na_2SO_4\cdot 7H_2O$ необходимо взять для приготовления 125 мл 0,7 н. раствора сульфита натрия?

- б) Сколько воды надо прибавить к 200 мл 50%-ной азотной кислоты (плотность 1,318 г/мл), чтобы получить 2 н. раствор азотной кислоты?
- в) По стехиометрическому уравнению для химической реакции необходимо 23 г серной кислоты. Какой объем 75%-ной серной кислоты (плотность 1,675 г/мл) нужно взять, чтобы иметь это количество кислоты?
- г) Определить молярность и молярную концентрацию эквивалента 30%-ной соляной кислоты (плотность 1,151 г/мл).
- д) Какова молярность 0,08 н. раствора хлорида магния? Оцените процентную концентрации этой соли.
- е) При выпаривании 500 мл 0,5 M раствора сульфата натрия объем уменьшился на 125 мл. Какова молярная концентрация соли после выпаривания?
- 2.27. а) Сколько граммов $CuSO_4$ · $5H_2O$ необходимо взять для приготовления 160 мл 1,5 н. раствора сульфата меди?
 - б) Какой объем 30%-ного раствора гидроксида натрия (плотность 1,332 г/мл) необходимо взять для приготовления 400 мл 2 н. щелочи?
 - в) По стехиометрическому уравнению для химической реакции необходимо 10 г серной кислоты. Какой объем 72%-ной серной кислоты (плотность 1,645 г/мл) нужно взять, чтобы иметь это количество кислоты?
 - г) Определить молярность и молярную концентрацию эквивалента 7%-ной соляной кислоты (плотность 1,035 г/мл).
 - д) Какова молярность 0,24 н. раствора сульфата железа (II)? Оценить процентную концентрацию этой соли.
 - е) Смешали 100 мл 5 н. раствора сульфата натрия и 160 мл 2,5 М раствора сульфата натрия. Какова молярная концентрация соли после смешивания двух исходных растворов?
- 2.28. а) Сколько граммов $FeSO_4$ · H_2O необходимо взять для приготовления 600 мл 0,6 н. раствора сульфата железа?
 - б) Какой объем 30%-ной серной кислоты нужно взять для приготовления 140 мл 0,2 н. раствора серной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 26 г гидроксида калия. Какой объем 30%-ного раствора гидро-

ксида калия (плотность 1,258 г/мл) нужно взять, чтобы иметь это количество шелочи?

- г) Определить молярность и молярную концентрацию эквивалента 15%-ной азотной кислоты (плотность 1,086 г/мл).
- д) Какова молярная концентрация эквивалента 0,08 М раствора хлорида алюминия? Оценить процентную концентрацию этой соли.
- е) В процессе нагрева 280 мл 2 н. раствора сульфата магния объем уменьшился на 20 %. Какова новая молярная концентрация соли?
- 2.29. a) Сколько граммов BeC1₂·4H₂O необходимо взять для приготовления 130 мл 0,7 н. раствора хлорида бериллия?
 - б) Какой объем 35%-ного раствора гидроксида калия (плотность 1,345 г/мл) нужно взять для приготовления 400 мл 0,4 М раствора гидроксида калия?
 - в) По стехиометрическому уравнению для химической реакции необходимо 11 г азотной кислоты. Какой объем 45%-ной азотной кислоты (плотность 1,285 г/мл) нужно взять для этой реакции?
 - г) Определить молярность и молярную концентрацию эквивалента 12%-ной серной кислоты (плотность 1,084 г/мл).
 - д) Какова молярная концентрация эквивалента 0,082 М раствора хлорида кальция? Оцените процентную концентрацию раствора.
 - е) 150 мл 2 н. раствора сульфата меди разбавили водой до 1 л. Какова молярная концентрация полученного раствора?
- 2.30. а) Сколько граммов $Be(NO_3)_3 \cdot 4H_2O$ необходимо взять для приготовления 40 мл 3 н. раствора нитрата бериллия?
 - б) Какой объем 36%-ной соляной кислоты нужно взять для приготовления 1500 мл 0,5 н. раствора соляной кислоты?
 - в) По стехиометрическому уравнению для химической реакции необходимо 10 г серкой кислоты. Какой объем 40%-ной серной кислоты (плотность 1,306 г/мл) нужно взять, чтобы иметь это количество кислоты?
 - г) Определить молярность и молярную концентрацию эквивалента 22%-ной соляной кислоты (плотность 1,11 г/мл).
 - д) Какова молярная концентрация эквивалента 0,022 М раствора гидроксида кальция? Оценить процентную концентрацию этого раствора.

е) При нагревании 506 мл 1,5 н. раствора сульфата натрия объем уменьшился на 30 %. Какова молярная концентрация раствора после его выпаривания?

Тема 3. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

А. Написать уравнения следующих окислительно-восстановительных реакций, используя метод полуреакций. Определить, какое вещество является окислителем и восстановителем, какое вещество создает среду. Указать степень окисления элемента окислителя и восстановителя, определить, сколько электродов отдает восстановитель и принимает окислитель. Уравнять коэффициенты в уравнениях реакции.

- 3.1. a) $Cu + HNO_{3(pa36.)} =$
 - б) $KCrO_2 + Br_2 + KOH =$
 - B) $KNO_2 + KMnO_4 + H_2SO_4 =$
- 3.2 a) Mg + HNO_{3(pa36.)} =
 - 6) SO_2 + HCIO + H_2O = HCI +
 - B) $KNO_2 + KMnO_4 + H_2O =$
- 3.3. a) $Zn + HNO_{3(o_{4},pa_{3}6.)} =$
 - б) $CrC1_3 + H_2O_2 + NaOH =$
 - B) $PH_3 + K_2Cr_2O_7 + H_2SO_4 = H_3PO_4 +$
- 3.4. a) $Cu + HNO_{3(KOHII.)} =$
 - б) NaCrO₂+ I_2 + NaOH =
 - B) $Al + K_2Cr_2O_7 + H_2SO_4 =$
- 3.5. a) A1 + HNO_{3(pa36.)} =
 - δ) KMnO₄ + KI + H₂SO₄=
 - B) $K_2Cr_2O_7 + K_2SO_3 + H_2SO_4 =$
- $3.6. a) S + HNO_{3(конц.)} = H_2SO_4 +$
 - б) $Mn(OH)_2 + C1_2 + KOH = MnO_2 +$
 - B) $H_2O_2 + K_2Cr_2O_7 =$
- 3.7. a) $P + HNO_{3 \text{ (конц.)}} = H_3PO_4 +$
 - δ) $K_2S + KClO + H_2SO_4 =$
 - B) $Na_2SO_3 + KMnO_4 + KOH =$
- 3.8. a) I_2 + HNO_{3(KOHIL.)} = HIO₃+

б)
$$H_3PO_4 + KMnO_4 + H_2SO_4 =$$

B)
$$C_{\Gamma_2}O_3 + KClO_3 + H_2SO_4 =$$

3.9. a)
$$P + HNO_{3(pa36.)} + H_2O = H_3PO_4 +$$

б)
$$KBr + KBrO_3 + H_2SO_4 =$$

B)
$$H_2O_2 + KMnO_4 + H_2SO_4 =$$

3.10. a)
$$Cu + H_2SO_{4(KOHIL)} =$$

б)
$$Si + NaOH + H_2O = Na_2SiO_3 +$$

3.11. a) Zn
$$(порошок)$$
 + H_2SO_4 =

б)
$$KCrO_2 + H_2O_2 + H_2SO_{4(конц.)} =$$

B)
$$HI + C1_2 + H_2O = HIO_3 +$$

3.12. a)
$$C + H_2SO_{4(KOHIL)} = CO_2 +$$

6)
$$K_2SO_3 + KMnO_4 + H_2O =$$

B)
$$H_2O_2 + KI + H_2SO_{4(KOHIL)} =$$

3.13. a)
$$Zn_{(\Pi ODOIIIOK)} + H_2SO_{4(KOHII.)} =$$

6)
$$K_2CrO_4 + (NH_4)_2S + H_2SO_4 =$$

в)
$$FeSO_4 + HNO_3$$
 (конц.) $+ H_2SO_4 =$

$$δ$$
) Zn+KMnO₄+ H₂SO₄=

B)
$$(NH_4)_2SO_3 + Na_2Cr_2O_7 + H_2SO_4 =$$

б)
$$MnSO_4 + KClO_3 + KOH =$$

в) NaI +PbO₂+
$$H_2SO_4$$
 =

$$3.16. a) Pb + KMnO_4 + H_2SO_4 =$$

$$6) (NH4)2S + K2Cr2O7 + H2O = NH3 +$$

B)
$$K_2SO_3 + KMnO_4 + NaOH =$$

б)
$$HI + H_2SO_{4(конц.)} =$$

B)
$$NaNO_2 + Na_2Cr_2O_7 + H_2SO_4 =$$

$$\delta$$
) MnO₂ + NaI + H₂SO₄ =

$$B) KMnO_4 + HCrO_2 + H_2SO_4 =$$

3.19. a) CuS +
$$HNO_{3(конц.)}$$
 =

б)
$$Na_2S + NaNO_3 + H_2SO_4 =$$

B)
$$MnSO_4 + H_2O + KMnO_4 =$$

3.20. a)
$$As_2O_3 + HNO_3$$
 (KOHIL) $= H_3AsO_4 +$

б)
$$Na_2O_2 + KMnO_4 + H_2SO_4 =$$

$$B)FeCI_3 + HI =$$

3.21. a)
$$Cu_2O + HNO_{3(KOHII.)} =$$

$$δ$$
) FeSO₄ + Br₂ + H₂SO₄ =

B)
$$K_2MnO_4 + Cl_2 =$$

3.22. a)
$$Sn + HNO_{3 \text{ (pa36.)}} =$$

$$\delta$$
) NaNO₃ + KI +H₂SO₄ =

B)
$$MnO_2 + KNO_3 + KOH =$$

3.23. a)
$$Cu_2S + HNO_{3(KOHIL)} =$$

б)
$$MnO_2 + O_2 + KOH =$$

B)
$$PH_3 + KMnO_4 + H_2SO_4 =$$

б)
$$Fe(OH)_2 + CI_2 + NaOH =$$

B) MnSO₄ + +
$$K_2C_{\Gamma_2}O_7$$
+ KOH =

3.25. a)
$$Zn + HNO_{3 \text{ (pa36.)}} =$$

6)
$$KMnO_4 + Cr_2(SO_4)_3 + H_2SO_4 =$$

B)
$$Pt + HNO_3 + HCI = H_2[PtCI_6] +$$

3.26. a) Mo + HNO_{3(конц.)} =
$$H_2$$
MoO₄+

б)
$$Cr_2O_3 + KCIO_3 + H_2SO_4 =$$

B)
$$KI + KNO_3 + CH_3COOH =$$

3.27. a)
$$Sn + H_2SO_{4(KOHIL)} = Sn(SO_4)_2 +$$

$$6) FeSO4 + KMnO4 + H2SO4 =$$

в)
$$KC_{\Gamma}O_2 + PbO_2 + KOH = K_2[Pb(OH)_4] +$$

6)
$$FeSO_4 + K_2Cr_2O_7 + H_2SO_4 =$$

B)
$$Na_2S + C1_2 =$$

б)
$$H_2O_2 + K_2Cr_2O_7 + H_2SO_4 =$$

B)
$$Mn(OH)_2 + C1_2 + KOH =$$

3.30. a)
$$PbS + HNO_{3(KOHIL)} = PbSO_4 +$$

б)
$$KMnO_4 + K_2SO_3 + H_2SO_4 =$$

в)
$$NaNO_2 + Na_2CrO_4 + KOH =$$

- Б. Определить, возможны ли следующие реакции. Если реакция возможна, то написать соответствующее уравнение, используя метод полуреакций. Если невозможна, то объясните, почему.
- $3.31. A1 + KClO_4 + H_2SO_4 =$
- $3.32. \text{ AsH}_3 + \text{HC1O}_3 =$
- $3.33. H_2S + HCIO =$
- $3.34. \text{ NaOCI} + \text{KI} + \text{H}_2\text{SO}_4 =$
- $3.35. \text{ Sb} + \text{KCIO}_4 + \text{H}_2\text{SO}_4 =$
- $3.36. \text{Na}_2\text{SO}_3 + \text{KOCl} =$
- $3.37. \text{ HIO}_3 + \text{H}_2\text{O}_2 =$
- $3.38. \text{ MnSO}_4 + \text{KClO}_3 + \text{KOH} =$
- $3.39. SO_2 + NaJO_3 + H_2O =$
- $3.40. \text{ H}_2\text{SeO}_3 + \text{HCIO}_3 =$
- $3.41. H_2S + NaOCI + H_2SO_4 =$
- 3.42. $NaBr + NaBrO_3 + H_2SO_4 =$
- $3.43. \text{ Na}_2\text{S}_2\text{O}_3 + \text{HOCI} + \text{H}_2\text{O} =$
- $3.44. \text{ SO}_2 + \text{HBrO}_3 + \text{H}_2\text{O} =$
- $3.45. \text{ KNO}_2 + \text{HC1O}_3 =$
- $3.46. \text{ FeCO}_3 + \text{KMnO}_4 + \text{H}_2\text{SO}_4 =$
- $3.47. \text{ MnSO}_4 + \text{Br}_2 + \text{NaOH} =$
- $3.48. \text{ SO}_2 + + \text{ KOH} =$
- $3.49. \text{ Na}_2\text{SeO}_3 + \text{KMnO}_4 + \text{H}_2\text{SO}_4 =$
- $3.50. \text{ MnSO}_4 + \text{Br}_2 + \text{NaOH} =$
- $3.51. H_3PO_4 + KMnO_4 + H_2SO_4 =$
- $3.52. \text{ MnO}_2 + \text{NaNO}_3 + \text{NaOH} =$
- $3.53. \text{ KJ} + \text{MnO}_2 + \text{H}_2\text{SO}_4 = .$
- $3.54. \text{ Na}_2\text{SO}_3 + \text{KMnO}_4 + \text{H}_2\text{SO}_4 =$
- $3.55. \text{ KMnO}_4 + \text{FeSO}_4 + \text{H}_2\text{SO}_4 =$
- $3.56 \text{ KMnO}_4 + \text{H}_2 \text{SO}_4 + \text{KOH} =$
- $3.57. H_2O_2 + KMnO_4 + KOH =$
- $3.58. \text{ KI} + \text{KMnO}_4 + \text{H}_2\text{SO}_4 =$
- $3.59. \text{ Cd} + \text{KMnO}_4 + \text{H}_2\text{SO}_4 =$
- $3.60. \text{ Zn} + \text{KMnO}_4 + \text{H}_2\text{SO}_4 =$

- В. Решить следующие задачи.
- 3.61. Для полного обесцвечивания 20 мл 0,02 М раствора перманганата калия в сернокислой среде потребовался равный объем раствора пероксида водорода. Какова молярная концентрация пероксида водорода? Какой объем кислорода выделится при этом, если температура T = 20 0 C, а давление P = 750 мм рт. ст.?
- 3.62. Какой объем 0,01 н. раствора перманганата калия можно в присутствии серной кислоты восстановить с помощью сероводорода (T = 20 °C, P = 755 мм рт.ст.) объемом 200 мл?
- 3.63. Сколько миллилитров 0,05 н. раствора перманганата калия можно в присутствии серной кислоты восстановить с помощью 200 мл 0,5 М раствора сульфата железа (П)? Сколько сульфата марганца при этом образуется? Какова его молярная концентрация?
- 3.64. Сколько миллилитров 0,25 н. раствора дихромата калия следует прибавить к подкисленному серной кислотой раствору йодита калия для выделения 0,01 эквивалента йода?
- 3.65. Сколько граммов дихромата калия и сколько миллилитров 39%-ного, раствора соляной кислоты (плотность 1,2 г/мл) нужно взять, чтобы с помощью выделившегося хлора окислить 0,1 моль хлорида железа (II) в хлорид железа (III)?
- 3.66. Сколько граммов $FeSO_4 \cdot 7H_2O$ можно окислить в сернокислом растворе при действии 40 мл 0,12 н. раствора перманганата калия? Определить концентрацию образовавшегося сульфата железа (III).
- 3.67. К подкисленному серной кислотой раствору йодита калия добавили 80 мл 0,15 н. раствора перманганата калия. Вычислить массу выделившегося йода.
- 3.68. Сколько миллилитров 0,1 н. раствора нитрата калия можно окислить в присутствии серной кислоты 300 мл 0,05 н. раствора перманганата калия?
- 3.69. Сколько граммов нитрита калия можно окислить в присутствии серной кислоты 30 мл 0,09 н. раствора перманганата калия?
- 3.70. Каким объемом 1 н. раствора хромата калия можно заменить в реакции окисления 1 л 5%-ного раствора той же соли (плотность 1,04 г/мл)?

- 3.71. Сколько молей сульфата железа (П) вступит в реакцию с 50 мл 0,2 М раствора перманганата калия в сернокислой среде?
- 3.72. Какой объем 34%-ной соляной кислоты (плотность 1,173 г/мл) вступит в реакция с 20 мл 0,5 н. раствора перманганата калия? Какой объем займет газ, выделившийся при этом (T = 18 0 C, P = 740 мм рт. ст.)?
- 3.73. Сколько миллилитров 1 н. раствора дихромата калия вступит в реакцию с 25 мл 0,5 М раствора сульфита натрия в сернокислой среде?
- 3.74. Какой объем займет газ при температуре 17 °C и давлении 750 мм рт.ст., полученный при взаимодействии диоксида марганца с 20 мл 32%-ной соляной кислотой (плотность 1,163 г/мл)?
- 3.75. Определить молярную концентрацию раствора сульфида натрия, если 25 мл его раствора прореагировало с 25 мл 0,2 н. раствора дихромата натрия в сернокислой среде.
- 3.76. Сколько эквивалентов бромной воды нужно взять для окисления 50 мл 0,6 н. раствора сульфата марганца (II) в щелочной среде (КОН)?
- 3.77. Какой объем диоксида серы необходимо взять для окислительновосстановительного процесса с 20 мл 1,5 М раствора йодита натрия в нейтральной среде (воде)?
- 3.78. Сколько эквивалентов алюминия как восстановителя необходимо взять для реакции с 50 мл 2 н. раствора дихромата калия в сернокислой среде?
- 3.79. Какой объем 10%-ного раствора пероксида водорода необходимо взять для окисления 25 мл 0,5 н. раствора хлорида хрома (III) в щелочной среде?
- 3.80. Для окислительно-восстановительной реакции с 50 мл 0,2 н. раствора перманганата калия в сернокислой среде израсходовано 70 мл раствора иодита калия. Определить его молярную концентрацию.
- 3.81. При взаимодействии магния с 70%-ной азотной кислотой выделялось 400 мл диоксида азота при $T = 20 \, ^{\circ}\text{C}$ и $P = 750 \, \text{мм}$ рт. ст. Определить объем израсходованной азотной кислоты.
- 3.82. Какой объем 0,25 н. раствора дихромата калия необходимо взять для реакции с 40 мл 0,5 М раствора хлорида олова (II) в сернокислой среде?

- 3.83. Рассчитать объем 0,3 М раствора перманганата калия, необходимый для окисления 25 г алюминия в сернокислой среде.
- 3.84. При восстановлении 100 мл перманганата калия раствором сульфита натрия в сернокислой среде образовалось 0,5 эквивалента сульфата марганца (П). Определить исходную молярную концентрацию перманганата калия.
- 3.85. В процессе окисления 500 мл раствора сульфида калия в сернокислой среде раствором гипохлорита натрия выделилось 2 эквивалента серы. Определить исходную молярную концентрацию сильфида калия. Какой объем гипохлорита натрия израсходован, если его концентрация была 2 М?
- 3.86. Смешали 500 мл 0,5 М раствора сульфита калия с 500 мл дихромата натрия и добавили серную кислоту. В результате окислительновосстановительной реакции образовалось 0,5 эквивалента сульфата хрома. Определить исходную молярную концентрацию дихромата натрия.
- 3.87. Добавлением 50 мл хлорида олова (II) к 50 мл перманганата калия раствор последнего обесцветился в солянокислой среде. Определить молярную концентрацию исходного раствора перманганата калия, если концентрация хлорида олова (II) составляла 0,5 моль/л.
- 3.88. Смешали равные объемы бромида натрия и бромата натрия. К смеси добавили избыточное количество серной кислоты. Определить молярную концентрацию исходного раствора бромида натрия, если концентрация бромата натрия составляла 0,2 моль/л.
- 3.89. Как известно, при взаимодействии магния с концентрированной азотной кислотой выделяется бурый газ. Рассчитать объем израсходованной 80%-ной азотной кислоты, если в результате реакции образовалось 0,5 моля бурого газа.
- 3.90. При взаимодействии концентрированной азотной кислоты с оксидом железа (II) образовалось 0,3 моль нитрата железа (II). Определить, сколько граммов оксида железа (II) и сколько миллилитров 80%-ной азотной кислоты израсходовано?

Тема 4. СТРОЕНИЕ АТОМА

Для приведенных ниже элементов:

- а) написать электронную формулу атома;
- б) распределить по квантовым ячейкам электроны двух последних уровней атома, соблюдая принцип Паули и правило Гука;
- в) определить высшую валентность элемента и указать, на каких полуровнях находятся валентные электроны;
- г) написать значения четырех квантовых чисел для всех валентных электронов атома;
- д) охарактеризовать основные свойства элемента, используя его электронную формулу.

4.1. Титан	4.8. Медь
4.2. Ванадий	4.9. Цинк
4.3. Хром	4.10. Галий
4.4. Марганец	4.11. Германий
4.5. Железо	4.12. Мышьяк
4.6. Кобольт	4.13. Селен
4.7. Никель	4.14. Бром
4.15. Цирконий	4.23. Золото
4.16. Ниобий	4.24. Ртуть
4.17. Молибден	4.25. Свинец
4.18. Серебро	4.26. Висмут
4.19. Кадмий	4.27. Гафний
4.20. Индий	4.28. Вольфрам
4.21. Олово	4.29. Теллур
4.22. Сурьма	4.30. Йод

Тема 5. ХИМИЧЕСКАЯ СВЯЗЬ

- 5.1. а) Определить число связей в молекулах N_2 и HNO_3 . Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы NH₃? Изобразить пространственную конфигурацию данной молекулы.

- в) В какой из перечисленных молекул: CF_4 , PF_5 , SiF_4 , SF_6 связь элемент фтор наиболее полярна? Почему?
- Γ) Определите число связей в молекуле H_2S . Показать рисунком эти связи. Дать характеристику имеющихся связей.
- д) Составить энергетическую диаграмму (по методу МО) частицы NO⁺. Написать ее электронную формулу. Определить кратность связей, магнитные свойства и оценить ее прочность.
- 5.2. а) Определить число связей в молекулах H_2SO_4 и O_2 . Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы H₂O? Изобразить пространственную конфигурацию молекулы.
 - в) В какой из перечисленных молекул: PCl_3 , NCI_3 , $SbCl_3$, $AsCl_3$ связь элемент хлор наиболее полярна? Почему?
 - г) Определите число σ и π -связей в молекуле NO_2 . Показать рисунком эти связи. Дать характеристику каждой связи.
 - д) Составить энергетическую диаграмму (по методу MO) частицы NO_2 . Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.3. а) Определить число связей в молекулах H_2S , H_2SO_3 . Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы CH₃C1? Изобразить пространственную конфигурацию молекулы.
 - в) В какой из перечисленных молекул: PbS, CaS, H_2S , CS_2 связь элемент сера характеризуется большей степенью ионности? Почему?
 - г) Определить число связей в молекуле СО. Показать рисунком эти связи. Дать характеристику связей.
 - д) Составьте энергетическую диаграмму (па методу MO) частицы ${\rm O_2}^+$. Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.4. a) Определить число связей в молекуле NaHSO₄. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы BaC1₂? Изобразить пространственную конфигурации молекулы.
 - в) В какой из перечисленных молекул: L1CI, PCI₃, A1C1₃, RbCI связь элемент хлор имеет наибольшую степень полярности? Почему?

- г) Определите число σ и π -связей в молекулах: H_2O , H_2S , PH_3 . Показать рисунком эти связи.
- д) Составить энергетическую диаграмму (по методу MO) частицы ${\rm O_2}^+$ Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.5. a) Определите число связей в молекулах NO и HNO₂. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы H_2S ? Изобразите пространственную конфигурация данной молекулы.
 - в) В какой из перечисленных молекул: NH_3 , SbH_3 , AsH_3 , PH_3 связь элемент водород наиболее полярна? Почему?
 - г) В каких из перечисленных молекул: O_2 , C_2H_4 , N_2 , NH_3 имеются только σ -связи, а π -связи отсутствуют? Показать рисунком все связи.
 - д) Составить энергетическую диаграмму частицы CO^+ (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.6. a) Определить число связей в молекуле Na₂HPO₄. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы CC1₄ ? Показать на рисунке пространственную конфигураций данной молекулы.
 - в) В какой из перечисленных молекул: CH_4 , HF, NH_3 , H_2O связь элемент водород обладает наименьшей полярностью? Почему?
 - г) В какой из перечисленных молекул: O_2 , C_2H_4 , N_2 , NH_3 содержатся π -связи. Показать их на рисунке.
 - д) Составить энергетическую диаграмму частицы СО (по методу МО). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.7. а) Определить число связей в молекуле КС1О₃. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы РН₃ ? Показать на рисунке пространственную конфигурацию данной молекулы.
 - в) В какой из перечисленных молекул: $SrC1_2$, BCl_3 . $A1Cl_3$, $SiC1_6$ связь элемент хлор обладает наибольшей степенью полярности? Почему?

- г) В каких из перечисленных молекул: $BC1_3$, H_2S , NH_3 , I_2 имеются σ -связи, образованные перекрыванием только р-орбиталей? Показать на рисунке эти связи.
- д) Составить энергетическую диаграмму частицы H_2^+ (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.8. а) Определить число связей в молекуле H_3PO_4 . Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы ZnCl₂? Показать на рисунке пространственную конфигурацию данной молекулы.
 - в) В какой из перечисленных молекул: NH₃, SbH₃, AsH₃, PH₃ связь элемент водород обладает наибольшей степенью полярности? Почему?
 - г) В каких из перечисленных молекул: $C1_2$, C_2H_2 , N_2 , CH_4 имеются π -связи? Изобразить эти связи на рисунке.
 - д) Составить энергетическую диаграмму частицы F_2^+ (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.9. a) Определить число связей в молекуле KIO₃. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы СО₂? Изобразить пространственную конфигурацию данной молекулы.
 - в) В какой из перечисленных молекул: PBr_3 , PCl_3 , PF_3 , PI_3 связь фосфор галоген обладает наибольшей степенью полярности? Почему?
 - г) В какой из перечисленных молекул: I_2 , C_2H_2 . N_2 , CH_4 –отсутствует π -связь?
 - д) Составить энергетическую диаграмму частицы CN⁻ (по методу MO). Написать электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.10. a) Определить число связей в молекуле NaHCO₃. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы H₂Se? Изобразить пространственную конфигурацию данной молекулы.
 - в) В какой из перечисленных молекул: $C1_2$, H_20 , $SbC1_3$, NCI_3 связь

- между элементами обладает большей степенью полярности? Почему?
- г) Определите, в каких из перечисленных молекул: Cl_2 , NO_2 , O_2 , H_2O имеется π -связь. Показать рисунком все связи.
- д) Составить энергетическую диаграмму молекулы BH_3 (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.11. а) Определить число связей в молекулах NH_3 , N_2O_5 . Дать характеристику каждой связи.
 - б) Приведите пример соединений, в которых имелся бы следующий тип гибридизации: sp-, sp^2 -, sp^2 -. Изобразите пространственную конфигурацию каждой приведенной молекулы?
 - в) В какой из перечисленных молекул: Na_2O , SO_3 , SiO_2 , Al_2O_3 связь элемент кислород характеризуется большей степенью ионности? Почему?
 - г) Определите, в каких из перечисленных молекул: H_2Se , NO, O_2 , H_2O отсутствует π -связь. Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы CH₄ (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.12. a) Определить число связей в молекуле КМпО₄. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы NF₃ ? Изобразить пространственную конфигурацию данной молекулы.
 - в) В какой из перечисленных молекул: B_2O_3 , $A1_2O_3$, HgO, CaO-связь элемент кислород обладает большей степенью полярности? Почему?
 - г) Определите, в каких из перечисленных молекул: H_2Se , NO, O_2 , H_2O содержатся σ и π -связи. Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы NH_3 (по методу MO). Написать электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.13. а) Определить число связей в молекуле $K_2Cr_2O_7$. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы BF₃? Изобразить пространственную конфигурацию данной молекулы.

- в) В какой из перечисленных молекул: PbO_2 , CO_2 , SiO_2 , SnO_2 связь элемент кислород обладает наибольшей степенью полярности? Почему?
- г) В каких из перечисленных молекул: B_{Γ_2} , $C1_2$, N_2 , NH_3 отсутствуют π -связи? Показать на рисунке все связи.
- д) Составить энергетическую диаграмму частицы ${\rm CH_3}^+$ (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.14.a) Определить число связей в молекуле CuHSO₄. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы SiH₄ ? Изобразите пространственную конфигурацию данной молекулы.
 - в) В какой из перечисленных молекул: BeF_2 , $MgC1_2$, $CaBr_2$, SrI_2 связь металл галоген обладает большей степенью полярности? Почему?
 - г) В каких из перечисленных молекул: BH_3 , NH_3 , CH_4 , NO имеет место sp^3 -гибридизация? Показать на рисунке все связи.
 - д) Составить энергетическую диаграмму частицы ${\rm CH_2}^{2^+}$ (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.15. a) Определить число связей в молекуле K₂CrO₄. Дать характеристику каждой связи.
 - б) В каких из перечисленных молекул: BH_3 , NH_3 , CH_4 , NO имеет место sp^3 -гибридизация? Изобразить пространственную конфигурацию данных молекул.
 - в) Существует ли среди приведенных галогенидов алюминия AlF_3 , $AlC1_3$, $A1Br_3$ хотя бы одно соединение с ионной химической связью? Ответ обоснуйте.
 - г) Определите число σ и π -связей в следующих молекулах MgC1₂, H₂S, N₂, BF₃. Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулах PH₃ (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.16. а) Определить число связей в молекуле КНСО₃. Дать характеристику каждой связи.

- б) Каков тип гибридизации в молекуле CF₄? Нарисовать пространственную конфигурацию данной молекулы.
- в) Можно ли определить, в какой из перечисленных молекул: H_2S , H_2O , H_2Te , H_2Se- связь элемент водород имеет наибольшей дипольный момент? Ответ обосновать.
- г) В каких из перечисленных молекул: I_2 , C_2H_2 , H_2O , N_2 имеется π -связь? Показать на рисунке эти связи.
- д) Составить энергетическую диаграмму молекулы $CaC1_2$ (методом MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить ее прочность.
- 5.17. a) Определить число связей в молекуле NaBO₂. Дать характеристику каждой связи.
 - б) Какова геометрическая форма молекулы SbH₃? Нарисовать пространственную конфигурацию данной молекулы.
 - в) В какой из приведенных молекул: MgI_2 , CaI_2 , SrI_2 , BaI_2 связь металл-йод обладает наибольшей степенью полярности? Почему?
 - г) Определить число σ и π -связей в молекулах CH_4 , C_2H_4 , C_2P_2 . Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы CO_2 (по методу MO). Написать ее электронную формулу. Определить кратность связи, магнитные свойства и оценить её прочность.
- 5.18. а) Определить число связей в молекулах H_2S , SO_2 . Дать характеристику каждой связи.
 - б) Во всех ли перечисленных молекулах: SbF_3 , AsF_3 , NF_3 , PF_3 одинаковая геометрическая конфигурация молекул? Ответ обосновать. Нарисовать пространственную конфигурацию данных молекул.
 - в) Какие из приведенных молекул: HC1, H₂O, CO₂, HF имеют дипольный момент, равный нулю? Почему?
 - г) В каких из перечисленных молекул: N_2 , CH_4 , O_2 , C_2H_4 , имеются σ связи и нет π -связи? Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы CS_2 (по методу MO). Написать ее электронную формулу, определить кратность связи, магнитные свойства и оценить ее прочность.

- 5.19. а) Определить число связей в молекуле $Mg(NO_3)_2$. Дать характеристику каждой связи.
 - б) Определить тип гибридизации азота в ионе NH_4^+ . Какова геометрическая конфигурация этого иона? Нарисовать пространственную конфигурацию данного иона.
 - в) В какой из перечисленных молекул: B_2O_3 , $A1_2O_3$, La_2O_3 , Ga_2O_3 связь элемент кислород обладает наибольшей степенью полярности? Почему?
 - Γ) Могут ли существовать в молекулах одни только π -связи? Ответ обосновать.
 - д) Составить энергетическую диаграмму молекулы CO_2 (по методу MO). Написать ее электронную формулу, определить кратность связи, ее прочность и магнитные свойства.
- 5.20. a) Определить число связей в молекуле Li₃PO₄. Дать характеристику каждой связи.
 - б) Какова геометрическая структура молекулы BC1₃? Нарисовать пространственную конфигурацию данной молекулы.
 - в) Определить, в какой из перечисленных молекул: $LaCl_3$, BCl_3 , $InCl_3$, $A1Cl_3$ связь элемент-хлор обладает наименее выраженной степенью полярности. Почему?
 - г) Определить все виды химической связи (ионная, ковалентная, донорно-акцепторная) в молекулах [$Cu(NH_3)_4$](NO_3)₂, Na_2 [PtF_6]. Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы N_2O (по методу MO). Написать ее электронную формулу, определить кратность связи, ее прочность и магнитные свойства.
- 5.21. a) Определить число связей в молекуле NaClO₄. Дать характеристику каждой связи.
 - б) Какова геометрическая конфигурация молекулы BeBr₂? Нарисовать ее пространственную конфигурацию.
 - в) Определите, в какой из перечисленных молекул: LiF, NaC1, КВг, RbJ наиболее ярко выражен ионный характер связи. Почему?
 - Γ) Как известно, молекулы воды способны образовывать водородную связь. Почему? Показать на рисунке эту связь. Обосновать, будут ли образовывать водородную связь молекулы H_2 Te.

- д) Составить энергетическую диаграмму частицы C_2^+ (по методу МО). Написать ее электронную формулу. Определить кратность связи. магнитные свойства, оценить ее прочность.
- 5.22. а) Определить число связей в молекуле $CuSO_4$. Дать характеристику каждой связи.
 - б) Определить геометрическую конфигурацию молекулы PF₃. Нарисовать пространственную конфигурация данной молекулы.
 - в) Как известно, ионная связь может образовываться между щелочными металлами и галогенами. Определить, во всех ли галогенидах лития: L1F, LiC1, LiBr, LiI, LiAt имеет место ионная связь? Ответ обосновать.
 - г) Имеются ли в перечисленных молекулах: H_2O , CO, NO, $O_2 \pi$ -связи? Ответ обосновать. Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму частицы Ne_2^+ (по методу MO). Написать ее электронную формулу. Определить кратность связи, ее прочность и магнитные свойства.
- 5.23. a) Определить число связей в молекуле $Ca(HCO_3)_2$. Дать характеристику каждой связи.
 - б) Привести по два примера, в которых реализуется sp^2 -, p^2 -, sp^3 -, p^3 гибридизация. Изобразить геометрическую структуру приведенных молекул.
 - в) Имеется ли ионная связь в следующих молекулах: LiI, NaI, KI, RbI? Ответ обосновать.
 - г) Какие из приведенных молекул, содержащих водород HJ, H₂, HF. NH_3 , могут образовывать водородную связь? Почему? Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы Ne_2 (по методу MO). Написать электронную формулу молекулы. Определить кратность связи, прочность и магнитные свойства.
- 5.24. а) Определить число связей в молекуле Na_2HPO_4 . Дать характеристику каждой связи.
 - б) Какова геометрическая конфигурация молекулы SiF₄? Нарисовать пространственную конфигурацию данной молекулы.
 - в) В какой из приведенных молекул: $SiC1_4$, $A1C1_3$, CCl_4 . $GeC1_3$ связь элемент галоген имеет наиболее выраженный полярный характер?

- г) Определить число σ -связей в молекулах $C1_2$, CH_4 , $A1C1_3$. Показать на рисунке эти связи.
- д) Составить энергетическую диаграмму молекулы SiH_4 (по методу MO). Написать электронную формулу молекулы. Определить кратность связи, ее прочность и магнитные свойства.
- 5.25. а) Определить число связей в молекуле $KClO_2$. Дать характеристику каждой связи.
 - б) Какова геометрическая структура молекулы CaC1₂? Нарисовать пространственную конфигурацию данной молекулы.
 - в) Определить, в какой молекуле: LiF или CsAt более ионный характер связи. Ответ обосновать.
 - г) Определить число связей в следующих молекулах: I_2 , AlI_3 , HCN. Показать на рисунке эти связи. Дать характеристику каждой связи.
 - д) Составить энергетическую диаграмму частицы NH_4^+ (по методу MO). Написать электронную формулу частицы. Определить кратность связи, ее прочность и магнитные свойства.
- 5.26. а) Определить число связей в молекуле НС1О. Дать характеристику каждой связи.
 - б) Какова геометрическая структура иона PH_4^+ ? Нарисовать пространственную конфигурацию данного иона.
 - в) Некоторые молекулы, имевшие полярные связи, в целом являются неполярными. Почему? Ответ обосновать. Привести примеры таких молекул.
 - Γ) Определить число связей в молекулах KF, SiF₄, OF₂. Показать на рисунке эти связи. Дать характеристику каждой связи.
 - д) Составить энергетическую диаграмму частицы BH_4^- (по методу MO). Написать электронную формулу частицы. Определить кратность связи, ее прочность и магнитные свойства.
- 5.27. a) Определите число связей в молекуле CH₃COOH. Дать характеристику каждой связи.
 - б) Каков тип гибридизации в молекуле BF_3 ? Изобразить геометрическую структуру данной молекулы.
 - в) В какой из приведенных молекул: $BeC1_2$, MgF_2 , $CaBr_2$, SrI_2 связь элемент галоген является наиболее полярной? Почему?

- г) В какой из приведенных молекул: O_2 , N_2 , Cl_2 , имеется больше π -связей? Ответ обосновать. Показать на рисунке эти связи.
- д) Составить энергетическую диаграмму частицы BH_3 (по методу MO). Написать электронную формулу частицы. Определить кратность связи, ее прочность и магнитные свойства.
- 5.28. а) Определить число связей в молекуле K_2SiO_3 . Дать характеристику каждой связи.
 - б) Какова геометрическая структура иона ${\rm CO_2}^{2-}$, каков тип гибридизации углерода в этом ионе? Ответ обосновать. Нарисовать пространственную конфигурацию этого иона.
 - в) Ковалентный или ионный тип связи характерен для следующих соединениях NaI, SO₂, KF, CO₂ ? Ответ обосновать.
 - г) Одинаковое ли число σ -, π связей в молекулах HC1, Cl₂, O₂, N₂? По- казать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы H_2S (по методу MO). Написать электронную формулу. Определить кратность связи, её прочность и магнитные свойства.
- 5.29. a) Определить число связей в молекуле HPO₃. Дать характеристику каждой связи.
 - б) Какова геометрическая конфигурация молекулы SrC1₂? Нарисовать пространственную конфигурацию данной молекулы.
 - в) Почему молекулы I_2 и $C1_2$ не полярны, а молекула, IC1, состоящая из йода и хлора, полярна? Ответ обосновать.
 - г) Определить число σ -, π связей в молекулах C_2H_6 , C_2H_4 , C_2H_2 , H_2 . Показать на рисунке эти связи.
 - д) Составить энергетическую диаграмму молекулы Si_2 (по методу MO). Написать ее электронную формулу. Определить кратность связи, ее прочность и магнитные свойства.
- 5.30. а) Определить число связей в молекуле $Al_2(SO_4)_3$. Дать характеристику каждой связи.
 - б) Какова геометрическая конфигурация молекулы GeCl₄? Нарисовать пространственную конфигурацию данной молекулы.
 - в) Одинакова ли степень полярности связи элемент водород в следующих однотипных соединениях: NH_3 , PH_3 , AsH_3 , SbH_3 ? Ответ обосновать.

- г) Объяснить, почему при растворении НС1 в воде образуются ионы, хотя связь в молекуле не ионная.
- д) Составить энергетическую диаграмму частицы Si_2^+ , (по методу MO). Написать электронную формулу частицы. Определить кратность связи, ее прочность и магнитные свойства.

Тема 6. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

В задании под пунктом "а" необходимо:

- определить валентность комплексообразователя и его координационное число;
 - определить все виды химической связи в комплексных соединениях;
- определить тип гибридизации валентных орбиталей и пространственную структуру комплексов;
 - назвать комплексные соединения;
 - написать выражение для константы нестойкости комплексов;
 - рассмотреть комплексы с позиций метода молекулярных орбиталей.

В задании под пунктом "б" решить задачу и дать характеристику содержащемуся в ней комплексу.

- 6.1. a) $K[Pt(CN)_4]$; $[Cr(NH_3)_3]Cl_2$.
 - б) Вычислить концентрацию ионов кадмия в 0,2 M растворе K_2 [Cd(CN)₄], содержащем кроме комплекса еще 0,02 моля KCN в литре раствора. Константа нестойкости комплексного иона составляет $7.8 \cdot 10^{-20}$.
- 6.2. a) $K_3[IBr_6]$; $[Pt(NH_3)_4]Cl_2$.
 - б) Вычислить концентрацию ионов серебра в 0,1 M растворе $K[Ag(CN)_2]$, содержавшем кроме комплекса еще 0,01 моля KCN в литре раствора. Константа нестойкости комплексного иона составляет $1,4\cdot 10^{-20}$.
- 6.3. a) $K_2[PtCl_4]$; $[Fe(H_2O)_6](C10_4)_2$.
 - б) Определить, сколько граммов серебра содержится в виде ионов в 0,5 л 0,2 M раствора $Na_3[Ag(S_2O_3)_2]$, содержащем кроме комплекса еще 25 г $Na_2S_2O_3\cdot 5H_2O$. Константа нестойкости комплекса составляет $3.5\cdot 10^{-14}$.

- 6.4. a) K₂[PtCl₆]; [Co(NH₃)₅Cl]SO₄.
 - б) Определить концентрацию ионов серебра в 0,04 M растворе $[Ag(NH_3)_2]NO_3$, содержащем кроме комплекса еще 0,4 моля аммиака в литре раствора. Константа нестойкости комплекса составляет $5,7\cdot10^{-8}$.
- 6.5. a) $K_3[Fe(H_2O)(CN)_5]$; $[Pt(NH_3)_6]Br_2$.
 - б) Определить концентрацию ионов серебра в 0,1 M растворе $K_2[Ag(CN)_3]$, содержащем кроме комплекса еще 0,1 моля KCN в литре раствора. Константа нестойкости комплексного иона составляет $2.8\cdot10^{-21}$.
- 6.6. a) $K_4[RuCl_6]$; $[Pt(NH_3)_6]Br_2$.
 - б) Вычислить, сколько потребуется 0,1 н. раствора $AgNO_3$ для осаждения ионов Cl^- из 25 мл 0,2 М раствора $[Cr(H_2O)_5C1]C1_2$.
- 6.7. a) $K_4[Fe(CN)_6]$; $[Pt(NH_3)_2Cl_4]$.
 - б) При взаимодействии 1 г смеси NaCl и KC1 с раствором $H_2[PtCl_6]$ образовалось 1,5 г малорастворимой соли $K_2[PtCl_6]$. Вычислить процентное содержание KC1 в смеси.
- 6.8. a) K₂[PdCl₄]; [Ru(NH₃)₅Cl]Cl.
 - б) Определить концентрацию ионов ртути в 0,02 M растворе $K_2[HgI_4]$, содержащем кроме комплекса еще 0,02 моля KI в литре раствора. Константа нестойкости комплексного иона составляет $1.5 \cdot 10^{-30}$.
- 6.9. a) $K_2[PdBr_4]$; $[Os(NH_3)_4Cl_2]$.
 - б) Определить концентрацию ионов ртути в 0,01 M растворе $K_2[HgBr_4]$, содержащем кроме комплекса еще 0,01 моля КВг в литре раствора. Константа нестойкости комплексного иона составляет $1,0\cdot10^{-21}$.
- 6.10.a) $K_2[Pd(CN)_4]$; $[Pt(NH_3)_4Cl_2]$.
 - б) Определить концентрацию ионов ртути в 0.5 М растворе $Na_2[HgCl_4]$, содержащем кроме комплекса еще 0.1 моля NaCI в литре раствора. Константа нестойкости комплексного иона составляет $8.5 \cdot 10^{-16}$.
- $6.11.\ a)\ K_2[Pd(CNS)_4];\ [Pd(NH_3)_2Cl_2].$
 - б) Определить концентрацию ионов меди в 0.02 М растворе $[Cu(NH_3)_4]SO_4$, содержащем кроме комплекса еще 0.01 моля аммиака в литре раствора. Константа нестойкости комплексного иона составляет $2.1\cdot10^{-8}$.

6.12. a) $Na_2[Ti(OH)_4]$; $[Mg(H_2O)_6](NO_3)_2$.

б) Определить концентрацию ионов кадмия в 0,05 M растворе $[Cd(NH_3)_4]Cl_2$, содержащем кроме комплекса еще 0,05 моля аммиака в литре раствора. Константа нестойкости комплексного иона составляет 7,6· 10^{-8} .

6.13. a) $K[BCl_4]$; $[Pd(NH_3)_4Cl_2]$.

б) Определить концентрацию ионов ртути в 0,08 M растворе $Na_2[Hg(CN_4)]$, содержащем кроме комплекса ещё 0,08 моля NaCN в литре раствора. Константа нестойкости комплексного иона составляет $4,0\cdot 10^{-42}$.

6.14. a) $Na[Al(OH)_4]$; $[Pt(NH_3)_2(H_2O)_2](NO_3)_2$.

б) Определить концентрацию ионов кадмия в 0,6 M растворе $Na_2[Cd(CN)_4]$, содержащем кроме комплекса ещё 0,1 моля NaCN в литре раствора. Константа нестойкости комплексного иона составляет $7.8\cdot 10^{-18}$.

6.15. a) $Cs_3[A1(OH)_6]$; $[Pt(H_2O_2)Cl_2]$.

б) Определять концентрацию ионов меди в 0,05 M растворе $Na_2[Cu(CN)_4]$, содержащем кроме комплекса еще 0,5 моля NaCN в литре раствора. Константа нестойкости комплексного иона составляет $5.0\cdot10^{-31}$.

6.16. a) $H[BF_4]$; $[Zn(NH_3)_4](OH)_2$.

б) Определить концентрацию ионов серебра в 0,1 М растворе $[Ag(NH_3)_2]NO_3$, содержащем кроме комплекса еще 0,1 моля аммиака в литре раствора. Константа нестойкости комплекса составляет $9,3\cdot10^{-8}$.

6.17.a) K₂[PtNO₂BrCI₂]; [Co(NH₃)₄]Cl₃.

б) Определить концентрацию ионов серебра в 0,5 M растворе $Na[Ag(NO_2)_2]$, содержащем кроме комплекса еще 0,1 моля $NaNO_2$ в литре раствора. Константа нестойкости комплексного иона составляет $1.8\cdot10^{-3}$.

$6.18.\ a)\ K_2[Pt(NO_2)_4];\ [Co(NH_3)_4SO_4]Cl;$

б) Определить концентрацию ионов серебра в 0,5 M растворе $Na_2[Ag(S_2O_3)_2]$, содержащем кроме комплекса еще 0,2 моля $Na_2S_2O_3$ в литре раствора. Константа нестойкости комплексного иона составляет 1,1·10⁻¹³.

- 6.19.a) $K_2[Pt(CNS)_2(NO_2)_2]$; $[Cu(NH_3)_2]Cl$.
 - б) Определить концентрацию ионов кадмия в 0,05 M растворе $K_2[CdI_4]$, содержащем кроме комплекса еще 0,05 моля KI в литре раствора. Константа нестойкости комплексного иона составляет $8,0\cdot10^{-8}$.
- $6.20.a) K_2[Cd(CN)_4]; [Co(NH_3)_5C1)C1_2.$
 - б) Определить концентрацию ионов цинка в 0.8 М растворе $[Zn(NH_3)_4]SO_4$, содержащем кроме комплекса еще 0.1 моля аммиака в литре раствора. Константа нестойкости комплекса составляет $3.5 \cdot 10^{-10}$.
- 6.21. a) $Na_2[Zn(OH)_4]$; $[Ag(NH_3)_2]NO_3$.
 - б) Определить концентрацию ионов серебра в 0,2 M растворе $K[Ag(CNS)_2]$, содержащем кроме комплекса еще 0,1 моля KCNS в литре раствора. Константа нестойкости комплексного иона составляет $2.0 \cdot 10^{-11}$.
- 6.22. a) $K_2[Pt(NO_2)_2(OH)_2]$; $[Au(H_2O)Cl_3]$.
 - б) Определить концентрацию ионов серебра в 0,4 M растворе $K_3[Ag(SO_3)_2]$, содержащем кроме комплекса еще 0,2 моля K_2SO_3 в литре раствора. Константа нестойкости комплексного иона составляет $2,1\cdot 10^{-9}$.
- 6.23. a) $K_2[Co(NO_2)_6]$; $[Au(H_2O)Cl_3]$.
 - б) Определить концентрацию ионов свинца в 0,5 M растворе $K_2[PbI_4]$, содержащем кроме комплекса еще 0,2 моля KI в литре раствора. Константа нестойкости комплексного иона составляет $1,2\cdot 10^{-4}$.
- 6.24. a) $K_2[Ag(CN)_3]$; $[Ni(NH_3)_2(H_2O)_2](NO_3)_2$.
 - б) Определить концентрацию ионов платины в 0,1 M растворе $K_2[PtCl_4]$, содержащем кроме комплекса еще 0,01 моля КС1 в литре раствора. Константа нестойкости комплексного иона составляет $1,0\cdot10^{-16}$.
- 6.25. a) $K[Au(OH)_4]$; $[Co(NH_3)_4]Cl_3$.
 - б) Определить концентрацию ионов железа в 0,3 M растворе $Na_2[Fe(CN)_6]$, содержащем кроме комплекса еще 0,1 моля NaCN в литре раствора. Константа нестойкости комплексного иона составляет $1.3\cdot10^{-37}$.
- 6.26. a) $K_2[Ni(CN)_4]$; $[Zn(H_2O)_4](NO_3)_2$.

- б) Определить концентрацию ионов железа в 0,6 M растворе $Na_3[Fe(CN)_6]$, содержащем кроме комплекса еще 0,2 моля NaCN в литре раствора. Константа нестойкости комплексного иона составляет $1,3\cdot10^{-44}$.
- 6.27.a) K[PtNH₃Cl₃]; [Co(NH₃)₆]Cl₃.
 - б) Определить концентрацию ионов кобальта в 0,4 М растворе $[Co(NH_3)_6]C1_3$, содержащем кроме комплекса еще 0,04 моля аммиака в литре раствора. Константа нестойкости комплексного иона составляет $4,1\cdot10^{-9}$.
- 6.28. a) Na₃[AlF₆]; [Ni(NH₃)₆]Br₂.
 - б) Определить концентрацию ионов кобальта в 0,1 M растворе $[Co(NH_3)_6](NO_3)_3$, содержащем кроме комплекса еще 0,1 моля аммиака в литре раствора. Константа нестойкости комплексного иона составляет $6.2 \cdot 10^{-36}$.
- 6.29. a) $Na[Au(CN)_2]$; $[Ni(NH_3)_4]Cl_2$.
 - б) Определить концентрацию ионов золота в 0,01 М растворе $Na[AuCl_4]$, содержащем кроме комплекса еще 0,1 моля NaCl в литре раствора. Константа нестойкости комплексного иона составляет $5,0\cdot10^{-22}$.
- 6.30 .a) $\text{Li}_3[\text{Sc}(OH)_6]$; $[\text{Ni}(H_2O)_6](BF_4)_2$.
 - б) Определить концентрацию ионов железа в 0,3 M растворе $K[Fe(SO_4)_2]$, содержащем кроме комплекса еще 0,2 моля K_2SO_4 в литре раствора. Константа нестойкости комплексного иона составляет $4,2\cdot10^{-6}$.

Тема 7. ЭНЕРГЕТИКА ХИМИЧЕСКИХ ПРОЦЕССОВ. ЗАКОНЫ ТЕРМОХИМИИ

- А. Для реакции, приведенной под буквой "а", необходимо:
 - определить $\Delta H_{\text{реакц}}, \Delta S_{\text{реакц}}, \Delta G_{\text{реакц}};$
- сделать вывод, пойдет ли данная реакция в прямом направлении при T = 298 K;
- проанализировать условия обратимости реакции и в случае ее обратимости определить температуру, при которой реакция будет протекать.

- Б. Доказать, что реакция в растворах, приведенная под буквой «б», невозможна. Почему?
- В. Для молекулы, приведенной под буквой «в», определить атомарную энтальпию образования и среднюю энергию, связи. Величину энергии связи сравнить с табличными данными, приведенными в приложении.
- 7.1. a) $Na_2CO_{3(\kappa)} + 2HC1_{(\Gamma)} = 2NaCl_{(\kappa)} + H_20_{(\kappa)} + 2CO_{2(\Gamma)}$ 6) $5NaNO_3 + 2MnSO_4 + K_2SO_4 + 3H_2O = 5NaNO_2 + 2KMnO_4 + 3H_2SO_4$ B) PF_3
- 7.2. a) $4\text{Fe}(OH)_{2(\kappa)} + O_{2(r)} + 2H_2O_{(B)} = 4\text{Fe}(OH)_{3(\kappa)}$ 6) $KNO_2 + PbCl_2 + H_2O \ KNO_2 + PbO_2 + 2HC1$ B) BF_3
- 7.3. a) $PH_{3(r)} + 3C1_{2(r)} = PCl_{3(x)} + 3HC1_{(r)}$ 6) $3Cl_2 + 2KCl + 2CrCl_3 + 7H_2O = K_2Cr_2O_7 + 14HC1$ B) PH_3
- 7.4. a) $CrO_{3(\kappa)} + 2HCl_{(r)} = C_{\Gamma}O_2C1_{2(r)} + H_2O_{(r)}$ б) $3Cu(NO_3)_2 + NO+ 4H_2O = 3Cu + 8HNO_3$ в) IF_5
- 7.5. a) $Ca_3N_{2(r)} + 6H_2O_{(x)} = 3Ca(OH)_{2(\kappa)} + 3NH_{3(r)}$. $6)4Sn(NO_3)_2 + N_2O + 5H_2O = 4Sn + 10HNO_3$ $B)H_2S$
- 7.6. a) $Cu(NO_3)_{2(\kappa)} + N_2O_{(r)} + 5H_2O_{(ж)} = 4Sn_{(\kappa)} + 10HNO_{3(ж)}$ б) $N_2 + 5Co(NO_3)_2 + 6H_2O = 12HNO_3 + 5Co$ в) $SiCl_4$
- 7.7. a) $WO_{3(\kappa)} + 3H_{2(\Gamma)} = W_{(\kappa)} + 3H_2O_{(x\kappa)}$ 6) $4Mg(NO_3)_2 + NH_4NO_3 + 6H_2O_{(x\kappa)} = 4Mg + 10HNO_3$ B) SiH_4 .
- 7.8. a) $Al_2S_{3(\kappa)} + 6H_2O_{(x\kappa)} = 2Al(OH)_{3(\kappa)} + 3H_2S_{(r)}$ 6) $2MnSO_4 + K_2SO_4 + SO_2 + 8H_2O = 5H_2O_2 + 2KMnO_4 + 5HBr + 3H_2SO_4$ B)BrF₅
- 7.9. a) $NH_4Cl_{(\kappa)}=NH_{3(r)}+HCl_{(r)}$ б) $5HBrO+2MnSO_4+K_2SO_4+3H_2O=2KMnO_4+5HBr+3H_2SO_4$ в) $PbCl_4$
- 7.10. a) $Al_4C_{3(\kappa)} + 12H_2O_{(x)} = 4Al(OH)_{3(\kappa)} + 3CH_{4(r)}$ 6) $3Cl_2 + 2MnCl_2 + 2KCl + 5H_2O = 10HCl + 2KMnO_4$ B) CF_4

7.11. a)
$$CO_{(r)} + H_2O_{(r)} = CO_{2(r)} + H_{2(r)}$$

6)
$$3I_2 + H_2S + 4H_2O = 6HI + H_2SO_4$$

B) SO₃

7.12. a)
$$PH_{3(r)} + 4C1_{3(r)} = PC1_{5(r)} + HCl_{(r)}$$

$$6) H2S + 4MgSO4 + 4H2O = 4Mg + 5H2SO4$$

в) BeCl₂

7.13. a)
$$Ba(OH)_{2(\kappa)} + H_2SO_{4(\kappa)} = BaSO_{4(\kappa)} + 2H_2O_{(\kappa)}$$

6)
$$Br_2 + SO_2 + K_2SO_4 + 2H_2O = 2 KBr + 2H_2SO_4$$

B) CCl₄

6)
$$CaSO_4 + CO_2 + H_2O = CaCO_3 + H_2SO_4$$

B) PCl₅

7.15. a)
$$NH_{3(r)} + HCl_{(r)} = NH_4Cl_{(\kappa)}$$

6)
$$2K_2S + K_2SO_4 + 3H_2O = 3S + 6KOH$$

B) PCl₅

7.16. a)
$$4NH_{3(r)} + SO_{2(r)} = 4NO_{(r)} + 6H_2O_{(r)}$$

6)
$$Cr_2(SO_4)_3 + 3Fe_2(SO_4)_3 + K_2SO_4 + 7H_2O = 6FeSO_4 + K_2Cr_2O_7 + 7H_2SO_4$$

в) FeCl₃

7.17. a)
$$CO_{2(r)} + 4H_{2(r)} = CH_{4(r)} + 2H_2O_{(x)}$$

6)
$$2NH_3 + CaCl_2 + 2H_2O = 2NH_4Cl + Ca(OH)_2$$

в) CoCl₂

7.18. a)
$$CH_{4(r)} + CO_{2(r)} = 2CO_{(r)} + 2H_{2(r)}$$

6)
$$Ca(NO3)_2 + CO_2 + H_2O = CaCO_3 + 2HNO_3$$

в) SiF₄

7.19. a)
$$2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$$

6)
$$5S + 2MnSO_4 + K_2SO_4 + 8H_2O = 5H_2S + 2KMnO_4 + 3H_2SO_4$$

в) PF₅

7.20. a)
$$C_2H_{2(r)} + 5/2 O_{2(r)} = CO_{2(r)} + H_2O_{(x)}$$

6)
$$2NO + 3Cu(NO_3)_2 + 4H_2O = 3Cu + 8HNO_3$$

в) BaF₂

7.21. a)
$$Fe_2O_{3(\kappa)} + CO_{(r)} = 3FeO_{(\kappa)} + CO_{2(r)}$$

6)
$$2SO_2 + K_2SO_4 + 2H_2O = 2KHSO_4 + H_2SO_4$$

в) BeF₂

$$7.22.\ a)\ CH_{4(r)} + 2O_{2(r)} = 2H_2O_{(*)} + CO_{(r)}$$

$$6)\ 5Pb(NO_3)_2 + 2HMnO_4 + 2H_2O = 5PbO_2 + 2Mn(NO_3)_2 + 6HNO_3$$

$$B)\ NF_3$$

$$7.23.\ a)\ NH_4Cl_{(k)} + NaOH_{(k)} = NaCl_{(k)} + H_2O_{(r)} + NH_{3(r)}$$

$$6)\ Pb + PbO_2 + O_2 + 4H_2SO_4 = 2Pb(SO_4)_2 + 4H_2O$$

$$B)\ TiI_4$$

$$7.24.\ a)\ Co(OH)_{2(k)} + 1/4\ O_{2(r)} + 1/2\ H_2O_{(r)} = Co(OH)_{3(k)}$$

$$6)\ NH_4NO_3 + 4Zn(NO_3)_2 + 3H_2O = 4Zn + 10HNO_3$$

$$B)\ PbF_4$$

$$7.25.\ a)\ Cu_2O_{(rk)} + H_2SO_{4(k)} = CuSO_{4(k)} + Cu_{(k)} + H_2O_{(k)}$$
,
$$6)Fe(NO_3)_2 + 3NO_2 + 3H_2O = Fe + 6HNO_3$$

$$B)\ CuF_2$$

$$7.26.\ a)\ 4FeS_{2(k)} + 11O_{2(r)} = 2Fe_2O_{3(k)} + 8SO_{2(r)}$$

$$6)\ CaCl_2 + CO_2 + H_2O = CaCO_3 + 2HCl$$

$$B)\ BaCl_2$$

$$7.27.\ a)\ Fe_2O_{3(k)} + 3H_2SO_{4(k)} = Fe_2(SO_4)_{3(k)} + 3H_2O_{(k)}$$

$$6)\ MnCl_2 + Cl_2 + 2H_2O = MnO_2 + 4HCl$$

$$B)\ SO_2$$

$$7.28.\ a)\ CS_{2(k)} + 3O_{2(r)} = CO_{2(r)} + 2SO_{2(r)}$$

$$6)\ 3Br_2 + 4K_2SO_4 + Cr_2(SO_4)_3 + 7H_2O = 6KBr + K_2Cr_2O_7 + 7H_2SO_4$$

$$B)\ NH_3$$

$$7.29.\ a)\ 3P_{(k)} + 5HNO_{3(k)} + 2H_2O_{(k)} = 3H_3PO_{4(k)} + 5NO_{(r)}$$

$$6)\ 3Cl_2 + KCl + 3H_2O = KClO_3 + 6HCl$$

$$B)\ NH_3$$

$$7.30.\ a)\ S_{(k)} + 2HNO_{3(k)} = H_2SO_{4(k)} + 2NO_{(r)}$$

Тема 8. СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Каждый вариант включает три задания. В пункте "а" дана задача на изменение скорости химической реакции под влиянием двух факторов, од-

6) $I_2 + 2H_2O + 2NO + 2Na_2SO_4 = 2NaI + 2NaNO_2 + 2H_2SO_4$

в) CH₄

новременно действующих на систему. В пункте "б" приведена равновесная система, для которой необходимо:

- написать выражение константы равновесия;
- определить, в какую сторону сместится равновесие, если подействовать на эту систему увеличением концентрации исходных веществ, повышением давления и температуры.

В пункте "в" дана задача, относящаяся к равновесной системе, приведенной в пункте "б". Само задание приведено в условии задачи.

- 8.1. а) Определить, во сколько раз изменится скорость реакции $3Fe_{(\kappa)}+4H_2O_{(r)}=Fe_2O_{3(\kappa)}+4H_2$, если увеличить концентрации исходных веществ в два раза и повысить температуру на $100~^{0}C$ ($\gamma=2$).
 - 6) $CH_{4(r)} + 2H_2S_{(r)} \longrightarrow CS_{2(r)} + 4H_{2(r)}$
 - в) Исходные концентрации CH_4 , H_2S , CS_2 , H_2 равны соответственно, моль/л, 0,3; 0,6; 0; 0 (системы, приведенной в пункте "б"). Вычислить равновесные концентрации всех веществ, если известно, что к моменту равновесия прореагировало 0,2 моль/л CH_4 . Вычислить константу равновесия.
- 8.2. а) Определить, во сколько раз изменится скорость реакции $2ZnS_{(r)} + 3O_{2(r)} = 2ZnO_{(r)} + 2SO_{2(r)}$, если одновременно увеличить давление в два раза и повысить температуру на 80 ^{0}C ($\gamma = 2,3$).
 - б) $3O_{2(r)}$ \longrightarrow $2O_{3(r)}$
 - в) Исходная концентрация O_2 равна 1,2 моль/л, а O_3 нулю. Вычислить константу равновесия, если известно, что к моменту равновесия 75 % кислорода превращается в озон.
- 8.3. а) Определить, во сколько раз увеличится скорость реакции $2SO_{2(\Gamma)} + O_{2(\Gamma)} = 2SO_{3(\Gamma)}$, если повысить давление в системе в два раза и одновременно увеличить температуру на 60 0 C ($\gamma = 3$).

 - в) Вычислить исходные концентрации H_2 и B_{Γ_2} , если равновесные концентрации H_2 , B_{Γ_2} , HBr равны соответственно, моль/л 0,5; 0,1; 1,5, а исходная концентрация HBr равна нулю.
- 8.4. а) Определить, во сколько раз увеличится скорость реакции $C_2H_4 + H_2 = C_2H_6$, если повысить концентрации исходных веществ в 4 раза и поднять температуру на 50 °C ($\gamma = 2$).

- б) $2NO_{(r)} + O_{2(r)}$ $2NO_{2(r)}$
- в) Вычислить исходные концентрации NO и O_2 , если равновесные концентрации NO, O_2 , NO₂ равны соответственно, моль/л, 0,56; 0,2; 0,44. Исходная концентрация NO₂, равна нулю.
- 8.5. а) Определить, во сколько раз увеличится скорость реакции $FeO_{(\kappa)} + CO_{(\Gamma)} = Fe_{(\kappa)} + CO_{2(\Gamma)}$, если повысить давление в системе в три раза и поднять температуру на 80 °C (γ = 2).
 - δ) $N_{2(r)} + O_{2(r)} \longrightarrow 2NO_{(r)}$
 - в) Найти начальные концентрации N_2 и O_2 , если равновесные концентрации N_2 , O_2 и NO равны соответственно, моль/л, 3; 5; 4, а исходная концентрация NO равна нулю.
- 8.6. а) Определить, во сколько раз увеличится скорость реакции $FeO_{(\kappa)}+CO_{(\Gamma)}=Fe_{(\kappa)}+CO_{2(\Gamma)},$ если повысить давление в системе в два раза и поднять температуру на 60 ^{0}C (γ =3).
 - σ) $H_{2(r)} + HCl_{2(r)} \longrightarrow 2HCl_{(r)}$
 - в) Вычислить равновесные концентрации HC1 и $C1_2$, если исходные концентрации H_2 , Cl_2 и HCl равны соответственно, моль/л, 0,035; 0,05;
 - 0. Равновесие установилось, когда концентрация H_2 стала равной $0{,}015\ \text{моль/л}.$
- 8.7. а) Определить, во сколько увеличится скорость реакции $MgO_{(\kappa)}+CO_{2(\Gamma)}=MgCO_{3(\kappa)},$ если повысить в три раза давление в системе и одновременно поднять температуру на 40 ^{0}C (γ = 3).
 - б) $2SO_{2(r)} + O_{2(r)} \longrightarrow 2SO_{3(r)}$
 - в) Вычислить константу равновесия и равновесные концентрации SO_2 и O_2 , если начальные концентрации SO_2 , O_2 , SO_3 равны соответственно, моль/л, 1,4; 0,36; 0. Равновесие установилось при концентрации SO_3 , равной 0,4 моль/л.
- 8.8. а) Определить, во сколько раз повысится скорость реакции $CO_{2(\Gamma)} + C_{(\kappa)} = 2CO_{(\Gamma)}$, если повысить давление в системе в два раза и поднять температуру на 50 °C (γ = 2).
 - σ) $I_{2(Γ)} + H_{2(Γ)}$ → $2HI_{(Γ)}$
 - в) Найти исходные концентрации H_2 , и I_2 , если известно, что равновесные концентрации I_2 , H_2 и HI соответственно равны, моль/л, 2; 4; 3, а исходная концентрация HI равна нулю.

- 8.9. а) Определить, во сколько раз повысится скорость реакции $S_{(\kappa)} + O_{2(r)} = SO_{2(r)}$, если повысить концентрации исходных веществ в два раза и поднять температуру на 40 °C ($\gamma = 3$).
 - б) $2CO_{(r)} + O_{2(r)} \implies 2CO_{2(r)}$
 - в) Определить исходную концентрацию CO, если равновесные концентрации CO, O_2 и CO_2 равны соответственно, моль/л, 1,2; 0,1 и 4.
- 8.10. а) Определить, во сколько раз повысится скорость реакции $C_{(\kappa)} + H_2 O_{(\Gamma)} = C O_{(\Gamma)} + H_{2(\Gamma)}$, если повысить концентрации исходных веществ в два раза и поднять температуру на $100~^{0}$ C (γ =2).
 - б) $2NO_{(r)} + Cl_{2(r)} = 2CO_{(r)}$
 - в) Вычислить константу равновесия и равновесные концентрации, если к моменту наступления равновесия прореагировало 25 % NO. Исходные концентрации NO и $C1_2$, были равны соответственно, моль/л, 4; 2.
- 8.11. а) Определить, во сколько раз возрастет скорость реакции $C_{(\kappa)} + CO_{2(\Gamma)} = 2CO_{(\Gamma)}$, если повысить давление в системе в три раза и одновременно поднять температуру на 50 °C (γ = 2).
 - θ) $H_{2(Γ)} + I_{2(Γ)}$ $≠ 2HI_{(Γ)}$
 - в) Определить исходную концентрацию H_2 , если равновесные концентрации H_2 , I_2 , I_3 , I_4 соответственно равны, моль/л, 1; 0,2; 3,2.
- 8.12. а) Определить, во сколько раз возрастет скорость реакции $3Fe_2O_{3(\kappa)}+H_{2(\Gamma)}=H_2O_{(\Gamma)}+2Fe_3O_{4(\kappa)}, \ \text{если повысить давление в системе}$ в два раза и поднять температуру на 80 °C (γ = 2).
 - б) $H_{2(\Gamma)} + B_{\Gamma_{2(\Gamma)}} \longrightarrow 2HBr_{(\Gamma)}$
 - в) Определить исходную концентрацию H_2 , если равновесные концентрации H_2 , B_{Γ_2} , HBr равны соответственно, моль/л 0,5; 0,1; 1,6.
- 8.13. а) Определить, во сколько раз увеличится скорость реакции $2NO_{(r)}+C1_{2(r)}=2NOC1_{(r)}$, если одновременно увеличить давление в системе в два раза и повысить температуру на 40 °C (γ = 2,5).
 - 6) $CO_{(r)} + H_2O_{(r)} \rightarrow H_{2(r)} + CO_{2(r)}$
 - в) Определить исходную концентрацию СО, если константа равновесия равна 1 и равновесные концентрации H_2O и CO_2 соответственно равны, моль/л 0,03; 0,04.
- 8.14. а) Определить, во сколько раз увеличится скорость реакции

 $PH_{3(\Gamma)} + 3C1_{2(\Gamma)} = PCl_{5(ж)} + 3HCl_{(\Gamma)}$, если давление в системе повысить в два раза и поднять температуру на 50 °C (γ = 2).

- б) $C_2H_{2(\Gamma)} + H_{2(\Gamma)} \longrightarrow C_2H_{4(\Gamma)}$
- в) Найти равновесную концентрацию C_2H_4 , если константа равновесия равна 10, а исходные концентрации C_2H_2 , H_2 и C_2H_4 равны соответственно, моль/л, 3; 2; 0.
- 8.15. а) Определить, во сколько раз увеличится скорость реакции $2SO_{2(\Gamma)} + O_{2(\Gamma)} = 2SO_{3(\Gamma)}$, если одновременно повысить концентрации исходных веществ в два раза и поднять температуру на 30 °C (γ = 3).
 - 6) $AsH_{3(r)} + Cl_{2(r)} \longrightarrow AsCl_{3(r)} + 3HCl_{(r)}$
 - в) Найти начальные концентрации AsH_3 и $C1_2$, если известно, что равновесные концентрации AsH_3 , $C1_2$, $AsCl_3$ равны соответственно, моль/л, 4; 3; 2, а начальные концентрации $AsCl_3$ и HC1 равны нулю. Определить также равновесную концентрацию HC1.
- 8.16. а) Определить, во сколько раз увеличится скорость реакции $2NO_{(r)} + Cl_{2(r)} = 2NOCl_{(r)}$, если одновременно повысить давление в системе в два раза и поднять температуру на 50 °C (γ = 3).
 - $(C_2H_{2(r)} + 2H_{2(r)})$ ← $(C_2H_{6(r)})$
 - в) Найти равновесные концентрации всех веществ, если константа равновесия равна 1, а исходные концентрации C_2H_4 , H_2 , C_2H_6 равны соответственно, моль/л, 2; 2; 1.
- 8.17. а) Определить, во сколько раз увеличится скорость реакции $2SO_{2(\Gamma)} + O_{2(\Gamma)} = 2SO_{3(\Gamma)}$, если одновременно повысить концентрацию исходных веществ в три раза и поднять температуру на 40 °C (γ = 3).
 - 6) $CC1_{4(\Gamma)} + 2F_{2(\Gamma)} \longrightarrow CF_{4(\Gamma)} + 2C1_{2(\Gamma)}$
 - в) Найти начальные концентрации CCl_4 и F_2 . если известно, что равновесные концентрации CCl_4 , F_2 , CF_4 равны соответственно, моль/л 3; 8; 2, а начальные концентрации CF_4 и Cl_2 равны нулю. Определить равновесную концентрацию Cl_2 .
- 8.18. а) Определить, во сколько раз увеличится скорость реакции $Fe_3O_{4(\kappa)}+2CO_{(\Gamma)}=3Fe_{(\kappa)}+4CO_{2(\Gamma)}$ при повышении давления в системе в три раза и повышении температуры на 60 °C ($\gamma=2,3$).
 - 6) $2A1Cl_{3(\Gamma)} \longrightarrow A1_2Cl_{6(\Gamma)}$
 - в) Найти равновесную концентрацию Al₂Cl₆, если константа равнове-

- сия равна 1, а исходные концентрации $AlCl_3$ и Al_2Cl_6 составляют соответственно, моль/л 2; 3.
- 8.19. а) Определить, во сколько раз увеличится скорость реакции $4HCl + O_{2(r)} = 2H_2O_{(r)} + 2Cl_{2(r)}$, если повысить давление в системе в два раза и одновременно повысить температуру на 30 °C ($\gamma = 3$).
 - 6) $C_2H_{2(r)} + H_{2(r)} \leftarrow C_2H_{4(r)}$
 - в) Найти начальные концентрации C_2H_2 и H_2 , если известно, что равновесные концентрации C_2H_2 , H_2 , C_2H_4 равны соответственно, моль/л 2,2; 1,4; 1,1, а начальная концентрация C_2H_4 равна нулю.
- 8.20. а) Определить, во сколько раз увеличится скорость реакции $H_2S_{(\Gamma)} + 4H_2O_{(ж)} = H_2SO_{4(ж)} + 4H_2O_{(ж)}$, если повысить концентрации исходных веществ в два раза и одновременно поднять температуру на $60~^{\circ}\text{C}$ ($\gamma = 3$).
 - δ) $2NO_{2(Γ)}$ ← $N_2O_{4(Γ)}$
 - в) Найти равновесную концентрацию N_2O_4 , если константа равновесия равна 3, а исходные концентрации NO_2 , N_2O_4 равны соответственно, моль/л, 2; 0.
- 8.21. а) Определить, во сколько раз увеличится скорость реакции $SO_{2(\Gamma)} + 2H_{2(\Gamma)} = 3S_{(\kappa)} + 2H_2O_{(\Gamma)}$, если поднять давление в системе в два раза и одновременно повысить температуру на 50 °C (γ = 3).
 - 6) $CH_{4(\Gamma)} + 2F_{2(\Gamma)} \longrightarrow CH_2F_{2(\Gamma)} + 2HF_{(\Gamma)}$
 - в) Найти начальные концентрации CH_4 и F_2 , если известно, что равновесные концентрации CH_4 , F_2 , CH_2F_2 , HF равны соответственно, моль/л 1; 2; 0,9; 1, а начальные концентрации CH_2F_2 , HF равны нулю.
- 8.22. а) Определить, во сколько раз увеличится скорость реакции $2H_2S_{(\Gamma)}+3O_{2(\Gamma)}=2H_2O_{(\kappa)}+2SO_{2(\Gamma)},$ если поднять давление в системе в два раза и повысить температуру на 40 °C (γ = 3).
 - б) $Br_{2(\Gamma)} + F_{2(\Gamma)} \longrightarrow 2BrF_{(\Gamma)}$
 - в) Найти равновесную концентрацию всех веществ, если константа равновесия равна 3, а исходные концентрации Br_2 , F_2 , BrF равны соответственно, моль/л, 2; 2; 0.
- 8.23. а) Определить, во сколько раз увеличится скорость реакции $2CH_3OH_{(r)}+3O_{2(r)}=4H_2O_{(r)}+2CO_{2(r)}$, если повысить концентрации исходных веществ в два раза и одновременно поднять температуру на $50~^{\circ}C~(\gamma=3)$.

- 6) $2NO_{2(\Gamma)} \rightarrow N_2O_{4(\Gamma)}$
- в) Найти равновесную концентрацию N_2O_4 , если константа равновесия равна 2, а исходные концентрации NO_2 , N_2O_4 составляли соответственно, моль/л 2; 1.
- 8.24. а) Определить, во сколько раз увеличилась скорость реакции $C_2H_{4(\Gamma)}+3O_{2(\Gamma)}=2CO_{2(\Gamma)}+2H_2O_{(\Gamma)}$, если одновременно поднять давление в системе в два раза и увеличить температуру на 60 °C (γ = 2).
 - δ) $CO_{(r)} + H_2O_{(r)} \longrightarrow CO_{2(r)} + H_{2(r)}$
 - в) Найти равновесные концентрации CO_2 , H_2 , если константа равновесия равна 1, а исходные концентрации CO, H_2O , CO_2 , H_2 равны соответственно, моль/л 1; 1; 0; 0.
- 8.25. а) Определить, во сколько раз увеличится скорость реакции $2NO_{(r)} + C1_{2(r)} = 2NOCl_{(r)}$, если поднять давление в системе в три раза и повысить температуру на 50 °C (γ = 2).
 - б) $SO_{2(r)} + C1_{2(r)} \implies SO_2C1_{2(r)}$
 - в) Найти равновесную концентрацию SO_2Cl_2 , если константа равновесия равна 1,5, а исходные концентрации SO_2 , Cl_2 , SO_2Cl_2 , равны соответственно, моль/л 2; 1; 0.
- 8.26. а) Определить, во сколько раз увеличится скорость реакции $Fe_2O_{3(\kappa)}+3CO_{(r)}=2Fe_{(\kappa)}+3CO_{2(r)},$ если повысить концентрации исходных веществ в три раза и поднять температуру на 60 °C (γ =2).
 - б) $N_{2(r)} + 3H_{2(r)} \longrightarrow 2NH_{3(r)}$
 - в) Найти начальные концентрации N_2 и H_2 , если известно, что равновесные концентрации N_2 , H_2 , NH_3 равны 1 моль/л, а начальная концентрация NH_3 равна нулю.
- 8.27. а) Определить, во сколько раз увеличится скорость реакции $2N_{2(\Gamma)}+O_{2(\Gamma)}=2N_2O_{(\Gamma)}$, если поднять давление в системе в три раза и повысить температуру на 40 °C (γ =2).
 - б) $2H_{2(r)} + O_{2(r)} \longrightarrow 2H_2O_{(r)}$
 - в) Определить начальные концентрации N_2 и O_2 , если известно, что равновесные концентрации H_2 , O_2 , H_2O равны соответственно, моль/л, 2; 1,5; 3. Начальная концентрация H_2O равна нулю.
- 8.28. а) Определить, во сколько раз увеличится скорость реакции $2NH_{3(\Gamma)}+3/2O_{2(\Gamma)}=N_{2(\Gamma)}+3H_2O_{(\varkappa)},$ если повысить концентрацию исходных веществ в три раза и поднять температуру на 20 °C ($\gamma=3$).

- 6) $SbCl_{3(r)} + Cl_{2(r)} \implies SbCl_{5(r)}$
- в) Найти константу равновесия, если известно, что к моменту наступления равновесия прореагировало $80 \% SbCl_3$, а начальные концентрации $SbCl_3$, Cl_2 , $SbCl_5$ равны соответственно, моль/л 1; 2; 0.
- 8.29. а) Определить, во сколько раз увеличится скорость реакции $C_2H_2+5/2O_{2(r)}=2CO_{2(r)}+H_2O_{(ж)}$, если повысить концентрации исходных веществ в два раза и поднять температуру на 50 °C ($\gamma=2$).
 - 6) $2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$
 - в) Найти начальные концентрации NO и O_2 , если известно, что равновесные концентрации NO, O_2 , NO₂ равны 0,5 моль/л, а начальная концентрация NO₂ равна нулю.
- 8.30. а) Определить, во сколько раз увеличится скорость реакции $H_2O_{(\Gamma)}+CO_{(\Gamma)}=CO_{2(\Gamma)}+H_{2(\Gamma)}$, если повысить давление в системе в три раза и одновременно поднять температуру на 60 °C (γ = 1,5).
 - 6) $PC1_{3(r)} + C1_{2(r)} \longrightarrow PC1_{5(r)}$
 - в) Найти равновесную концентрацию PCl_5 , если константа равновесия равна 2, а исходные концентрации PCl_3 , Cl_2 , PCl_5 равны соответственно, моль/л, 1; 2; 0.

Тема 9. ГИДРОЛИЗ СОЛЕЙ

А. Написать в молекулярной и краткой ионной форме гидролиз содей, данных в пункте "а".

Если гидролиз идет по ступеням, написать уравнения гидролиза по ступеням. Указать условия, при которых происходит каждая ступень процесса гидролиза, и как изменяется при этом pH среды.

- Б. Написать уравнение реакции, данной в пункте «б».
- В. В задаче, данной в п. «в» требуется определить рНсреды, образовавшейся в процессе гидролиза соли.
- 9.1. a) MnSO₄; K₂SiO₃; (NH₄)₂CO₃;
 - 6) CuSO₄ + Na₂CO₃ + H₂O =
 - в) Вычислить концентрацию ионов H^+ , OH^- , pH 0,1 н. раствора C_6H_5COONa , если константа диссоциации бензойной кислоты C_6H_5COONa равна $6.3\cdot 10^{-5}$.

- 9.2. a) Mn(NO₃)₂; BaS; (NH₄)₂SO₄;
 - б) $FeCl_3 + Na_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,06 н. раствора NH_4I , если константа диссоциации NH_4OH равна $1,8\cdot 10^{-5}$.
- 9.3. a) Pb(NO₃)₂; K₃PO₄; Cu(CH₃COO)₂;
 - 6) $KCr(SO_4)_2 + K_2S + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,08 н. раствора NH_4Br , если константа диссоциации NH_4OH равна $1.8 \cdot 10^{-5}$.
- 9.4. a) $Fe(NO_3)_2$; K_2S ; $Hg(CH_3COO)$;
 - 6) A1C1₃+ Na₂CO₃+ H₂O =
 - в) Вычислить концентрацию ионов H^+ , OH^- и pH 0,1 н. раствора NH_4C1 , если константа диссоциации NH_4OH равна 1,8 ·10⁻⁵ .
- 9.5. a) FeSO₄; K₂CO₃; Pb(CH₃COO)₂;
 - б) $KAl(SO_4) + Na_2S + H_2O =$
 - в) Вычислить концентрацию ионов H^+ , OH^- и pH 0,05 M раствора Na_2CO_3 , если константы диссоциации равны: $K_1 = 4,5*10^{-7}$; $K_2 = 4,8\cdot10^{-11}$. Учитывать только первую стадию гидролиза.
- 9.6. a) CoCI₂; Sr(CH₃COO)₂; (NH₄)₃PO₄;
 - 6) A1(NO₃)₃+ K₂S + H₂O =
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,05 н. раствора NH_4NO_3 , если константа диссоциации NH_4OH равна 1,8 ·10⁻⁵.
- 9.7. a) NiCl₂; Na₃PO₄; Zn(CH₃OO)₂;
 - б) $Cr(NO_3)_3 + K_2S + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,05 н. раствора NaClO, если константа диссоциации NaClO равна $5\cdot 10^{-8}$.
- 9.8. a) CoSO₄; NaSiO₃; CH₃COOAg;
 - 6) $KAl(SO_4)_2 + K_2CO_3 + H_2O =$
 - в) Вычислить концентрации H^+ , OH^- и pH 0,005 н. раствора $NaNO_2$, если константа диссоциации HNO_2 равна $5 \cdot 10^{-4}$.
- 9.9. a) NiSO₄; BaS; Mn(CH₃COO)₂;
 - б) $CU(NO_3)_2 + K_2CO_3 + H_2O =$
 - в)Вычислить концентрации ионов H^+ , OH^- и pH 0,01 M раствора Na_3PO_4 , если константы диссоциации H_3PO_4 соответственно равны: K_1 = 1,1·10⁻³; K_2 = 6,2·10⁻⁸; K_3 = 5·10⁻¹³ . В задаче учитывать только первую ступень гидролиза.

- 9.10. a) A1C1₃; CaS; CH₃COONH₄;
 - б) $Na_2SiO_3 + NH_4Cl + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,05 M раствора K_2SO_4 , если константы диссоциации H_2SO_3 соответственно равны: $K_1=1,4\cdot 10^{-2}$; $K_2=6,2\cdot 10^{-8}$ (учитывать только первую ступень гидролиза).
- 9.11. a) Co(NO₃)₂; Na₂CO₃; (NH₄)₃PO₄;
 - 6) $Fe(NO_3)_3 + K_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,05 M раствора K_3PO_4 , если константы диссоциации H_3PO_4 соответственно равны: $K_1=7,1\cdot10^{-3}$; $K_2=8,2\cdot10^{-8}$; $K_3=5\cdot10^{-13}$ (учитывать только первую ступень гидролиза).
- 9.12. a) Zn(NO₃)₂; Na₃PO₄; Ni(CH₃COO)₂;
 - б) $Cu(NO_3)_3 + NaCO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ ; OH^- и pH 0,05 н. раствора NH_4C1 , если константа диссоциации NH_4OH равна 1,8 ·10⁻⁵.
- 9.13. a) Ni(NO₃)₂; Na₂S; (NH₄)₂CO₃;
 - 6) $Cr(NO_3)_3 + (NH_4)_2S + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH^- 0,1 M раствора Na_2SO_3 , если константы диссоциации H_2SO_3 соответственно равны: $K_1=1,4\cdot 10^{-2}$; $K_2=6,2\cdot 10^{-8}$ (учитывать первую ступень гидролиза).
- 9.14. a) CuCl₂; Na₂HPO₄; Fe(CH₃COO)₃;
 - $6) A1(NO_3)_3 + (NH_4)_2S + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,1 M раствора CH_3COONa , если константа диссоциации CH_3COOH равна $1,75\cdot10^{-5}$.
- 9.15. a) (NH₄)₂SO₄; Na₃BO₃; Fe(CH₃COO)₃;
 - б) $ZnSO_4 + K_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH- и pH 0,01 н. раствора KCN, если константа диссоциации HCN равна $1.8 \cdot 10^{-5}$.
- 9.16. a)Fe(NO₃)₃; K₃BO₃;Ni(CH₃COO)₂;
 - 6) AlCl₃+ K₂CO₃+ H₂O =
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,1 M раствора Na_2CO_3 , если константа диссоциации H_2CO_3 соответственно равны $K_1 = 4,5 \cdot 10^{-7}$; $K_2 = 4,8 \cdot 10^{-11}$ (учитывать первую ступень гидролиза).

- 9.17. a) Pb(NO)₂; Na₂SiO₃; Mn(CH₃COO)₂;
 - δ) A1C1₃+ (NH₄)₂S + H₂O =
 - в) Вычислить pH 0,01 M раствора CH_3COONH_4 , если константа диссоциации CH_3COOH равна $1,75\cdot10^{-5}$, а константа диссоциации NH_4OH равна $1,8\cdot10^{-5}$
- 9.18. a) CrC1₃; CH₃COOK; (NH₄)₂S;
 - б) $MgCl_2 + K_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,01 M раствора K_2SiO_3 , если константы диссоциации H_2SiO_3 соответственно равны: $K_1=2,2\cdot 10^{-10}$; $K_2=1\cdot 10^{-12}$ (учитывать первую ступень гидролиза).
- 9.19. a) Al₂(SO₄)₃; K₂CO₃; Zn(CH₃COO)₂;
 - б) $KCr(SO_4)_2 + Na_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH^- 0,01 M раствора $MnSO_4$, если константа диссоциации $Mn(OH)_2$ равна $5\cdot 10^{-4}$.
- 9.20. a) Fe₂(SO₄)₃; K₂S; CH₃COOAg;
 - 6) $CrCl_3 + (NH_4)_2S + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,1 н. раствора KNO_2 , если константа диссоциации HNO_2 равна $4\cdot 10^{-4}$.
- 9.21. a) ZnSO₄; K₃PO₄; (CH₃COO)₂Pb;
 - 6 $Al(SO_4)_3 + (NH_4)_2S + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,01 M раствора Na_2S , если константы диссоциации соответственно равны: $K_1 = 1 \cdot 10^{-7}$; $K_2 = 2,5 \cdot 10^{-13}$ (учитывать первая ступень гидролиза).
- 9.22. a) Cu(NO₃)₂; K₃BO₃; (CH₃COO)₂Cu;
 - б) $Co(NO_3)_2$ + Na_2CO_3 + $H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,25 M раствора CH_3COONa , если константа диссоциации CH_3COOH равна 1,75·10⁻⁵.
- 9.23. a) FeCl₃; KSiO₃; (NH₄)₂SO₄;
 - б) $Ni(NO_3)_2 + Na_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,02 M раствора Na_2SiO_3 , если константы диссоциации H_2SiO_3 соответственно равны: $K_1 = 2,2 \cdot 10^{-10}$; $K_2 = 1 \cdot 10^{-12}$ (учитывать первую ступень гидролиза).

- 9.24. a) Al(NO₃)₃; KCN; (CH₃COO)₂Hg;
 - δ) CuCl₂+ Na₂CO₃+ H₂O =
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,015 M раствора K_2SO_3 , если константы диссоциации H_2SO_3 соответственно равны: $K_1 = 4,4\cdot 10^{-2}$; $K_2 = 6,2\cdot 10^{-8}$ (учитывать первую ступень гидролиза).
- 9.25. a) BiCl₃; CH₃COONa; (NH₄)₃PO₄;
 - б) $Fe(NO_3)_3 + Na_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,04 M раствора C_6H_5COOK , если константа диссоциации C_6H_5COOH равна $6.3\cdot10^{-5}$.
- 9.26. a) CuSO₄; Ca(CH₃COO)₂; (NH₄)₂PO₄;
 - б) $Pb(NO_3)_2 + K_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,2 M раствора HCOONa, если константа диссоциации HCOOH равна 1,8 ·10⁻⁴ .
- 9.27. a) FeC1₂; BeS; Ni(CH₃COO)₂;
 - б) $CrC1_3 + K_2S + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,03 M раствора КС1О, если константа диссоциации НС1О равна $1.8 \cdot 10^{-5}$.
- 9.28. a) BiCl₃; CH₃COONa; (NH₄)₂SO₄;
 - 6) Be(NO₃)₂+ Na₂CO₃+ $H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,02 M раствора NH_4C1 . если константа диссоциации NH_4OH равна $1,8\cdot10^{-5}$.
- 9.29. a) Bi(NO₃)₃; Na₂CO₃; Fe(CH₃COO)₃;
 - б) $ZnC1_2 + Na_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,15 M раствора KCN, если константа диссоциации HCN равна $7,2\cdot 10^{-10}$.
- 9.30. a) ZnCI₂; Na₂S; Fe(CH₃COO)₃;
 - б) $ZnCl_2 + K_2CO_3 + H_2O =$
 - в) Вычислить концентрации ионов H^+ , OH^- и pH 0,025 M раствора K_2CO_3 , если константы диссоциации H_2CO_3 соответственно равны: $K_1 = 4,5\cdot 10^{-7}$; $K_2 = 4,8\cdot 10^{-11}$ (учитывать только первую ступень гидролиза).

Стандартные электродные потенциалы ряда систем в водных растворах

Элемент	Уравнение процесса	φ ⁰ , B
Азот	$3N_2 + 2e^{-2}N_3$	-3,4
	$N_2 + 4H_2O + 2e^- = 2NH_2OH + 2OH^-$	-3,04
	$N_2 + 4H_2O + 4e^- = N_2H_4 + 4OH^-$	-1,15
	$NO_2^- + H_2O + e^- = NO + 2OH^-$	-0,46
	$NO_3 + 2H_2O + 3e^- = NO + 4OH^-$	-0,14
	$NO_3 + H_2O + 2e^- = NO_2^- + 2OH^-$	-0,01
	$NO_3^- + 2H^+ + e^- = NO_2 + H_2O$	0,78
	$NO_3^- + 10H^+ 8e^- = NH_4^+ + 3H_2O$	0,87
	$NO_3^- + 3H^+ + 2e^- = HNO_2 + H_2O$	0,94
	$NO_3^- + 4H^+ + 3e^- = NO + 2H_2O$	0,957
	$HNO_2 + H^+ + e -= NO + H_2O$	0,99
Алюминий	$AlO_2^- + 2H_2O + 3e^- = Al + 4OH^-$	-2,35
	$Al^{3+} + 3e^{-} = Al$	-1,663
Барий	$Ba^{2+} + 2e^{-} = Ba$	-2,905
Бериллий	$Be^{2+} + 2e^{-} = Be$	-1,847
Бор	$BF_4^- + 3e^- = B + 4F^-$	-1,04
_	$H_3BO_3 + 3H^+ + 3e^- = B + 3H_2O$	-0,87
Бром	$BrO^{-} + H_2O + 2e^{-} = Br^{-} + 2OH^{-}$	0,76
_	$Br_2 + 2e^- = 2Br^-$	1,065
	$BrO_3^- + 6H^+ + 6e^- = Br^- + 3H_2O$	1,44
	$2BrO_3^- + 12H^+ + 10e^- = Br_2 + 6H_2O$	1,52
	$BrO_4^- + 2H^+ + 2e^- = BrO_3^- + H_2O$	1,88
Ванадий	$V^{2+} + 2e^{-} = V$	1,175
	$V^{3+} + 3e^{-} = V$	-0,255
	$VO_2^+ + 4H^+ + 5e^- = V + 2H_2O$	-0,25
Висмут	$Bi(OH)_3 + 3e^- = Bi + 3OH^-$	-0,46
	$BiO^{+} + 2H^{+} + 3e^{-} = Bi + H_{2}O$	0,320
	$NaBiO_3 + 4H^+ + 2e^- = BiO^+ + Na^+ + 2H_2O$	1,8
Водород	$H_2 + 2e^- = 2H^+$	-2,251
	$2H_2O + 2e^- = H_2 + 2OH^-$	-0,828
	$2H^{+} + 2e^{-} = H_{2}$	0,000
Вольфрам	$WO_4^{2} + 4H_2O + 6e = W + 6OH^{-1}$	-1,05
· -	$WO_4^{2-} + 8H^+ + 6e^- = W + 4H_2O$	0,049
Галлий	$Ga^{3+} + 3e^{-} = Ga$	-0,53
Гафний	$Hf^{4+} + 4e^{-} = Hf$	-1,70

Элемент	Уравнение процесса	φ^0 , B
Германий	$H_2GeO_3 + 4H + 2e = Ge + 3H_2O$	-0,363
•	$H_2GeO_3 + 4H + 4e = Ge + 3H_2O$	-0,13
Железо	$Fe(OH)_3 + e = Fe(OH)_2 + OH$	-0,53
	Fe + 2e = Fe	-0,440
	Fe + 3e = Fe	-0,037
	$Fe(CN)_6 + e = Fe(CN)_6$	0,356
	Fe + e = Fe	0,771
	$FeO_4 + 8H + 3e = Fe + 4H_2O$	1,700
Золото	$Au^{3+} + 2e^{-} = Au^{+}$	1,401
	$Au^{3+} + 3e^{-} = Au$	1,498
	$Au^+ + e^- = Au$	1,692
Йод	$2IO_3^- + 6H_2O + 10e^- = I_2 + 12OH^-$	0,21
	$IO_3^- + 3H_2O + 6e^- = I^- + 6OH^-$	0,25
	$2IO^{-} + 2H_{2}O + 2e^{-} = I_{2} + 4OH^{-}$	0,45
	$IO^{-} + H_{2}O + 2e^{-} = I^{-} + 2OH^{-}$	0,49
	$I_2 + 2e^- = 2I^-$	0,536
	$2IO_3^- + 12H^+ + 10e^- = I_2 + 6H_2O$	1,19
	$2HIO + 2H^{+} + 2e^{-} = I_{2} + 2H_{2}O$	1,45
	$H_5IO_6^- + H^+ + 2e^- = IO_3^- + 3H_2O$	1,6
	$IO_4^- + 2H^+ + 2e^- = IO_3^- + H_2O$	1,64
Иридий	$IrO_2 + 4H^+ + 4e^- = Ir + 2H_2O$	0,93
	$Ir^{3+} + 3e^{-} = Ir$	1,15
Кадмий	$Cd^{2+} + 2e^{-} = Cd$	-0,403
Калий	$K^+ + e^- = K$	-2,924
Кальций	$Ca^{2+} + 2e^{-} = Ca$	-2,866
Кислород	$O_2 + 2H_2O + 4e^- = 4OH^-$	0,401
	$O_2 + 2H^+ + 2e^- = H_2O_2$	0,682
	$O_2 + 4H^+ + 4e^- = 2H_2O$	1,228
	$H_2O_2 + 2H^+ + 2e^- = 2H_2O$	1,776
	$O_3 + 2H^+ + 2e^- = O_2 + H_2O$ $Co^{2+} + 2e^- = Co$	2,07
Кобальт		-0,277
	$Co(OH)_3 + e^- = Co(OH)_2 + OH^-$	0,17
	$Co^{3+} + 3e^{-} = Co$	0,33
	$Co^{3+} + e^{-} = Co^{2+}$	1,808
Кремний	$SiO_3^2 + 3H_2O + 4e^- = Si + 6OH^-$	-1,7
	$SiO_3^{2-} + 6H^+ + 4e^- = Si + 3H_2O$	-0,455
Литий	$Li^+ + e^- = Li$	-3,045
Магний	$Mg^{2+} + 2e^{-} = Mg$	-2,363

Элемент	Уравнение процесса	ϕ^0, B
000000000000000000000000000000000000000	г ригизии и ридоси	7,-
Марганец	$Mn^{2+} + 2e^{-} = Mn$	-1,179
•	$MnO_4^- + e^- = MnO_4^{2^-}$	0,564
	$MnO_4^- + 2H_2O + 3e^- = MnO_2 + 4OH^-$	0,60
	$MnO_2 + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	1,228
	$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$	1,507
	$Mn^{3+} + e^{-} = Mn^{2+}$	1,509
	$MnO_4^- + 4H^+ + 3e^- = MnO_2 + 2H_2O$	1,692
	$MnO_4^{2-} + 4H^+ + 2e^- = MnO_2 + 2H_2O$	2,257
Медь	$Cu^{2+} + e^{-} = Cu^{+}$	0,153
	$Cu^{2+} + 2e^{-} = Cu$	0,337
	$Cu^+ + e^- = Cu$	0,52
Молибден	$MoO_4^{2-} + 4H_2O + 6e^- = Mo + 8OH^-$	-1,05
	$Mo^{3+} + 3e^{-} = Mo$	-0,200
	$MoO_4^{2^2} + 8H^+ + 6e^- = Mo + 4H_2O$	0,154
Мышьяк	$H_3AsO_4 + 2H^+ + 2e^- = HAsO_2 + 2H_2O$	0,56
	$AsO_4^{3-} + 2H_2O + 2e^- = AsO_2^- + 4OH^-$	-0,71
	$AsO_2^- + 2H_2O + 3e^- = As + 4OH^-$	-0,675
Натрий	$Na^+ + e^- = Na$	-2,714
Никель	$Ni^{2+} + 2e^{-} = Ni$	-0,250
	$Ni(OH)_3 + e^- = Ni(OH)_2 + OH^-$	0,49
Ниобий	$Nb^{3+} + 3e^{-} = Nb$	-1,1
	$Nb_2O_5 + 10H^+ + 10e^- = 2Nb + 5H_2O$	-0,65
Олово	$\mathrm{Sn}^{2+} + 2\mathrm{e}^{\mathrm{T}} = \mathrm{Sn}$	-0,136
	$SnO_2 + 4H^+ + 4e^- = Sn + 2H_2O$	-0,106
	$Sn^{4+} + 4e^{-} = Sn$	0,01
	$\mathrm{Sn}^{4+} + 2\mathrm{e}^{-} = \mathrm{Sn}^{2+}$	0,151
Осмий	$OsO_4 + 8H^+ + 8e^- = Os + 4H_2O$	0,85
	$Os^{2^+} + 2e^- = Os$	0,85
Палладий	$Pd^{2+} + 2e^{-} = Pd$	0,987
Платина	$Pt^{2^+} + 2e^- = Pt$	1,188
Рений	$ReO_4^- + 2H_2O + 3e^- = ReO_2 + 4OH^-$	-0,595
	$ReO_4^- + 4H_2O + 7e^- = Re + 8OH^-$	-0,584
	$Re^{3+} + 3e^{-} = Re$	0,3
	$ReO_4^- + 4H^+ + 7e^- = Re + 4H_2O$	0,37
Родий	$Rh^{3+} + 3e^{-} = Rh$	0,8
Ртуть	$Hg_2^{2+} + 2e^- = 2Hg$	0,788
•	$Hg^{2+} + 2e^{-} = Hg$ $2Hg^{2+} + 2e^{-} = 2Hg_{2}^{2+}$	0,850
	$2Hg^{2+} + 2e^{-} = 2Hg_2^{2+}$	0,920

Элемент	Уравнение процесса	φ ⁰ , B
Рубидий	$Rb^+ + e^- = Rb$	-2,925
Рутений	$Ru^{2+} + 2e^{-} = Ru$	0,45
	$RuO_2 + 4H^+ + 4e^- = Ru + 2H_2O$	0,79
Свинец	$Pb^{2+} + 2e^{-} = Pb$	-0,126
	$PbO_3^{2-} + H_2O + 2e^- = PbO_2^{2-} + 2OH^-$	0,2
	$PbO_2 + 4H^+ + 2e^- = Pb^{2+} + 2H_2O$	1,449
	$Pb^{4+} + 2e^{-} = Pb^{2+}$	1,694
Селен	$Se + 2e^{-} = Se^{2-}$	-0,92
	$Se + 2H^{+} + 2e^{-} = H_{2}Se$	-0,40
	$SeO_3^{2-} + 3H_2O + 4e^{-} = Se + 6OH^{-}$	-0,366
	$H_2SeO_3 + 4H^+ + 4e^- = Se + 3H_2O$	-0,741
	$SeO_4^{2-} + 4H^+ + 2e^- = H_2SeO_3 + H_2O$	1,15
Cepa	$SO_4^{2-} + H_2O + 2e^- = SO_3^{2-} + 2OH^-$	-0,93
	$SO_4^{2-} + 4H_2O + 6e^- = S + 8OH^-$	-0,75
	$S + 2e^{-} = S^{2-}$	-0,48
	$SO_4^{2-} + 8H^+ + 8e^- = S^{2-} + 4H_2O$	0,149
	$S + 2H^{+} + 2e^{-} = H_{2}S$	0,17
	$SO_4^{2-} + 2H^+ + 2e^- = SO_3^{2-} + H_2O$	0,22
	$SO_4^{2^-} + 8H^+ + e^- = S + 4H_2O$	0,357
	$S_2O_8^{2-} + 2e^- = 2SO_4^{2-}$	2,010
Серебро	$Ag^{+} + e^{-} = Ag$ $Ag^{2+} + e^{-} = Ag^{+}$ $Sr^{2+} + 2e^{-} = Sr$	0,799
	$Ag^{2+} + e^{-} = Ag^{+}$	2,00
Стронций	$Sr^{2+} + 2e^{-} = Sr$	-2,888
Сурьма	$SbO_2^- + 2H_2O + 3e^- = Sb + 4OH^-$	-0,675
	$SbO^{+} + 2H^{+} + 3e^{-} = Sb + H_{2}O$	0,212
	$SbO_2^- + 4H^+ + 3e^- = Sb + 2H_2O$	0,446
	$Sb_2O_5 + 6H^+ + 4e^- = 2SbO^+ + 3H_2O$	0,58
Таллий	$Tl^+ + e^- = Tl$	-0,336
	$T1^{3+} + 2e^{-} = T1^{+}$	1,252
Тантал	$Ta_2O_5 + 10H^+ + 10e^- = 2Ta + 5H_2O$	-0,750
Теллур	$Te + 2e^{-} = Te^{2-}$	-1,14
	$Te + 2H^{+} + 2e^{+} = H_{2}Te$	-0,72
	$TeO_3^{2-} + 3H_2O + 4e^{-} = Te + 6OH^{-}$	-0,57
	$TeO_4^{2-} + 2H^+ + 2e^- = TeO_3^{2-} + H_2O$	0,892
	$H_6 TeO_6 + 2H^+ + 2e^- = TeO_2 + 4H_2O$ $Tc^{2+} + 2e^- = Tc$	1,02
Технеций	$Tc^{2+} + \overline{2e^-} = Tc$	0,4
	$TcO_4^- + 8H^+ + 7e^- = Tc + 4H_2O$	0,47
	$TcO_4^- + 8H^+ + 5e^- = Tc^{2+} + 4H_2O$	0,5

Окончание табл.1

Элемент	Уравнение процесса	φ^0 , B
Титан	$Ti^{2+} + 2e^{-} = Ti$	-1,630
	$Ti^{3+} + 3e^{-} = Ti$	-1,23
	$TiO^{2+} + 2H^{+} + 4e^{-} = Ti + H_2O$	-0,88
	$Ti^{3+} + e^{-} = Ti^{2+}$	-0,368
Углерод	$CO_2 + 2H^+ + 2e^- = CO + H_2O$	-0,12
	$CO_3^{2-} + 6H^+ + 4e^- = C + 3H_2O$	0,475
Фосфор	$PO_4^{3-} + 2H_2O + 2e^- = HPO_3 + 3OH^-$	-1,12
	$P + 3H_2O + 3e^- = PH_3 + 3OH^-$	-0,89
	$H_3PO_4 + 4H^+ + 4e^- = H_3PO_2 + 2H_2O$	-0,39
	$H_3PO_4 + 5H^+ + 5e^- = P + 4H_2O$	-0,383
	$H_3PO_4 + 2H^+ + 2e^- = H_3PO_3 + H_2O$	-0,276
Фтор	$OF_2 + 2H^+ + 4e^- = 2F^- + H_2O$	2,1
	$F_2 + 2e^- = 2F^-$	2,87
Хлор	$2ClO^{-} + 2H_{2}O + 2e^{-} = Cl_{2} + 4OH^{-}$	0,40
	$ClO_4^- + 4H_2O + 8e^- = Cl^- + 8OH^-$	0,56
	$2ClO_3^- + 3H_2O + 6e^- = Cl^- + 6OH^-$	0,63
	$C1O^{-} + H_2O + 2e^{-} = C1^{-} + OH^{-}$	0,88
	$ClO_4^- + 2H^+ + 2e^- = ClO_3^- + H_2O$	1,189
	$Cl_2 + 2e^- = 2Cl^-$	1,359
	$ClO_4^- + 8H^+ + 8e^- = Cl^- + 4H_2O$	1,38
	$ClO_3^- + 6H^+ + 6e^- = Cl^- + 3H_2O$	1,451
Хром	$Cr^{2+} + 2e^{-} = Cr$	-0,913
	$Cr^{3+} + 3e^{-} = Cr$	-0,744
	$Cr^{3+} + e^{-} = Cr^{2+}$	-0,407
	$CrO_4^{2-} + 4H_2O + 3e^- = Cr(OH)_3 + 5OH^-$	-0,13
	$CrO_4^{2-} + 4H^+ + 3e^- = CrO_2^- + 2H_2O$	0,945
	$CrO_2^- + 4H^+ + e^- = Cr^{2+} + 2H_2O$	1,188
	$Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$	1,333
	$CrO_4^- + 8H^+ + 3e^- = Cr^{3+} + 4H_2O$	1,477
Цезий	$Cs^+ + e^- = Cs$	-2,923
Цинк	$Zn^{2+} + 2e^{-} = Zn$	-0,763
	$ZnO_2^{2^-} + 2H_2O + 2e^- = Zn + 4OH^-$ $ZrO^{2^+} + 2H^+ + 4e^- = Zr + H_2O$	-1,216
Цирконий		-1,570
	$Zr^{4+} + 4e^{-} = Zr$	-1,539
	$ZrO_2 + 4H^+ + 4e^- = Zr + 2H_2O$	-1,43
Лантаноиды	$La^{3+} + 3e^{-} = La$	-2,522
	$Ce^{3+} + 3e^{-} = Ce$	-2,48
	$Pr^{3+} + 3e^{-} = Pr$	-2,462

Раукастра	Λ <i>U</i> ⁰	$\Delta G^0_{j,298},$	$S^0_{298},$
Вещество	$\Delta H^0_{f,298}$,		Э 298, Пж/(монг. V)
Λ α	кДж/моль	кДж/моль	Дж/(моль·К)
$Ag_{(\Gamma)}$	284,93	246,10	172,88
$Ag_{(\kappa)}$	0	0	42,55
$Ag^{+}_{(p)}$	105,58	77,12	72,80
$AgCl_{(\kappa)}$	-127,1	-109,8	96,11
$Al_{(\Gamma)}$	326,3	288,7	164,4
$Al_{(\kappa)}$	0	0	28,35
$\begin{array}{c} Al_{(K)} \\ Al^{3+}_{(p)} \end{array}$	-530,0	-490,5	-301
$Al_4C_{3(\kappa)}$	-209	-196	88,95
$AlC_{3(\kappa)}$	-704,2	-628,6	109,3
$Al(OH)_{3(\kappa)}$	-1315	-1157	70,1
$Al(OH)_{4(p)}$	-1507,5	-1307,5	89,7
$Al_2O_{3(\kappa)}$	-1676	-1582	50,92
$As_{(\Gamma)}$	288,7	142,2	175,1
As _(серый, к)	0	0	36,6
$As_2O_{5(\kappa)}$	-92,49	-782,4	105,4
$H_3AsO_{3(p)}$	-747,2	-640,5	179,3
$H_3AsO_{4(p)}$	-902,5	-765,7	205,0
$Au_{(\Gamma)}$	365,25	325,6	180,41
$Au_{(\kappa)}$	0	0	47,40
$AuCl_{(K)}$	-36,4	-14,6	85,17
$AuCl_{3(\kappa)}$	-118,4	-53,6	164,4
$Au_2O_{3(\kappa)}$	-13,0	78,7	134,3
$B_{(\Gamma)}$	544	517,6	163,3
$B_{(\kappa)}$	0	0	5,8
B ₂ O _{3(am)}	-1254	-1193,7	80,8
НВО _{2(к)}	-795	-736,1	240,2
$H_3BO_{3(\kappa)}$	-1094,0	-968,8	88,74
$Ba_{(\Gamma)}$	174,6	144,8	170,1
$Ba_{(\kappa)}$	0	0	67
$Ba_{(p)}^{2+}$	-538,0	-561,0	9,6
$Ba(NO_3)_{2(\kappa)}$	-991,0	-795,0	214
$BaSO_{4(\kappa)}$	-1465,0	-1353,0	132,0
$Be_{(\Gamma)}$	326,5	288,8	136,2
$\operatorname{Be}_{(\Gamma)}$	0	0	9,5
$\frac{\mathrm{Be}_{(\kappa)}^{2}}{\mathrm{Be}^{2+}_{(p)}}$	U	-381,2	-196,6
DC (p)	1107	·	,
$\mathrm{BeSO}_{4(\kappa)}$	-1197	-1088	90

	Λ	$\frac{11p}{1}$	ооолжение таол. 2
Вещество	$\Delta H^0_{f,298},$	$\Delta G^0_{j,298},$	$S^0_{298},$
	кДж/моль	кДж/моль	Дж/(моль·К)
$\mathrm{Bi}_{(\Gamma)}$	207,1	159,6	186,9
$Bi_{(\kappa)}$	0	0	56,9
$\mathrm{Bi}^{3+}_{(p)}$	81	91.9	-175
$Bi(OH)_{3(\kappa)}$	-771,8	-580,3	188
$Bi_2(SO_4)_{3(\kappa)}$	-2554	-2593,3	-
$\mathrm{Br}_{(\Gamma)}$	111,8	82,4	186,9
$\mathrm{Br}_{(p)}$	-131,2	-107,1	83,3
$\mathrm{Br}_{2(\Gamma)}$	30,9	3,1	245,5
$\mathrm{Br}_{2(\mathfrak{R})}$	0	0	152,2
$\operatorname{BrO}_{3(p)}$	-40,2	1,84	161,1
$\mathrm{HBr}_{(\Gamma)}$	-34,1	-51,2	198,6
$C_{(\Gamma)}$	712,5	669,7	157,99
С _(графит, к)	0	0	5,74
$CCl_{4(\Gamma)}$	-102,93	-60,63	309,74
$CCl_{4(m)}$	-135,44	-64,7	214,6
$CH_{4(\Gamma)}$	-74,86	-50,79	186,19
$CO_{(\Gamma)}$	-110,52	-137,14	197,54
$COCl_{2(r)}$	-220,3	-266,9	283,9
$CO_{2(r)}$	-393,51	-394,38	213,68
$CO_3^{\frac{2}{2}}_{(p)}$	-676,3,	,528,1	-54,9
$H_2CO_{3(p)}$	-699,5	-619,2	187,4
$Ca_{(r)}$	177,3	143,6	154,8
$Ca_{(\kappa)}$	0	0	41,63
$\operatorname{Ca}^{2+}_{(p)}$	-542,96	-553,0	-55,2
СаСО _{3(кальцит, к)}	-1206,9	-1128,8	92,9
$CaO_{(\kappa)}$	- 635,5	- 604,2	39,7
$Ca(OH)_{2(K)}$	- 986,6	- 896,8	76,1
$Cd_{(r)}$	111,92	77,37	167,65
$Cd_{(K)}$ $Cd^{2+}_{(p)}$	0	0	51,76
$\operatorname{Cd}^{2+}(p)$	- 72,4	-77,65	-70,91
$CdO_{(\kappa)}$	-260,0	-229,3	54,8
$CdSO_{4(\kappa)}$	-934,4	-823,9	123,05
$Cl_{(\Gamma)}$	121,3	105,3	165,1
Cl ⁻ (r)	-233,6	-239,9	153,2
Cl ⁻ _(p)	-167,2	-131,4	56,54
$Cl_{2(r)}$	0	0	222,9
ClO (p)	-110,1	-36,6	33
· - (h)	- y -		

	0		одолжение табл. 2
Вещество	$\Delta H^0_{f,298},$	$\Delta G^0_{j,298},$	$S^{0}_{298},$
	кДж/моль	кДж/моль	Дж/(моль·К)
$ClO_{2(p)}$	-69,0	14,6	100,4
ClO _{3 (p)}	-98,3	-2,6	163,2
$ClO_{4(p)}$	-131,4	-10,8	180,7
$HCl_{(\Gamma)}$	-91,8	-94,79	186,8
$HCl_{(p)}$	-166,9	-131,2	56,5
$Co_{(r)}$	424,68	380,16	179,41
$Co_{(\kappa)}$ $Co^{2+}_{(p)}$ $Co^{3+}_{(p)}$	0	0	30,04
$\operatorname{Co}^{2+}_{(\mathfrak{p})}$	-59,41	-53,55	-112,97
$\operatorname{Co}^{3+}_{(p)}$	94,2	129,8	-285,21
$Co(NO_3)_{2(\kappa)}$	-430,5	-230,5	192
$CoSO_{4(\kappa)}$	-868,2	-761,9	113,4
Cr _(z)	397,5	352,64	174,22
$Cr_{(\kappa)}$ $Cr^{2+}_{(p)}$ $Cr^{3+}_{(p)}$	0	0	23,6
$\operatorname{Cr}^{2+}_{(p)}$	-139,0	-183,4	41,9
$\operatorname{Cr}^{3+}_{(p)}$	-236,1	-223,2	-215,6
$\operatorname{Cr_2O_{3(\kappa)}}$	-1140,6	-1059	81,2
$\operatorname{CrO}_4^{2^{-}}(p)$	-882,2	-739,92	54
$\operatorname{Cr_2O_7^{2-}}_{(p)}$	-1491,9	-1305,4	270,57
$Cr(OH)_{3(\kappa)}$	-999,98	-849,02	80,33
$Cr_2(SO_4)_{3(\kappa)}$	-3308	-2984	288
$Cu_{(r)}$	339,32	299,69	166,27
$Cu_{(\kappa)}$	0	0	33,15
$Cu^{+}_{(p)}$	71,55	50,21	39,33
$\begin{array}{c} Cu^{+}_{\ (p)} \\ Cu^{2+}_{\ (p)} \end{array}$	66,99	65,61	-92,8
$Cu(NO_3)_{2(\kappa)}$	-305,34	-117,15	192,46
CuO _(K)	-162	-129,4	42,63
$CuSO_{4(\kappa)}$	-770,9	-661,8	109
CuSO ₄ *5H ₂ O _(K)	-2279,4	-1879,9	300
$F_{(r)}$	79,5	62,4	158,7
$F_{(r)}$	-259,7	-266,6	145,5
F- _(p)	-331,7	-277,9	-13,8
F_2	0	0	202,9
$HF_{(\Gamma)}$	-270,9	-272,8	173,7
$HF_{(p)}$	-320,08	-296,86	_
$Fe_{(r)}$	416,31	370,67	180,38
$Fe_{(n)}$	0	0	27,15
Fe ²⁺ _(p)	-87,17	-78,96	-130,96
(F)	,	•	

Размастра	A 7.7 ⁽⁾	ΛC^0	0001131Cenue muon. 2
Вещество	$\Delta H^{0}_{f,298},$	$\Delta G^{0}_{j,298},$	S ⁰ ₂₉₈ ,
T 3+	кДж/моль	кДж/моль	Дж/(моль·К)
Fe ³⁺ _(p)	-46,39	-4,52	-309,17
Fe ₃ C _(K)	25	18,8	108
FeO _(K)	-264,8	-244,3	60,75
$Fe_2O_{3(\kappa)}$	-822,2	-740,3	87,4
FeSO _{4(K)}	-929,47	-825,54	121,04
$Fe_2(SO_4)_{3(K)}$	-2584	-2253	282,8
$H_{(\Gamma)}$	217,98	203,3	114,6
$H^{+}_{(\Gamma)}$	1536,2	1516,99	108,8
$\begin{array}{c} H_{(\Gamma)} \\ H^{+}_{\ (\Gamma)} \\ H^{+}_{\ (p)} \end{array}$	0	0	0
$H_{2(\Gamma)}$	0	0	130,52
$\mathrm{Hg}_{(\Gamma)}$	61,3	31,85	174,85
$Hg_{(x)}$	0	0	75,9
$Hg^{2+}_{(p)}$	173,58	164,79	-25,17
$Hg_{(x)}$ $Hg_{(p)}^{2+}$ $Hg_{2}^{(p)}$	171,87	153,7	82,24
$Hg(NO_3)_{2(K)}$	-226	-	-
$HgSO_{4(\kappa)}$	-707,9	-590,0	136,4
$Hg_2SO_{4(\kappa)}$	-744,65	-627,45	200,7
$I_{(\Gamma)}$	106,3	69,5	178,8
Ι (Γ)	-195	-221	167,4
I ⁻ _(p)	-55,9	-51,7	109,4
$I_{2(\Gamma)}$	62,43	19,37	260,59
$I_{2(\kappa)}$	0	0	116,15
$\mathrm{HI}_{(\Gamma)}$	26,57	1,78	206,48
$HI_{(p)}$	-55,2	-51,5	111,3
$K_{(r)}$	89,16	60,67	160,23
$K_{(\kappa)}$	0	0	71,45
$K_{(\kappa)}$ $K^{+}_{(p)}$	-251,2	-281,3	102,5
KBr _(K)	-392,5	-378,8	95,85
$KCl_{(\kappa)}$	-435,9	-408,0	82,56
$K_2CrO_{4(\kappa)}$	-1382,8	1286,0	193
$K_2Cr_2O_{7(\kappa)}$	-2033,0	-1866	291,2
$KI_{(\kappa)}$	-327,6	-324,1	110,79
$KMnO_{4(\kappa)}$	-813,4	-713,8	171,71
$K_2MnO_{4(\kappa)}$	-1184,07	-	_
$KNO_{2(\kappa)}$	-370,3	-218,6	117
$KNO_{3(\kappa)}$	-493,2	-393,1	132,93
$KOH_{(\kappa)}$	-425,8	-380,2	79,32

кДж/моль кДж/моль Дж/(м KOH $_{(p)}$ -477,3 -440,5 91 Li $_{(r)}$ 160,5 127,4 139 LiOH $_{(k)}$ 0 0 28 LiOH $_{(k)}$ -487,2 -442,2 42 LiOH $_{(p)}$ -508,7 - - Mg $_{(r)}$ 146,4 111,9 14 Mg $_{(k)}$ 0 0 32 Mg $_{(p)}$ -467 -455,1 13 Mg $_{(O)}$ -1113 -1029,3 65 Mg $_{(O)}$ -601,8 -569,6 26 Mg $_{(O)}$ -924,7 -833,7 63 Mg $_{(O)}$ -1301,4 -1158,7 91 Mn $_{(r)}$ 279,2 236,98 175	298, ОЛЬ·К) ,6 9,6 8,6 2,8 - 8,5 2,7 38 5,7
кДж/моль кДж/моль Дж/(м KOH $_{(p)}$ -477,3 -440,5 91 Li $_{(r)}$ 160,5 127,4 139 LiOH $_{(k)}$ 0 0 28 LiOH $_{(k)}$ -487,2 -442,2 42 LiOH $_{(p)}$ -508,7 - - Mg $_{(r)}$ 146,4 111,9 14 Mg $_{(k)}$ 0 0 32 Mg $_{(p)}$ -467 -455,1 13 MgCO $_{(k)}$ -1113 -1029,3 65 MgO $_{(k)}$ -601,8 -569,6 26 Mg(OH) $_{2(k)}$ -924,7 -833,7 63 MgSO $_{4(k)}$ -1301,4 -1158,7 91 Mn $_{(r)}$ 279,2 236,98 175	оль·К) ,6 9,6 8,6 2,8 - 8,5 2,7 38
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9,6 8,6 2,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8,6 2,8 - 8,5 2,7 38 5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,8 8,5 2,7 38 5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 8,5 2,7 38 5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,7 38 5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2,7 38 5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38 5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38 5,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 9
$Mg(OH)_{2(\kappa)}$ -924,7 -833,7 63. $MgSO_{4(\kappa)}$ -1301,4 -1158,7 91 $Mn_{(\Gamma)}$ 279,2 236,98 173	,,,,
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,14
$Mn_{(\Gamma)}$ 279,2 236,98 177	.,6
Mn_{co} 0 0 3	3,6
1 1111(K) 0 0	2
	,89
MnO _{2(κ)} -521,5 -466,7 53	3,1
	<u>1,9</u>
	,21
	2,5
	,84
	3,6
	3,2
$N_{2(\Gamma)}$ 0 199	9,9
	2,6
NH ₄ ⁺ _(p) -132,4 -79,5 114	4,4
$NO_{(r)}$ 90,25 86,58 210	0,6
$NO_{2(r)}$ 33 51,5 24	0,2
NO _{3 (p)} -207,5 -111,7 14	7,3
$N_2O_{(\Gamma)}$ 82,1 104,2 220	0,0
	7,3
	3,86
HN _{3(ж)} - 327,2 14	0,6
$ HNO_{2(p)} -119,2 -55,6 152$	2,7
$ HNO_{3(\Gamma)} -135,1 -74,8 260$	6,9
	6,6
$Na_{(r)}$ 108,3 77,3 153	
$Na_{(\kappa)}$ 0 0 51	3,0

D	A 7.70	\perp \sim	оболжение тиол. <u>2</u>
Вещество	$\Delta H_{f,298}^{0}$,	$\Delta G^0_{j,298},$	S ⁰ 298,
	кДж/моль	кДж/моль	Дж/(моль·К)
$Na_{(x)}$	2,48	10,5	57,9
$Na_{(\Gamma)}^{+}$	606,1	575,6	147,9
Na ⁺ _(p)	-239,9	-262,13	58,91
$NaBr_{(\kappa)}$	-361,4	-349,3	86,82
$NaCl_{(\Gamma)}$	-189,4	-201,3	229,7
$NaCl_{(\kappa)}$	-411,1	-384,0	72,12
$NaOH_{(\kappa)}$	-425,6	-380,7	64,4
$NaOH_{(p)}$	-470	-419,2	48,1
$Na_2O_{2(\kappa)}$	-510,4	-446,9	94,88
$Na_2SO_{3(\kappa)}$	-1090	-1002	146,0
$Na_2SO_{4(\kappa)}$	-1384,6	-1266,8	149,5
$Na_3PO_{4(\kappa)}$	-1935,5	-1819	224,7
$Ni_{(\Gamma)}$	423,67	378,29	182,1
$Ni_{(\kappa)}$	0	0	29,9
$Ni^{2+}_{(p)}$	-53,2	-45,59	-126,13
$NiO_{(\kappa)}$	-239,7	-211,6	37,99
$Ni(OH)_{2(\kappa)}$	-543,5	-458,3	80
$Ni(OH)_{3(\kappa)}$	-678,23	-541,83	81,59
NiSO _{4(K)}	-873,5	-763,8	103,85
$O_{(\Gamma)}$	246,8	231,8	160,9
$O_{2(\Gamma)}$	0	0	205,04
$O_{3(\Gamma)}$	142,3	162,7	238,8
$OH_{(p)}$	-230,19	-157,42	-10,86
$H_2O_{(r)}$	-241,82	-228,61	188,72
$H_2O_{(x)}$	-285,83	-237,24	70,08
$H_2O_{2(\mathfrak{M})}$	-187,8	-120,4	109,5
$H_2O_{2(p)}$	-191,4	-133,8	142,4
$P_{(\Gamma)}$	314,64	278,28	163,1
Р _(к, бел.)	0	0	41,1
$PH_{3(r)}$	5,44	13,39	210,1
$\mathrm{HPO}_{3(\kappa)}$	-976,9	-	-
$H_3PO_{3(p)}$	-964,8	-856,8	167,3
$H_3PO_{4(p)}$	-1288,3	-1142,6	-158,1
$H_3PO_{4(\kappa)}$	-1279	-1119,1	110,5
$Pb_{(r)}$	195,6	162,2	175,3
$Pb_{(\kappa)}$	0	0	64,8
$Pb(NO_3)_{2(\kappa)}$	-451,7	-256,9	217,9

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			110	ооолжение таол. 2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Вещество	$\Delta H^0_{f,298},$	$\Delta G^0_{j,298},$	$S^{0}_{298},$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			кДж/моль	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PbO_{(\kappa)}$	-219,3	-189,1	66,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PbO_{2(\kappa)}$	-276,6	-218,3	74,89
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Pb_3O_{4(\kappa)}$	-723,4	-606,2	211,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Pb(OH)_{2(\kappa)}$	-512,5	-451,2	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PbSO_{4(\kappa)}$	-920,6	-813,8	148,67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\operatorname{Pt}_{(\Gamma)}$	564	519,14	192,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Pt_{(\kappa)}$	0	0	41,5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PtCl_{4(\kappa)}$	-229,3	-163,8	267,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PtCl_4^{2-}$ _(p)	-501,16	-363,0	155,03
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$PtCl_{6}^{2}$	-669,9	-485,61	223,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$S_{(\kappa, \text{ монокл})}$	0,38	0,188	32,6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$S^{2-}_{(p)}$	35,81	92,47	-26,78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{SO}_{2(\Gamma)}$			248,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{SO}_{2(\kappa)}$	-331,1	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO ₂ Cl _{2(ж)}	-391,2	-305,0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SO_{3(\Gamma)}$	-396,1	-370	256,4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SO_{3(N)}$	-439,0	-368,04	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SO_{3(K)}$	-454,51	-368,98	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO_{3}^{2-} _(p)	-635,54	-485,16	-29,28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SO_4^{2-} _(p)		-744,93	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_2S_{(r)}$	-21	-33,8	205,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_2S_{(p)}$	-39,75	-27,9	121,3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_2SO_{4(m)}$			156,9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sb_{(r)}$		228,46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Sb_{(\kappa)}$			45,69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{Sb}_2\mathrm{O}_{5(\kappa)}$	-1007,5	-864,7	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Se _(K)	0	0	42,2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Se_{(cT)}$	5,4	2,65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SeO_{2(\Gamma)}$	-125,8	-133,2	264,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SeO _{2(K)}			66,7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$H_2Se_{(\Gamma)}$			218,8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Si_{(\Gamma)}$	468,61	407,6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Si _(K)		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SiC _(K)	-66,8	-60,35	· ·
SiO _{2(кварц, к)} -908,3 -854,2 42,7	$SiF_{4(\Gamma)}$	·	· ·	
$H_2SiO_{3(aMopd_*)}$ -1189,1 -1019,1 -	SiO _{2(квари. к)}		· ·	
	H ₂ SiO _{3(аморф.)}	-1189,1	<u> </u>	-

Окончание табл. 2

Вещество	$\Delta H^0_{f,298},$	$\Delta G^0_{j,298},$	S^{0}_{298} ,
	кДж/моль	кДж/моль	Дж/(моль·К)
Sn _(к, белое)	0	0	51,6
Sn ²⁺ _(p)	-10,5	-27,3	-22,7
Sn ²⁺ _(p) Sn ⁴⁺ _(p)	-2,43	-2,4	-226,1
$SnO_{(\kappa)}$	-286,0	-256,9	56,5
$SnO_{2(\kappa)}$	-580,8	-519,9	52,3
$Sn(OH)_{2(\kappa)}$	-506,3	-491,6	87,7
$Sn(OH)_{4(K)}$	-	-946	155
SnSO _{4(K)}	-887	-	-
$Sn(SO_4)_{2(\kappa)}$	-1650	-1451	155,2
$Sr_{(\Gamma)}$	164	130,9	135,1
$Sr(\kappa)$	0	0	53,1
$Sr_{(K)}$ $Sr^{2+}_{(p)}$	-545,5	-557,3	-26,3
$Ti_{(\Gamma)}$	471,12	426,53	180,2
$Ti_{(\kappa)}$	0	0	30,6
$TiCl_{2(\kappa)}$	-516,7	-472,67	105,85
$TiCl_{4(\Gamma)}$	-763,2	-726,12	352,23
ТіО _{2(к, рутил)}	-943,9	-888,6	50,33
$H_2TiO_{3(\kappa)}$	-	-1058,55	-
$V_{(\Gamma)}$	515,34	469,49	182,2
$V_{(\kappa)}$	0	0	28,9
VO _{2(K)}	-720	-665	51,57
$W_{(\Gamma)}$	844,33	802,26	173,85
W _(K)	0	0	32,7
$WC_{(\kappa)}$	-41,0	-39,5	35
$Zn_{(r)}$	130,73	95,19	160,87
$Zn_{(\kappa)}$	0	0	41,63
$\operatorname{Zn}^{2+}_{(p)}$	-153,74	-147,26	-110,67
$ZnCO_{3(\kappa)}$	-810,74	-732,48	92,47
$Zn(NO_3)_{2(\kappa)}$	-514,63	-298,82	193,72
$ZnO_{(\kappa)}$	-350,6	-320,7	43,64
$Zn(OH)_{2(\kappa, pom \delta)}$	-645,4	-555,9	76,99

Таблица 3 Энергия связи

Молекула	$\Delta H^0_{f,298}$,	Связь	Энергия связи,
	кДж/моль		E_{ce} , кДж/моль
$BaCl_{2(\Gamma)}$	-360	Ba - Cl	448
$BaF_{2(\Gamma)}$	-805	Ba - F	589
$\operatorname{BeCl}_{2(\Gamma)}$	-360	Be - Cl	389
$\mathrm{BeF}_{2(\Gamma)}$	-784	Be - F	569
$BF_{3(r)}$	-1137	B - F	757
$BrF_{5(r)}$	-428,9	Br - F	233
$CH_{4(\Gamma)}$	-74,86	C - H	339
$CF_{4(\Gamma)}$	-993,7	C - F	545
$CCl_{4(\Gamma)}$	-657	C - C1	397
$CoCl_{2(r)}$	-84	Co - Cl	397
$CuF_{2(r)}$	-262	Cu - F	431
$FeCl_{3(r)}$	-252	Fe - Cl	350
$H_2S_{(\Gamma)}$	-21	H - S	349
$IF_{5(\Gamma)}$	-834,3	I - F	281
$NH_{3(\Gamma)}$	-46,19	N - H	313
$NF_{3(r)}$	-126	N - F	297
$PF_{3(\Gamma)}$	-956,5	P - F	464
$PF_{5(\Gamma)}$	-1593	P - F	464
$PH_{3(r)}$	+5	P - H	343
$PbF_{2(\Gamma)}$	-438	Pb - F	355
$PbF_{4(r)}$	-778	Pb - F	355
$PbCl_{4(\Gamma)}$	-314	Pb - Cl	300
$PCl_{3(\Gamma)}$	-287,02	P - Cl	289
$PCl_{5(\Gamma)}$	-375	P - Cl	289
SiH _{4(r)}	+34,7	Si - H	302
$SiF_{4(\Gamma)}$	-1614,9	Si - F	540
$SiCl_{4(\Gamma)}$	-657	Si - Cl	456
$\mathrm{SO}_{2(\Gamma)}$	-296,9	S - O	522
$SO_{3(\Gamma)}$	-396	S - O	522
$TiI_{4(\Gamma)}$	-287	Ti - I	309

РЕКОМЕНДАТЕЛЬНЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Ахметов*, *H*. *C*. Общая и неорганическая химия : учеб. для вузов / H. C. Ахметов. М. : Высш. шк., 2002. 743 с. ISBN 5-06-003363-5.
- 2. *Коровин, Н. В.* Общая химия : учеб. для техн. напр. и спец. вузов / Н. В. Коровин. – М. : Высш. шк., 1998. – 559 с. – ISBN 5-06-003471.
- 3. *Суворов, А. В.* Общая химия: учеб. пособие для вузов / А. В. Суворов, А. Б. Никольский. СПб.: Химия, 1995. 624 с. ISBN 5-7245-1018-9.
- 4. *Орлин, Н. А.* Общая и неорганическая химия : учеб. пособие. В 3 ч. Ч. 1 / Н. А. Орлин, В. А. Кузурман ; Владим. гос. ун-т. Владимир, 2002. 95 с. ISBN 5-89368-361-7.
- 5. *Гольбрайк*, 3. Э. Сборник задач и упражнений по химии / 3. Э. Гольбрайк, Г. И. Маслов. М. : Высш. шк., 1997. 384 с.
- 6. Лабораторный практикум по общей и неорганической химии / под ред. Н. А. Орлина; Владим. гос. ун-т. – Владимир, 1997. – 88 с. – ISBN 5-89368-036-7.
- 7. *Орлин, Н. А.* Общая и неорганическая химия : практикум для студентов хим.-технолог. и эколог. специальностей / Н. А. Орлин, В. А. Кузурман ; Владим. гос. ун-т. Владимир, 1998. 76 с. ISBN 5-89368-089-8.
- 8. *Угай, Я. А.* Общая и неорганическая химия : учеб. для вузов / Я. А. Угай. М. : Высш. шк., 2002. 527 с. ISBN 5-06-003751-7.
- 9. *Павлов, Н. Н.* Общая и неорганическая химия : учеб. для вузов / Н. Н. Павлов. М. : Дрофа, 2002. 448 с. ISBN 5-7107-4288-0.
- 10. Химия. Конспект первокурсника / сост. В. В. Барсуков. Минск : Интерпрессервис, 2002. 160 с.
- 11. *Дибров, И. А.* Неорганическая химия / И. А. Дибров. СПб. : Лань, 2001. 432 с.
- 12. *Артеменко, А. И.* Справочное руководство по химии : справ. пособие / А. И. Артеменко. М. : Высш. шк., 2003. 367 с. ISBN 5-06-004098-4.
- 13. Γ линка, H. Π . Задачи и упражнения по общей химии : учеб. пособие для вузов / H. Π . Γ линка. M. : Интеграл-Пресс, 2002. 240 с.

- 14. Задачи и упражнения по общей химии : учеб. пособие / под ред. Н. В. Коровина. – М. : Высш. шк., 2003. – 255 с. – ISBN 5-06-004140-9.
- 15. *Ахметов Н. С.* Лабораторные и семинарские занятия по неорганической химии / Н. С. Ахметов, [и др.]. М.: Высш. шк., 1988. 303 с.
- 16. *Лидин*, *P. А.* Справочник по неорганической химии / Р. А. Лидин [и др.]. М.: Химия, 1987. 319 с.
- 17. *Лурье, Ю. Ю.* Справочник по аналитической химии / Ю. Ю. Лурье. М.: Химия, 1967. 390 с.
- 18. *Рабинович*, *В. А.* Краткий химический справочник / В. А. Рабинович, 3. Я. Хавин. СПб. : Химия, 1994. 432 с.
- 19. *Орлин, Н. А.* Общая неорганическая химия : учеб. пособие: В 3 ч. Ч.2 / Н. А. Орлин, В. А. Кузурман ; Владим. гос. ун-т. Владимир, 2003. 108 с. ISBN 5-89368-432 X.
- 20. *Орлин, Н. А.* Строение атома и химическая связь : учеб. пособие / Н. А. Орлин ; Иванов. энергет. ин-т. Иваново, 1976. 115с.
- 21. *Карапетьянц, М. Х.* Общая и неорганическая химия / М. Х. Карапетьянц, С. И. Дракин. М.: Химия, 1981. 632 с.

ОГЛАВЛЕНИЕ

Предисловие	3
Тема 1. Эквивалент. Закон эквивалентов	4
Тема 2. Растворы	11
Тема 3. Окислительно-восстановительные реакции	25
Тема 4. Строение атома	32
Тема 5. Химическая связь	32
Тема 6. Комплексные соединения	43
Тема 7. Энергетика химических процессов. Законы термохимии	47
Тема 8. Скорость химических реакций. Химическое равновесие	50
Тема 9. Гидролиз солей	57
Приложение	62
Рекомендательный библиографический список	76

Учебное издание

ОРЛИН Николай Александрович

ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

Практикум для студентов химических, химико-технологических и экологических специальностей

Редактор Р.С. Кузина Технический редактор Н.В. Тупицына Корректор Е.В. Афанасьева Компьютерная верстка С.В. Павлухиной

ЛР № 020275. Подписано в печать 25.01.06. Формат 60х84/16. Бумага для множит. техники. Гарнитура Таймс. Печать на ризографе. Усл. печ. л. 4,65. Уч.-изд. л. 4,85. Тираж 200 экз. Заказ

Издательство Владимирского государственного университета. 600000, Владимир, ул. Горького, 87.