ИННОВАЦИОННАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

Проект 2: индивидуальная траектория обучения и качество образования

Цель: ориентированное на требования рынка

образовательных услуг улучшение качества подготовки и переподготовки специалистов

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Владимирский государственный университет

Кафедра информационных систем и информационного менеджмента

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ДИСЦИПЛИНЕ «ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ»

Составители Р.И. МАКАРОВ В.И. МАЗАНОВА УДК 004.78 ББК 32.97 М54

Рецензент Доктор технических наук, профессор кафедры вычислительной техники Владимирского государственного университета И. Р. Дубов

Печатается по решению редакционного совета Владимирского государственного университета

Методические указания к практическим занятиям по дисм54 циплине «Проектирование информационных систем» / Владим. гос. ун-т; сост. Р. И. Макаров, В. И. Мазанова. – Владимир: Издво Владим. гос. ун-та, 2008. – 35 с.

Представленный материал способствует более глубокому изучению современных методов проектирования информационных технологий и систем, принципов организации ИС, а также вопросов расчетного обоснования технических характеристик информационной системы.

Предназначены для подготовки студентов старших курсов очной формы обучения по специальности 230201 — информационные системы и технологии, а также для специализированной подготовки магистров по направлению 230200 — информационные системы по программе «Анализ и синтез информационных систем».

Ил. 14. Табл. 5. Библиогр. : 8 назв.

УДК 004.78 ББК 32.97

Введение

Широкое использование информационных технологий во всей сфере деятельности человека делает актуальной задачу проектирования информационных систем. Эффективность использования информационных систем во многом зависит от уровня проектной проработки и квалификации обслуживающего персонала. Масштабы и сфера применения ЭВМ стали таковы, что наряду с проблемой надежности и устойчивости ее функционирования возникает проблема обеспечения безопасности циркулирующей в ней информации.

Данный курс знакомит будущих специалистов с методами проектирования информационных систем и технологий. В курсе рассматриваются особенности информационных систем как объекта проектирования, вопросы управления процессом проектирования, отладки и обслуживания информационных систем.

Цель практических занятий — ознакомить студентов с методикой расчетного определения основных характеристик процессов обработки информации и технологиями проектирования информационных систем.

Для изучения дисциплины студент должен освоить знания, излагаемые в следующих курсах: «Системное программное обеспечение», «Информационные технологии», «Операционные системы», «Основы теории управления», «Теория информационных систем и процессов», «Надежность информационных систем», «Моделирование систем», «Информационная безопасность и защита информации», «Банки и базы знаний».

Тема 1. РАСЧЁТНОЕ ОПРЕДЕЛЕНИЕ ТРЕБУЕМЫХ ВЫЧИСЛИТЕЛЬНЫХ РЕСУРСОВ

1.1. Определение производительности вычислителя

Для определения производительности вычислителя требуется предварительное определение средней наработки на отказ сервера и терминала. Под отказом понимают событие, заключающееся в нарушении работоспособности объекта. Если для системы характерна последовательная структура соединения n элементов, то отказ одного элемента приводит к отказу

всей системы. Согласно теореме умножения теории вероятностей вероятность безотказной работы системы за время t можно определить как произведение вероятностей безотказной работы всех элементов [3]:

$$P(t) = \prod_{i=1}^{n} p_i.$$
 (1.1)

Выразим вероятность безотказной работы элементов p_i через их интенсивность отказов λ_i

$$P(t) = \prod_{i=1}^{n} e^{-\int_{0}^{t} \lambda_{i}(\tau) d\tau} - \sum_{i=1}^{n} \int_{0}^{t} \lambda_{i}(\tau) d\tau$$

$$= e^{-\int_{0}^{t} \lambda_{i}(\tau) d\tau}, \qquad (1.2)$$

а, следовательно, интенсивность отказов системы последовательно соединенных элементов

$$\lambda = \sum_{i=1}^{n} \lambda_i. \tag{1.3}$$

Среднее время безотказной работы системы (средняя наработка на отказ) определяется как

$$T_o = \int_0^\infty P(t) dt. \tag{1.4}$$

Для экспоненциального закона распределения наработки до первого отказа элементов количественные характеристики надежности системы при основном соединении имеют вид

$$P(t) = e^{-t \sum_{i=1}^{n} \lambda_i}$$

$$P(t) = e^{-\lambda t} , \qquad (1.5)$$

$$\lambda = \sum_{i=1}^{n} \lambda_i \tag{1.6}$$

$$T_o = \frac{1}{\sum_{i=1}^n \lambda_i} = \frac{1}{\lambda}.$$
 (1.7)

Для оценки требуемой производительности вычислителя необходимо определить значения параметров, представленных в табл. 1.2-1.3, с учетом требований к проектируемой системе. Значения интенсивности отказов элементов проектируемой системы могут быть получены из технической характеристики, представляемой производителем. В случае отсутствия официальной информации производителя значение λ определяется по табл. 1.1

Таблица 1.1. Интенсивность отказов элементов системы

Название устройства	Интенсивность отказов, λ(t)*10 ⁻⁴ 1/час
Датчики сигналов (первичные приборы)	1,05
Нормирующий преобразователь	0,42
Распределительные устройства	1,16
Вторичный показывающий прибор	1,05
Многоточечный микропроцессорный преобразователь	2,00
Персональная ЭВМ	2,00
Процессор	1,00
Память	1,00
Линии связи	0,10
Модем	0,10
Клавиатура	0,20
Устройства ввода/вывода	3,00
Принтер	5,00
Монитор	0,83

Все вычислительные задачи, выполняемые ЭВМ, условно можно разделить на следующие классы:

- 1) моделирование, планирование, научные и оптимизационные задачи;
- 2) формирование и отладка программ на входных языках;
- 3) экономические задачи;
- 4) информационно-справочные задачи.

Для расчета требуемой производительности вычислителя, выполняющего определенные классы задач, необходимо в ходе статистических наблюдений определить значения параметров, представленных в табл. 1.2.

Таблица 1.2. Исходные данные для расчета производительности вычислителя

№ п/п	Наименование параметра	Обозначение
1	Тип задачи	i
2	Вид обработки $(0-c$ локальных устройств, $1-c$ удаленных)	δ_i
3	Среднее число запросов i -го класса, формируемых системой в течение суток	m_i
4	Средний объем вводимого сообщения для задачи <i>i</i> -го класса, в знаках;	Q_i
5	Средняя длина выходного сообщения, выводимого на дисплей после выполнения задания <i>i</i> -го класса, в знаках;	W_i
6	Средняя длительность задачи (в машинных операциях), принадлежащей i -му классу	V_i
7	Среднее число обращений к вводу-выводу (магнитным дискам) при обработке запроса	K_i

Средняя длительность задачи (V_i) определяется по следующей методике [8]:

1) задаются объемы входной и выходной информации для каждой из решаемых задач (в битах):

$$G_{\text{BX}} \text{ } \text{ } G_{\text{BMX}};$$
 (1.8)

2) суммарный поток информации:

$$N^* = G_{\rm BX} + G_{\rm BMX} \,; \tag{1.9}$$

3) число простых операндов в программе для решения данной задачи:

$$n \cong 6N^*; \tag{1.10}$$

4) число команд в программе для решения данной задачи:

$$p \cong 2,5n \,; \tag{1.11}$$

5) длина программы:

$$N = \frac{8}{3}p = N_1 + N_2, (1.12)$$

где N_1 – число операндов; N_2 – искомое число вычислительных операций;

6) общее число операндов в программе:

$$N_1 = \frac{\alpha}{\alpha + 1} N \,, \tag{1.13}$$

где $\alpha = 0,93$ — количество операндов, приходящихся на один оператор программы — параметр, зависящий от выбранного языка программирования (в данном случае, выбран язык управляющего класса программ);

7) количество вычислительных операций для решения задачи:

$$N_2 = N - N_1. (1.14)$$

После определения длительности задач в операциях табл. 1.3-1.4 заполняются значениями указанных в них параметров.

Таблица 1.3. Характеристики задач, выполняемых на терминалах

<i>№</i> n/n	Наименование задачи	Входные данные	Выходные данные	Объем входной информации, $G_{{\scriptscriptstyle \mathrm{BX}}}$, бит	Объем ${\it выходной} \ {\it информации,} \ {\it G}_{{\it вых}}$, бит	Число операций (N ₂)

Таблица 1.4. Исходные данные для расчета производительности процессора

Тип задачи	V _i , onepaций	Q _i , знаков	<i>W</i> _i , знаков	m _i , m.	K _i , m.	δ_{i}

Примечание. При определении значений параметров исходят из того, что в одном бите 4 знака.

Все необходимые данные и результаты произведенных вычислений необходимо свести в табл. 1.5.

Таблица 1.5. Параметры для расчета производительности вычислителя

№	Наименование	•	Значение	Значение для	
n/n	параметра	Обозначение	для сервера	терминала	
	1	2	3	4	
	Коэффициент неравно-				
1	мерности распределения	$K_{\scriptscriptstyle\mathrm{H}}$	1,4	1,4	
	нагрузки по суткам			•	
	месяца				
2	Коэффициент запаса про-	17	1.0	1.0	
	изводительности на разви-	K_{p}	1,2	1,2	
	тие задач пользователя				
3	Коэффициент перевода	${\it Q}$	3600	3600	
	часов в секунды	£			
4	Коэффициент, учитываю-				
	щий наличие процессора	σ	1	1	
	телеобработки (1-есть,	O		-	
	0-нет)				
5	Среднее количество опе-	$oldsymbol{\gamma}_1$	20	20	
	раций, необходимое для				
	организации приема и вы-	ν _α	100	100	
	дачи одного алфавитно-	γ_2			
	цифрового сообщения				
6	Фонд рабочего времени	T_{Φ}	8	8	
	ЭВМ в течение суток	*			
	Среднее время техниче-				
7	ского обслуживания ЭВМ	$T_{\scriptscriptstyle \mathrm{T.O}}$	2	2	
/	с учетом затрат на прове-	1 _{T.0}			
	дение работ обслуживания				

Окончание таб. 1.5

<i>№</i> n/n	Наименование параметра	Обозначение	Значение для сервера	Значение для терминала
	1	2	3	4
8	Средняя наработка на отказ	T_{o}	3030	1851
9	Среднее время восстановления	$T_{\scriptscriptstyle \mathrm{B}}$	0,6	0,6
10	Наработка ЭВМ на сбой	$T_{ m c6}$	12	10
11	Среднее время восстанов-ления после сбоя	$T_{ ext{\tiny B.c6}} = 0.1 T_{ ext{\tiny B}}$	0,06	0,06
12	Среднесуточное время потерь из-за ошибок оператора	$T_{\Pi}=0.05~T_{\Phi}$	0,4	0,4
13	Период функционирования систем диалогового режима в течение суток	T	6	6
14	Число типов задач	n	1	1
15	Число терминало-часов при выполнении работ <i>i</i> типа (только для терминала)	r_i	8	8
16	Удельная нагрузка, создаваемая пользователем на сервер (операций/с)	$egin{aligned} V_i(z) \ l_i(z) \end{aligned}$	10 ⁹ 7·08	5·108 15·10 ⁷
17	Вид обработки	δ_i	1	0
18	Число классов работ, выполняемых в диалоговом режиме – работа с БД	β	1	1

Примечание. В столбцах 3 и 4 приведены возможные значения параметров, индивидуальные для каждой конкретной системы.

Дальнейший расчет требуемой производительности вычислителя осуществляется по формулам 1.15-1.18.

Производительность процессора

$$P_{II} = \frac{1}{QT_{IID}} \sum_{i=1}^{n} [m_i \{ V_i + (Q_i + W_i)(\gamma_1 (1 - \delta_i) + \gamma_2 \delta_i \sigma) \}].$$
 (1.15)

Время полезной работы вычислителя в течение суток

$$T_{\rm np} = T_{\rm \phi} - T_{\rm T.o} - \frac{T_{\rm \phi} - T_{\rm T.o}}{T_{\rm o}} T_{\rm B} - \frac{T_{\rm \phi} - T_{\rm T.o}}{T_{\rm co}} T_{\rm B.co} - T_{\rm II}.$$
(1.16)

Производительность процессора для обслуживания терминалов в диалоговом режиме

$$P_{g} = \frac{1}{T} \sum_{i=1}^{\beta} [r_{i}(v_{i}(z) + \delta_{i}l_{i}(z)\sigma)].$$
 (1.17)

Требуемая производительность процессора

$$P_{\rm TP} = K_{\rm H} K_{\rm P} (P_{\rm \Pi} + P_{\rm g}). \tag{1.18}$$

Вычисленное значение P_{TP} позволяет определить количество операций, выполняемых процессором в одну секунду, и, следовательно, требуемую частоту процессора.

При оценке требуемой производительности вычислителей проектируемой системы необходимо выполнять расчеты по приведенной методике отдельно для процессора сервера и процессора клиентской машины. При выборе процессора по результатам полученных вычислений необходимо также обеспечить рекомендуемый запас производительности, которая требуется для функционирования базовых и/или других прикладных программных средств.

1.2. Вычисление объема требуемой памяти

Зная число входных и выходных данных алгоритма функционирования системы, класс решаемых системой алгоритмов, который характеризуется коэффициентами λ и k, для выбранного языка программирования (с элементностью μ) оцениваются следующие характеристики программного обеспечения [8]:

p — число команд в программе;

V – объем прикладного программного обеспечения;

 $n_{\text{ош}}$ – число возможных ошибок;

T — затраты труда на программирование.

Требуемый объем оперативной памяти (в битах) для функционирования разрабатываемого программного приложения определяется следующим образом:

$$V = N \cdot \log_2 (\eta + n) , \qquad (1.19)$$

где N – длина программы, рассчитывается по формуле (1.8);

n – число простых операндов в программе, рассчитывается по формуле (1.6);

 η – число простых операторов.

Число простых операторов в программе вычисляется следующим образом:

$$\log_2 \eta = \frac{N_2}{\alpha \eta},\tag{1.20}$$

где N_2 – длина программы (число вычислительных операций).

Число возможных ошибок программирования для разрабатываемого программного приложения рассчитывается по следующей формуле:

$$n_{\text{om}} = V/3000$$
, (1.21)

где V – объем программы в битах.

Затраты труда на программирование вычисляются по формуле

$$T = (V \times \mu)/s, \tag{1.22}$$

где μ — элементность языка;

s — число Страуда — количество мысленных различий, выполняемых человеком; для программиста s = $5 \div 20$ в секунду (на практике используют значения $16 \div 18$).

Задачи

- 1. Определить объем оперативной памяти, требуемой для проектируемой системы, для которой объем входной информации составляет 7 934 слова, а объем выходной информации равен 30 522 словам. Число операндов, приходящихся на один оператор программы равно $\lambda = 0.89$.
- 2. Необходимо разработать программный комплекс для моделирования технологических процессов и вычисления расчетов. Объем входной информации 747 слов, объем выходной информации 207 слов. В качестве языка программирования выбран язык со следующими характеристиками: $\alpha = 0.93$; k=1.04; $\mu=13.2$. Определить объем программы, число возможных ошибок и затраты труда на программирование при s=16.
- 3. Рассчитать объем оперативной памяти, необходимой для проектируемой системы, число возможных ошибок программирования, а также затраты труда на программирование при условии, что объем входной информации составляет 32 300 слов, объем выходной информации 48740 слов, $\alpha = 0.93$; k = 1.04; $\mu = 13.2$.

Тема 2. ПОГРЕШНОСТИ ВЫЧИСЛЕНИЙ И ИХ ОЦЕНКА. РАСЧЕТ ПОГРЕШНОСТИ КАНАЛА ИНФОРМАЦИОННО-ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ (ИИС)

Расчет погрешности измерений с учетом случайного характера компонентов выполняется по следующим данным измеряемой физической величины:

 δ_{π} – относительная погрешность, %;

 \mathcal{L}_{x} – диапазон изменения входной величины; $\mathcal{L}_{x} = x_{\max} - x_{\min}$;

 $\Pi_{\text{ацп}}$ — разрядность аналого-цифрового преобразователя (АЦП) (количество значащих разрядов, без знака);

 $\Pi_{\text{эвм}}$ — разрядность ЭВМ (количество значащих разрядов, без знака). Составим баланс погрешностей:

$$\sigma^2 = \sigma_{a\pi p}^2 + \sigma_{u_{3M}}^2 + \sigma_{\tau p}^2 + \sigma_{динам}^2 + \sigma_{\pi apam}^2. \tag{2.1}$$

Для упрощения принимают $\sigma_{anp}^2 = 0$; $\sigma_{napam}^2 = 0$; $\sigma_{динам}^2 = 0$; следовательно, результирующий баланс погрешностей принимает вид

$$\sigma^2 = \sigma_{\text{M3M}}^2 + \sigma_{\text{Tp}}^2. \tag{2.2}$$

Дисперсия погрешности сигнала датчика в единицах измерения входной переменной вычисляется по формуле (для случая нормального закона изменения с вероятностью P=0,95) [8]:

$$\sigma_{\pi}^2 = \frac{\mathcal{A}_x \times \sigma_{\pi}}{2} \times 100\%. \tag{2.3}$$

Цена младшего разряда АЦП:

$$\Delta_{\text{ацп}} = \frac{\mathcal{I}_{x}}{2^{\Pi_{\text{ацп}}} - 1}.$$
 (2.4)

Погрешность квантования имеет равномерный закон распределения.

Дисперсия квантования сигнала по уровню (вычисляется в единицах входной величины):

$$\sigma_{\text{ацп}}^2 = \frac{\Delta_{\text{ацп}}^2}{12}.\tag{2.5}$$

Дисперсия сигнала на входе в ЭВМ:

$$\sigma_x^2 = \sigma_\pi^2 + \sigma_{\text{aum}}^2. \tag{2.6}$$

В ЭВМ реализуется некий вычислительный алгоритм y = f(x). Диапазон изменения расчетной величины

$$\mathcal{L}_{v} = y_{\text{max}} - y_{\text{min}} . \tag{2.7}$$

Цена младшего разряда ЭВМ:

$$\Delta_y = \frac{\mathcal{I}_y}{2^{\Pi_{9BM}} - 1}.$$

Погрешность расчетов подчиняется равномерному закону распределения, поэтому дисперсия одной вычислительной операции:

$$\sigma_{\text{OM}}^2 = \frac{\Delta_y^2}{12}.$$

Дисперсия вычислительного алгоритма (измерительная погрешность):

$$\sigma_{\text{изм}}^2 = \sigma_{\text{он}}^2 \times N_{\text{алг}}$$

где $N_{\rm ann}$ – число операций в алгоритме.

Задачи

- 1. Канал информационно-измерительной системы контролирует изменения температуры. Алгоритм расчета: $y = 1000 + (600/x_{max})x$; $x = 0 \div x_{max}$; $x_{min} = 0$; $x_{max} = 600$, количество операций в вычислительном алгоритме равно 4. Разрядность АЦП составляет 7 разрядов без знака, а разрядность ЭВМ равна восьми разрядам без знака. Дисперсия погрешности сигнала датчика в единицах измерения входной величины составляет 1 %. Составить балансное соотношение и рассчитать погрешность канала ИИС.
- 2. Рассчитать погрешность канала информационно-измерительной системы при условии, что известны значения следующих параметров: $\Pi_{\text{ацп}} = 8$; $\Pi_{\text{эвм}} = 8$; $N_{\text{алг}} = 3$; $\delta_{\text{д}} = 0.5$ %; $y = 850 + (850/x_{\text{max}})x$; $x = 0 \div x_{\text{max}}$; $x_{\text{min}} = 0$; $x_{\text{max}} = 850$.

Тема 3. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ КЛИЕНТ-СЕРВЕРНЫХ ИНФОРМАЦИОННЫХ СИСТЕМ

Архитектура современных клиент-серверных информационных систем (ИС) базируется на принципах клиент-серверного взаимодействия программных компонентов информационной системы.

Клиент-серверная архитектура в вычислительной сети может быть реализована по-разному. Выбор конкретной схемы определяется различными вариантами территориального распределения удаленных подразде-

лений предприятия, требованиями эксплуатационной надежности, быстродействием, простотой обслуживания. Возможные варианты клиент-серверной архитектуры информационных систем представлены на рис. 3.1.

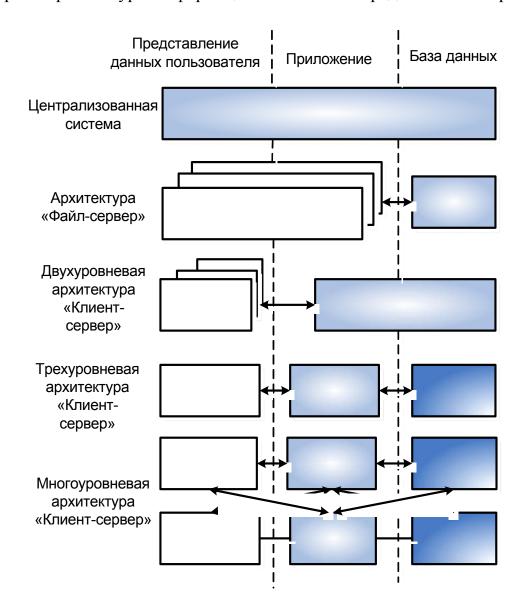


Рис. 3.1. Варианты клиент-серверной архитектуры ИС

Рассмотрим технологическую сеть [7] техно-рабочего проектирования трехуровневой клиент-серверной информационной системы (рис. 3.2).

П1 – Разработка общей структуры ИС

Эта операция выполняется на основе описания предметной области (D1) и технического задания (D4), а также универсумов сетевых операци-

онных систем и технических платформ (U1), серверов БД (U2), программных средств разработки клиент-серверных ИС (U3).

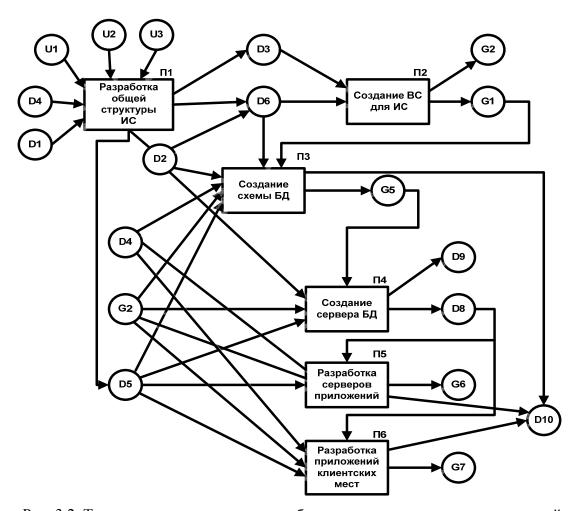


Рис. 3.2. Технологическая сеть техно-рабочего проектирования трехуровневой клиент-серверной ИС: D1 – описание предметной области; D2 – описание выбранного сервера БД; D3 – описание выбранной конфигурации технических средств и сетевой операционной системы; D4 – техническое задание; D5 – описание выбранных программных средств разработки ИС; D6 – описание функциональной структуры ИС; D8 – права доступа различным категориям пользователей ИС; D9 – журнал заполнения областей БД; D10 – сопровождающая документация; U1 – универсум сетевых операционных систем и технических платформ; U2 – универсум серверов БД; U3 – универсум программных средств разработки ИС; G1 – вычислительная сеть; G2 – СУБД; G5 – SQL-описание БД с управляющими элементами; G6 – программное обеспечение сервера; G7 – приложения клиентских мест

Выходом данной технологической операции служит описание выбранной конфигурации технических средств и сетевой операционной системы (D3), описание выбранного сервера БД (D2), описание выбранных средств разработки клиент-серверных ИС (D5), описание функциональной структуры

(D6). Сущность операции сводится к выбору программно-технической среды реализации клиент-серверной ИС и распределению функций обработки данных ИС по уровням клиент-серверной архитектуры.

Выбор сетевых операционных систем (ОС) во многом зависит от технической платформы вычислительных средств. Выбор сервера БД для клиент-серверной ИС основывается на анализе рынка серверов БД по следующим критериям:

- 1) независимость от программно-аппаратной платформы и типа аппаратной архитектуры;
- 2) поддержка стандарта открытых систем, многопроцессорной и параллельной обработки данных, WEB-серверов и работы с Интернет, а также вторичных индексов;
- 3) оптимальное хранение распределенных данных;
- 4) непрерывная работа, защита от сбоев, простота в использовании.

Выбор программных средств разработки клиент-серверных ИС определяется требованиями применяемой технологии проектирования ИС.

Разработка общей функциональной структуры корпоративной ИС на основе функционально-ориентированной или объектно-ориентированной методологии проектирования заключается в определении:

- 1) функций сервера БД;
- 2) функций серверов приложений;
- 3) функций клиентских мест;
- 4) информации, необходимой для выполнения выделенных функций;
- 5) распределения серверов и клиентских мест по узлам вычислительной сети (ВС);
- 6) прав доступа пользователей к ИС.

П2 – Создание вычислительной сети (ВС) для ИС

Создание ВС заданной архитектуры для ИС заключается в закупке и монтаже оборудования, а также инсталляции сетевого программного обеспечения и СУБД. На основе описания функциональной структуры (D6), описания выбранной конфигурации технических средств и сетевой операционной системы (D3), описания выбранного сервера БД (D2) происходят создание вычислительной сети (G1) и установка СУБД (G2).

ПЗ – Создание схемы базы данных (БД)

На основе технического задания (D4), описания выбранных программных средств разработки (D5), описания функциональной структуры ИС (D6), описания выбранного сервера БД (D2) и его СУБД (G2), конфи-

гурации вычислительной сети (G1) осуществляется разработка схемы БД с управляющими элементами (G5) и ее документирование (D10).

Создание схемы БД сводится к выполнению технологических операций, представленных на рис. 3.3.

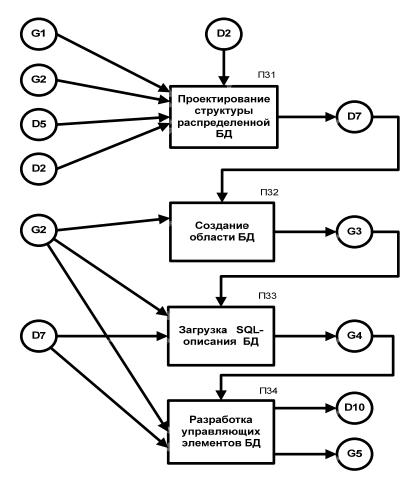


Рис. 3.3. Технологическая сеть проектирования базы данных в клиент-серверной среде

П4 – Создание сервера БД ИС

На основании разработанной схемы БД с управляющими элементами (G5), описания выбранного сервера БД (D2) и его СУБД (G2) осуществляется создание сервера БД, то есть физическое наполнение БД и настройка программ доступа СУБД. Выходом данной операции служит физическое установление прав доступа различным категориям пользователей ИС (D8), журнал заполнения областей БД (D9).

П5 – Разработка серверов приложений

Исходя из информационных потребностей пользователей (D4) и их прав (D8), используя программные средства разработки (D5), разрабатывается сервер приложения (G5) и сопровождающая документация (D10).

В состав сервера приложений входят набор сервисов (функций обработки данных) и монитор транзакций, осуществляющий управление выполнением сервисов по обслуживанию клиентских потребностей.

П6 – Разработка клиентских приложений на рабочих станциях

На основе информационных потребностей пользователей (D4) и их прав (D8), используя программные средства разработки (D5), создаются приложения клиентских мест (G7) и сопровождающая документация (D10). В частности, осуществляется проектирование пользовательского интерфейса клиентских частей приложений.

Тема 4. ФУНКЦИОНАЛЬНО-ОРИЕНТИРОВАННОЕ ПРОЕКТИРОВАНИЕ ИС. ДИАГРАММЫ ФУНКЦИОНАЛЬНЫХ СПЕЦИФИКАЦИЙ, ПОТОКОВ ДАННЫХ, ПЕРЕХОДОВ СОСТОЯНИЙ, ПРОГРАММНОГО ПРИЛОЖЕНИЯ.

РАССМОТРЕНИЕ ТИПИЧНОЙ СЕТИ ПРОЕКТИРОВАНИЯ

Основные идеи функционально-ориентированной CASE-технологии – идеи структурного анализа и проектирования информационных систем:

- 1) декомпозиция всей системы на некоторое множество иерархически подчиненных функций;
- 2) представление всей информации в виде графической нотации.

В качестве инструментальных средств структурного анализа и проектирования выступают следующие диаграммы:

- 1) BFD(Business Function Diagram) диаграмма бизнес-функций (функциональные спецификации);
- 2) DFD (Data Flow Diagram) диаграмма потоков данных;
- 3) STD (State Transition Diagram) диаграмма переходов состояний (матрицы перекрестных ссылок);
- 4) SSD (System Structured Diagram) диаграмма структуры программного приложения;
- 5) ERD (Entity Relationship Diagram) ER-модель данных предметной области (информационно-логические модели «сущность-связь»).

Технологическая сеть проектирования корпоративных ИС на основе функционально-ориентированной CASE-технологии [2, 7] представлена на рис. 4.1. Технологические операции с преобразователями П1, П2, П3, П4, П5, П6, П7 выполняются на стадии технического проектирования. ТО с преобразователями П3, П4, П5, П6 выполняются последовательно-параллельно и

взаимно уточняются в ходе выполнения. Технологические операции (ТО) с преобразователями П8 – П11 отражают процесс кодогенерации проекта.

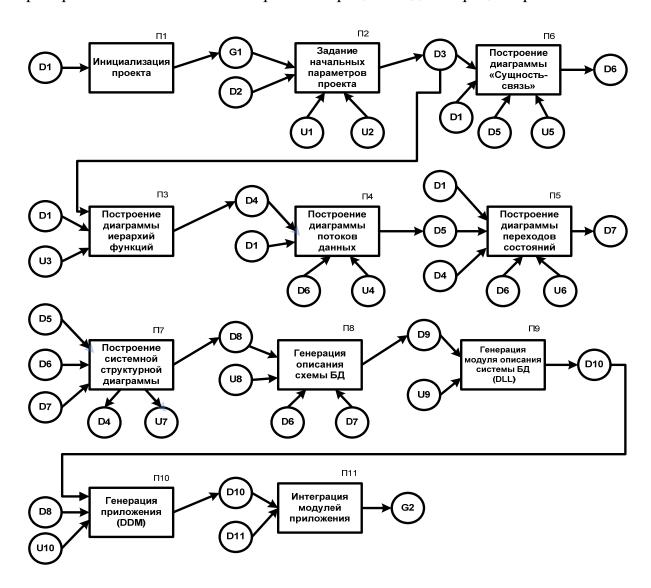


Рис. 4.1. Технологическая сеть проектирования ИС на основе использования функционально-ориентированной САЅЕ-технологии: D1 — материалы обследования; D2 — перечень проектировщиков и их прав доступа; D3 — описание начальных параметров проекта; D4 — диаграмма функций проекта; D5 — диаграмма потоков данных (ДПД); D6 — диаграмма «сущность-связь»; D7 — диаграмма переходов состояний (ДПС); D8 — системная структурная диаграмма; D9 — схема БД; D10 — модуль описания данных; D11 — модули программного приложения; U1 — универсум САЅЕ-методологий проектирования; U2 — универсум нотаций; U3 — конструктивные элементы диаграмм иерархии функций; U4 — конструктивные элементы диаграмм потоков данных; U5 — конструктивные элементы диаграмм переходов состояний; U7 — конструктивные элементы программного приложения; U8 — универсум целевых СУБД; U9 — универсум языков определения данных; U10 — универсум языков определения модулей; G1 — новый репозиторий; G2 — программное приложение

П1 – Инициализация проекта

Данный преобразователь используется на стадии инициализации нового проекта корпоративной ИС. На основании документа «Материалы обследования» (D1) создается новый репозиторий (G1) для проектируемой системы.

П2 – Задание начальных параметров проекта

Данным преобразователем из универсума методологий (U1) выбирается CASE-методология проектирования и в рамках выбранной методологии определяется нотация на основе универсума U2. Перечень проектировщиков и их прав доступа к проекту (D2) служит для описания коллектива разработчиков проекта. Результат выполнения операции — описание начальных параметров проекта в репозитории (D3).

ПЗ – Построение диаграммы иерархий функций

ТО с преобразователем ПЗ выполняется на основе «Материалов обследования» (D1) и универсума конструктивных элементов диаграмм иерархий функций (U3). Выполнение преобразователя сводится к выполнению следующих работ:

- 1) отображение основной функции;
- 2) декомпозиция основной функции на подфункции;
- 3) дальнейшая декомпозиция подфункций до необходимой степени детализации;
- 4) контроль правильности построенной диаграммы.

П4 – Построение диаграммы потоков данных

Построение ДПД можно свести к следующим шагам:

- 1) расчленение множества требований на функциональные группы;
- 2) идентификация внешних объектов (по отношению к системе);
- 3) идентификация информации, которая передается между процессами;
- 4) разработка контекстной диаграммы;
- 5) контроль контекстной диаграммы и уточнение, если это необходимо;
- 6) формирование ДПД первого уровня, где отражены основные функции системы;
- 7) дальнейшая декомпозиция каждого процесса до тех пор, пока процесс самого нижнего уровня можно будет представить в виде некоторой спецификации (алгоритма);
- 8) ревизия всех уровней с целью выяснения некорректности, а при ее обнаружении устранение.

П5 – Построение диаграммы переходов состояний

Преобразователь данной технологической операции описывает возможные состояния проектируемой системы и переходы между ними. Применяются два способа построения диаграмм переходов состояний (ДПС):

- 1) сначала выявляются возможные состояния системы, а далее переходы из одного состояния в другое;
- 2) сначала строится начальное состояние, а затем осуществляется переход в очередное состояние и т.д. (последовательный переход).

Полученная ДПС проверяется на корректность построения. Когда число состояний и переходов достаточно велико, эта диаграмма может быть представлена в табличной форме (матрица переходов состояний).

П6 – Построение диаграммы «Сущность-связь»

Технологическая операция с данным преобразователем моделирует структуры данных, которые будут храниться в БД.

Построение ER-диаграммы сводится к следующим этапам:

- 1) идентификация всех сущностей, их атрибутов и первичных ключей;
- 2) идентификация отношений между сущностями с указанием мощности этих отношений;
- 3) в случае выявления отношений n:n их преобразование к отношениям вида 1:n или 1:1 путем добавления новой сущности.

П7 – Построение системной структурной диаграммы

ТО с данным преобразователем используется для построения структуры программного приложения информационной системы.

Этапы построения системной структурной диаграммы:

- 1) выделение в диаграмме бизнес-функций тех функций, которые будут реализованы в программном виде;
- 2) анализ соответствующих диаграмм потоков данных для выделенных функций и подфункций с учетом входных и выходных потоков данных;
- 3) определение структуры потоков данных с учетом списка атрибутов сущностей из ER-диаграммы;
- 4) определение на ДПС состояний, переходов и событий, вызывающих переходы, реализующих бизнес функции;
- 5) задание программной реализации каждого состояния в виде библиотечного модуля CASE-системы или модуля, написанного на другом языке;

- 6) разработка эскиза системной структурной диаграммы для каждой выделенной функции;
- 7) объединение системных структурных диаграмм в одну, исходя из диаграммы бизнес-функций;
- 8) контроль системной структурной диаграммы с использованием CASE-средств;
- 9) переход к прототипированию (макетированию) интерфейса программного приложения на основе системной структурной диаграммы в случае отсутствия ошибок на этапе контроля;
- 10) выбор из встроенных библиотек шаблона интерфейса для каждого модуля, создание шаблона в режиме конструктора или разработка программного модуля на встроенном языке программирования.

Таким образом, перед генерацией все элементы системной структурной диаграммы должны быть определены с учетом интерфейса и связи с таблицами ER-модели.

П8 – Генерация описания схемы БД

На основе диаграммы «Сущность – связь» (D6) и системной структурной диаграммы (D8), а также универсума целевых СУБД (U8) происходит выбор СУБД и генерация для нее описания схемы БД (D9).

П9 – Генерация модуля описания системы БД (DLL)

В результате процесса генерации получают исходные тексты программ на языке выбранной среды.

Генерация может быть двух видов:

- 1) неполная генерация на основе диаграммы «Сущность-связь» и выбранной целевой СУБД генерируются модули описания данных DLL на языке описания данных;
- 2) полная генерация включает в себя генерацию DLL на языке описания данных, выбор среды, в которой будет приведен исходный код, полученный во время генерации, а также запуск процесса генерации.

П10 – Генерация приложения (DDM)

Генерация модулей программного приложения, реализующего ИС (D11), происходит на основе системной структурной диаграммы (D8) и универсума языков определения модулей DDM (U10).

П11 – Интеграция модулей приложения

В результате выполнения ТО с данным преобразователем происходит интеграция полученных ранее модулей (D10, D11), что приводит к получению готового программного приложения, реализующего ИС (G2).

Тема 5. ОБЪЕКТНО-ОРИЕНТИРОВАННОЕ ПРОЕКТИРОВАНИЕ ИС. РАССМОТРЕНИЕ ТЕХНОЛОГИЧЕСКОЙ СЕТИ ЛОГИЧЕСКОГО, ФИЗИЧЕСКОГО ПРОЕКТИРОВАНИЯ И РЕАЛИЗАЦИИ

Для проектирования ИС на основе объектно-ориентированной CASE-технологии характерны последовательное расширение и уточнение моделей на различных стадиях жизненного цикла ИС: анализа системных требований, логического и физического проектирования, реализации.

Технологическая сеть проектирования на основе объектноориентированной CASE-технологии [1, 2, 7] представлена на рис. 5.1.

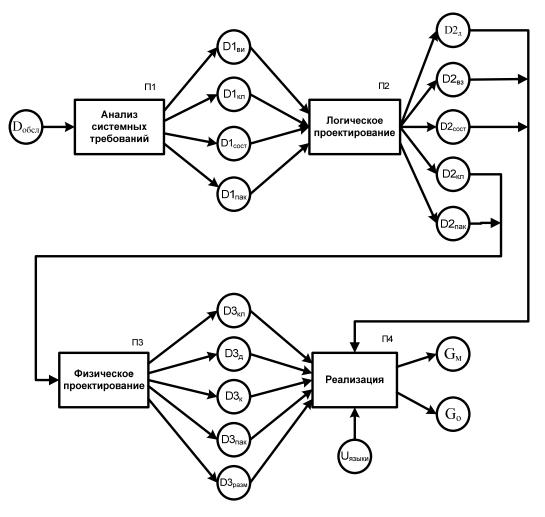


Рис. 5.1. Технологическая сеть объектно-ориентированного проектирования ИС: $D_{\text{обсл}}$ результаты обследования объекта автоматизации (описание системы); $D1_{\text{ви}}$, $D2_{\text{ви}}$ – диаграммы вариантов использования (прецедентов); $D1_{\text{кл}}$, $D2_{\text{кл}}$, $D3_{\text{кл}}$ – диаграммы классов объектов; $D1_{\text{сост}}$, $D2_{\text{сост}}$ – диаграммы состояний объектов; $D1_{\text{пак}}$, $D2_{\text{пак}}$, $D3_{\text{пак}}$ – диаграммы пакетов; $D2_{\text{вз}}$ – диаграммы взаимодействий; $D2_{\text{д}}$, $D3_{\text{д}}$ – диаграммы деятельностей; $D3_{\text{к}}$ – диаграмма компонентов; $D3_{\text{разм}}$ – диаграмма размещения компонентов; $U_{\text{языки}}$ – универсум объектно-ориентированных языков программирования; $G_{\text{о}}$ – классы объектов; $G_{\text{м}}$ – процедуры методов

Анализ системных требований к ИС

Технологическая сеть анализа системных требований к ИС представлена на рис. 5.2. На этапе анализа системных требований к ИС используется описание системы, полученное в ходе работ по анализу и проектированию бизнес-процессов. Эти материалы могут содержать описание организационной структуры, информационных потоков, материальных, финансовых потоков и т.д. Перечисленные описания могут быть выполнены с помощью традиционных средств графического отображения либо с помощью различных методологий бизнес-реинжиниринга, например, с помощью объектно-ориентированной методологии.

Объектно-ориентированная методология анализа и проектирования бизнес-процессов предусматривает:

- 1) описание бизнес-процессов как прецедентов использования, актерами в которых являются внешние участники бизнеспроцессов (клиенты, поставщики, субподрядчики, инвесторы, финансовые компании, государственные органы);
- 2) задание порядка разработки и автоматизации бизнес-процессов в соответствии с определенными критериями, например, наибольшим эффектом для заказчика, простотой и быстротой разработки и т.д.;
- 3) неформальное словесное описание бизнес-процессов.

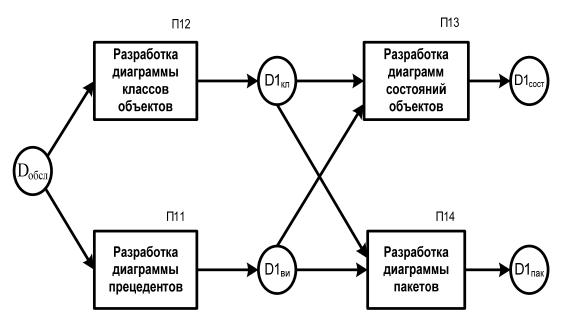


Рис. 5.2. Технологическая сеть системного анализа требований: $D1_{\kappa\pi}$ – диаграмма классов объектов; $D1_{ви}$ – диаграмма вариантов использования (прецедентов); $D1_{\text{сост}}$ – диаграммы состояний объектов; $D1_{\text{пак}}$ – диаграмма пакетов

Логическое проектирование ИС

На этапе логического проектирования ИС осуществляются детализация моделей прецедентов использования, классов объектов, состояний, пакетов и разработка моделей взаимодействия объектов и деятельностей, которые определяют характер методов (процедур) обработки объектов (рис. 5.3).

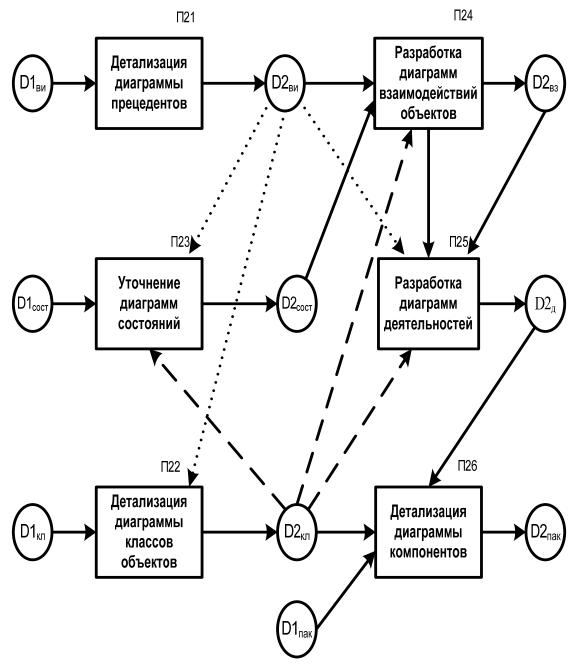


Рис. 5.3. Технологическая сеть логического проектирования ИС: $D1_{\text{ви}}$, $D2_{\text{ви}}$ – диаграммы вариантов использования (прецедентов); $D1_{\text{кл}}$, $D2_{\text{кл}}$ – диаграммы классов объектов; $D1_{\text{сост}}$, $D2_{\text{сост}}$ – диаграммы состояний объектов; $D1_{\text{пак}}$, $D2_{\text{пак}}$ – диаграммы пакетов; $D2_{\text{вз}}$ – диаграммы взаимодействий; $D2_{\text{д}}$ – диаграммы деятельностей

Физическое проектирование ИС

На этапе физического проектирования происходит детализация диаграмм классов и пакетов [1] с позиции их реализации в конкретной программно-технической среде (рис. 5.4).

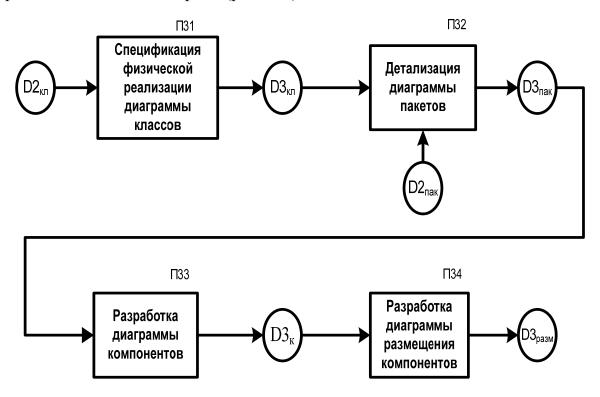


Рис. 5.4. Технологическая сеть физического проектирования: UC : $D2_{\kappa\pi}$, $D3_{\kappa\pi}$ – диаграммы классов объектов; $D2_{\text{пак}}$, $D3_{\text{пак}}$ – диаграммы пакетов; $D3_{\kappa}$ – диаграмма компонентов; $D3_{\text{разм}}$ – диаграмма размещения компонентов

Реализация ИС

На этапе реализации осуществляется кодогенерация классов объектов, программирование процедур методов классов объектов, наполнение баз данных и размещение компонентов по узлам вычислительной сети (рис. 5.5).

Генерация классов объектов (G_o) в конкретной объектно-ориентированной программной среде, выбираемой из универсума объектно-ориентированных языков программирования $(U_{\rm языки})$, осуществляется на основе диаграммы классов объектов $(D3_{\rm кл})$.

Генерация шаблонов процедур методов класса объектов ($G_{\text{ш}}$) в конкретной объектно-ориентированной программной среде производится на основе диаграммы взаимодействий объектов ($D2_{\text{вз}}$).

Программирование процедур методов класса объектов $(G_{\text{м}})$ выполняется на основе шаблонов процедур методов классов объектов (G_{m}) по

спецификациям диаграмм деятельностей $(D2_{\tt d})$ и состояний объектов $(D2_{\tt coct})$.

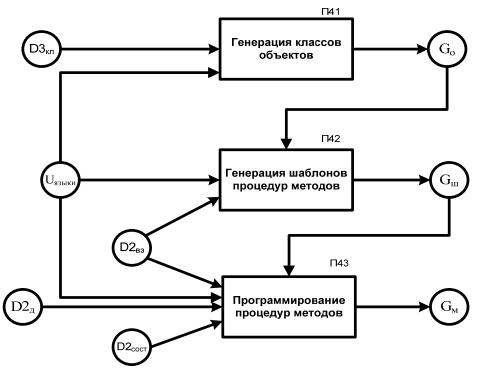


Рис. 5.5. Технологическая сеть реализации ИС: $D3_{\mbox{\tiny KЛ}}$ — диаграмма классов объектов; $D2_{\mbox{\tiny COCT}}$ — диаграммы состояний объектов; $D2_{\mbox{\tiny B3}}$ — диаграммы взаимодействий; $D2_{\mbox{\tiny Д}}$ — диаграммы деятельностей; $U_{\mbox{\tiny ЯЗЫКИ}}$ — универсум объектно-ориентированных языков программирования; $G_{\mbox{\tiny 0}}$ — классы объектов; $G_{\mbox{\tiny Ш}}$ — шаблоны процедур методов классов; $G_{\mbox{\tiny M}}$ — процедуры методов

Тема 6. ПРОТОТИПНОЕ ПРОЕКТИРОВАНИЕ ИС. RAD –ТЕХНОЛОГИЯ ПРОЕКТИРОВАНИЯ ИС. РАССМОТРЕНИЕ ДВУХ ВАРИАНТОВ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ПРОЕКТИРОВАНИЯ

Применение технологии прототипного проектирования позволяет повысить качество и эффективность создаваемых сложных корпоративных систем. Данная технология обеспечивает создание на ранней стадии реализации системы действующей интерактивной модели системы — системы-прототипа, позволяющей наглядно продемонстрировать пользователю будущую систему, уточнить его требования, оперативно модифицировать интерфейсные элементы.

Существует два базовых варианта организации технологического процесса проектирования с использованием систем-прототипов.

В первом варианте создание системы-прототипа используется для лучшей спецификации требований к разработке ИС, после разработки которых сам прототип оказывается ненужным. В этом случае традиционно разрабатывается «Постановка задачи», документация которой является спецификацией системы прототипа. После демонстрации пользователю и доработки прототипа разрабатывается новая «Постановка задачи», которая служит основой создания действующей ИС. Технологическая сеть проектирования (ТСП) данного варианта на стадии технорабочего проектирования ИС [7] представлена на рис. 6.1.

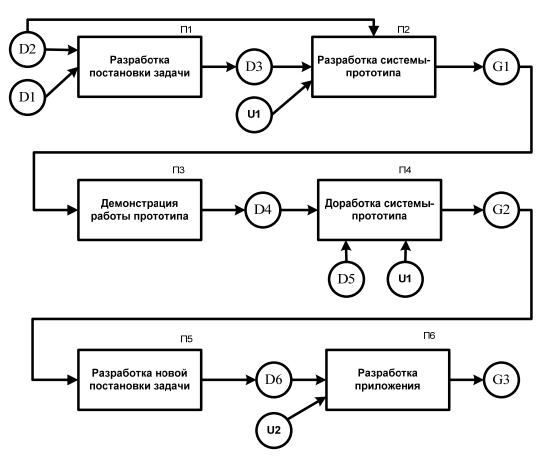


Рис. 6.1. Технологическая сеть проектирования традиционного использования прототипа ИС: D1 – техническое задание на разработку; D2 – описание предметной области; D3 – постановка задачи; D4 – результаты работы приложения-прототипа; D5 – замечания и уточненные требования к ИС; D6 – новая постановка задачи; U1— универсум средств быстрой разработки приложений; U2— универсум средств разработки приложений; G1 – новый репозиторий; G2 – програмное приложение; G3 – готовое приложение

Основной недостаток первого варианта использования прототипирования — неэффективное использование системы-прототипа, а именно: прототипы не используются в дальнейшей разработке ИС после того, как выполнили свою первую задачу — устранили неясности в проекте.

Второй вариант предполагает итерационное развитие системыпрототипа в готовый для эксплуатации программный продукт. Итерации разработки системы-прототипа включают создание/модификацию системы-прототипа, ее демонстрацию пользователю и согласование, разработку новых спецификаций-требований к системе, новую модификацию и т.д., пока не будет создано готовое приложение. Документацию компонентов системы-прототипа непосредственно составляют спецификации, которые являются требованиями к программной реализации системы и определяют характер взаимоотношений с заказчиком на этапе сдачи готовой системы. ТСП данного варианта на стадии технорабочего проектирования ИС представлена на рис. 6.2.

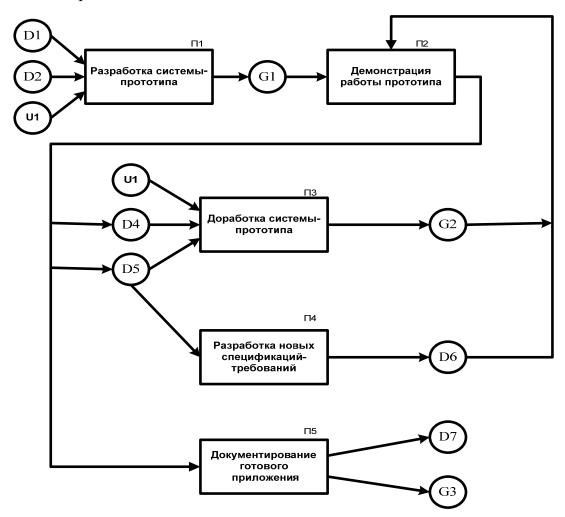


Рис. 6.2. Технологическая сеть проектирования традиционного использования прототипа ИС: D1 — техническое задание на разработку; D2 — описание предметной области; D4 — результаты работы приложения-прототипа; D5 — замечания и уточненные требования к ИС; D6 — новые спецификации-требования; D7 — диаграмма переходов состояний (ДПС); U1— универсум средств быстрой разработки приложений; G1 — приложение-прототип; G2 — доработанный прототип; G3 — готовое приложение

Итерационное использование прототипного подхода к разработке ИС обеспечивает экономию ресурсов на проектирование и, самое главное, экономию времени на разработку и внедрение готовой к эксплуатации системы. При этом основное достоинство прототипной технологии — значительное снижение объема доработок ИС при ее внедрении, который для традиционных методов проектирования, как показывает опыт, соразмерен с затратами на первоначальную реализацию.

Тема 7. МОДЕЛЬНО-ОРИЕНТИРОВАННОЕ ПРОЕКТИРОВАНИЕ ИС. РАССМОТРЕНИЕ ТЕХНОЛОГИЧЕСКОЙ СЕТИ МОДЕЛЬНО-ОРИЕНТИРОВАННОГО ПРОЕКТИРОВАНИЯ

Сущность модельно-ориентированного проектирования ИС сводится к адаптации компонентов типовой ИС в соответствии с моделью проблемной области конкретной организационно-экономической системы. Для этого технология проектирования должна поддерживать как модель типовой ИС, так и модель конкретного предприятия, а также средства поддержания соответствия между ними.

Ядро типовой ИС – постоянно развиваемая модель проблемной области (предприятия), поддерживаемая в специальной базе метаинформации – репозитории, на основании которого осуществляются конфигурации программного обеспечения. Таким образом, проектирование и адаптация ИС сводится, прежде всего, к построению модели проблемной области и ее периодической корректировке.

Технологическая сеть модельно-ориентированного проектирования ИС Стадия «Выбор типовой ИС»

Решение о выборе типовой ИС руководство предприятия принимает на основании предварительной модели предприятия. Предпочтение отдается той типовой ИС, модель предприятия которой в наибольшей степени соответствует целям автоматизации. Технологическая сеть

построения предварительной модели предприятия [7] представлена на рис. 7.1.

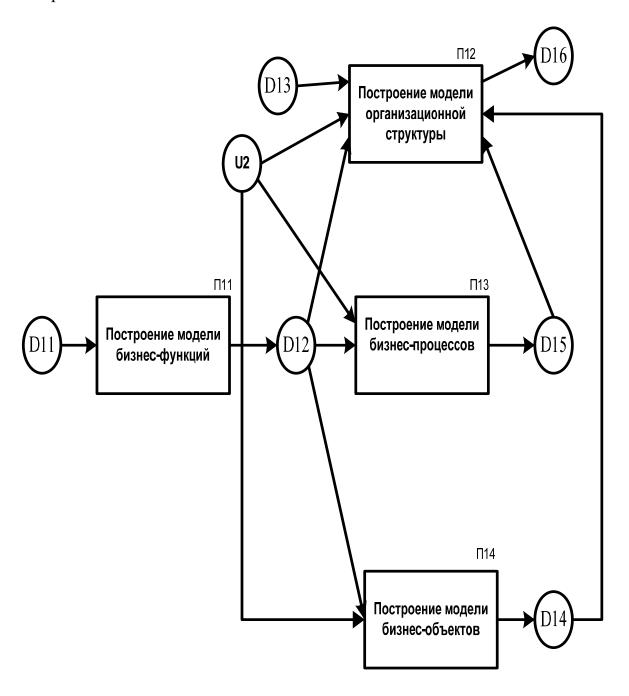


Рис. 7.1. Технологическая сеть построения предварительной модели предприятия: D11 — бизнес-цели; D12— модель бизнес-функций; D13 — существующая организационная структура; D14 — модель бизнес-объектов; D15 — модель бизнес-процессов; D16 — модель организационной структуры; U2— компоненты референтной модели

Стадия «Разработка проектной модели предприятия»

Для модельно-ориентированной технологии проектирования ИС характерна привязка модели предприятия к функциональности типовой ИС, на основе которой в последующем автоматически выполняется конфигурация информационной системы. Технологическая сеть привязки модели предприятия к компонентам типовой ИС представлена на рис. 7.2.

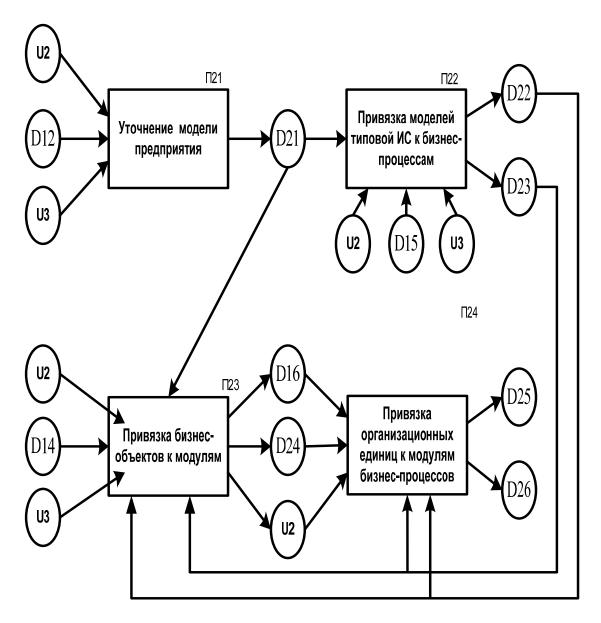


Рис. 7.2. Технологическая сеть привязки модели предприятия к компонентам типовой *ИС*: D21– проектная модель бизнес-функций; D22 – привязка программных модулей типовой ИС к функциональным блокам бизнес процессов; D23 – спецификации на разработку программных модулей; D24 – структура используемых бизнес-объектов; D25 – роли исполнителей; D26 – спецификации интерфейса пользователя; U2 – универсум нотаций; U3– бизнес-правила

Стадия «Реализация проекта»

Реализация типового проекта сводится к конфигурации ИС и генерации интерфейсов пользователей, то есть получения готовых для эксплуатации программ функций обработки данных и интерфейсов, а также структуры БД.

Технологическая сеть конфигурации ИС представлена на рис. 7.3.

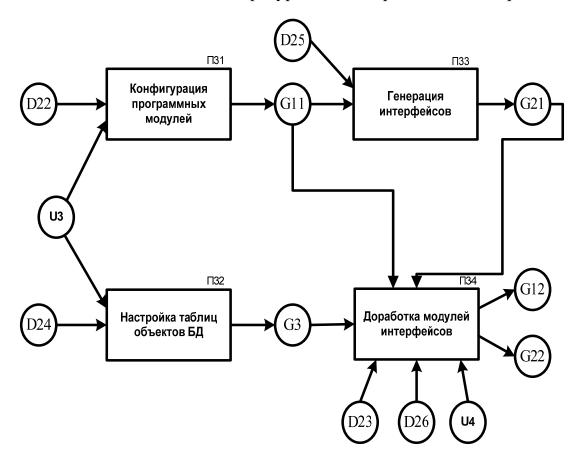


Рис. 7.3. Технологическая сеть конфигурации *ИС*: G11 – сконфигурированные программные модули; G12 – доработанные (новые) программные модули; G21 – сгенерированные интерфейсы; G22 – запрограммированные интерфейсы; U4– языковые средства и инструментальные средства 4GL (генераторы программ на основе языковых средств RAD-технологий)

Стадия «Ввод в эксплуатацию»

Ввод в эксплуатацию типового проекта осуществляется поэтапно в соответствии с определенным планом. В процессе эксплуатации ИС осуществляется системная поддержка для устранения возникающих замечаний. Особое внимание на стадии эксплуатации придается развитию проекта ИС.

Список рекомендуемой литературы

- 1. Фаулер, М. UML. Основы. Краткое руководство по унифицированному языку моделирования / М. Фаулер, К. Скотт. 2-е изд. М. : Символ-Плюс, 2002. 192 с. ISBN 5-93286-032-4.
- 2. Калянов, Г. Н. САSE-технологии : Консалтинг в автоматизации бизнес-процессов / Г.Н. Калянов. 3-е изд. —М. : Горячая линия Телеком, 2002. —320 с. ISBN 5-93517-099-X.
- 3. Мамиконов, А. Г. Основы построения АСУ: учеб. для вузов / А. Г. Мамиконов. М.: Высш. шк., 1981. 248 с.
- 4. Проектирование информационных систем и технологий : метод. указания к курсовому проектированию / Владим. гос. ун-т ; сост. А. В. Костров, Р. И. Макаров. Владимир : ВлГУ, 1999. 12 с.
- 5. Проектирование информационных систем : метод. указания к лаб. работам / Владим. гос. ун-т ; сост. Р.И. Макаров, К.Н. Наянзин. Владимир : ВлГУ, 2002. 36 с.
- 6. Садердинов, А. А. Построение комплексных программно-технических проектов интегрированных систем организационного управления (обобщение теории и практики проектирования) / А.А. Садердинов, В. А. Трайнев. М.: Маркетинг, 2001. 287 с.
- 7. Смирнова, Г. Н. Проектирование экономических информационных систем: учебник / Г. Н. Смирнова, А. А. Сорокин, Ю. Ф. Тельнов; под. ред. Ю. Ф. Тельнова. М.: Финансы и статистика, 2003. 512 с.: ил. ISBN 5-279-02295-0.
- 8. Хетагуров, Я. А. Проектирование информационно-вычислительных комплексов: учеб. для вузов./ Я. А. Хетагуров, Ю. Г. Древс. М.: Высш. шк., 1987. 280 с.

ОГЛАВЛЕНИЕ

Введени	e	3
Тема 1.	Расчетное определение требуемых вычислительных	
	ресурсов	3
1.1.	Определение производительности вычислителя	3
1.2.	Вычисление объема требуемой памяти	9
Тема 2.	Погрешности вычислений и их оценка. Расчет	
	погрешности канала информационно-измерительной	
	системы (ИИС)	11
Тема 3.	Особенности проектирования клиент-серверных	
	информационных систем	12
Тема 4.	Функционально-ориентированное проектирование ИС.	
	Диаграммы функциональных спецификаций, потоков	
	данных, переходов состояний, программного	
	приложения. Рассмотрение типичной сети	
	проектирования	17
Тема 5.	Объектно-ориентированное проектирование ИС.	
	Рассмотрение технологической сети логического,	
	физического проектирования и реализации	22
Тема 6.	Прототипное проектирование ИС. RAD-технология	
	проектирования ИС. Рассмотрение двух вариантов	
	технологического процесса проектирования	26
Тема 7.	Модельно-ориентированное проектирование ИС.	
	Рассмотрение технологической сети	
	модельно-ориентированного проектирования	29
Список	рекомендуемой литературы	33

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО ДИСЦИПЛИНЕ «ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННЫХ СИСТЕМ»

Составители МАКАРОВ Руслан Ильич МАЗАНОВА Валентина Ивановна

Ответственный за выпуск – зав. кафедрой профессор А.В. Костров

Подписано в печать 25.08.08. Формат 60х84/16. Усл. печ. л.2,09. Тираж 100 экз. Заказ Издательство

Владимирского государственного университета. 600000, Владимир, ул. Горького, 87.